JPS62290835A - Au-alloy extra fine wire for semiconductor device bonding wire - Google Patents

Au-alloy extra fine wire for semiconductor device bonding wire

Info

Publication number
JPS62290835A
JPS62290835A JP61133061A JP13306186A JPS62290835A JP S62290835 A JPS62290835 A JP S62290835A JP 61133061 A JP61133061 A JP 61133061A JP 13306186 A JP13306186 A JP 13306186A JP S62290835 A JPS62290835 A JP S62290835A
Authority
JP
Japan
Prior art keywords
wire
bonding
alloy
extra fine
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61133061A
Other languages
Japanese (ja)
Other versions
JPH0726167B2 (en
Inventor
Naoyuki Hosoda
細田 直之
Masayuki Tanaka
正幸 田中
Tamotsu Mori
保 森
Morihiro Kada
嘉田 守宏
Toshihiro Morishima
森島 壽洋
Katsuhiko Shimizu
克彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Sharp Corp
Original Assignee
Mitsubishi Metal Corp
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp, Sharp Corp filed Critical Mitsubishi Metal Corp
Priority to JP61133061A priority Critical patent/JPH0726167B2/en
Publication of JPS62290835A publication Critical patent/JPS62290835A/en
Publication of JPH0726167B2 publication Critical patent/JPH0726167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To obtain an Au-alloy extra fine wire for semiconductor device bonding wire particularly excellent in strength at high temp. and heat resistance, by providing a composition containing one or more kinds among Ce-group rare earth elements, Se, and Pb each in the prescribed percentage. CONSTITUTION:The above Au-alloy extra fine wire is composed of an Au alloy consisting of, by weight ratio, 0.0001-0.003% of one or more kinds among Ce-group rare earth elements constituted of La, Ce, Pr, and Sm, 0.0005-0.003% Se, 0.002-0.008% Pb, and the balance Au with inevitable impurities. The Au- alloy extra fine wire combines superior strength at ordinary and high temps. with superior heat resistance and, moreover, it is excellent in joining strength. Accordingly, when used as bonding wire for semiconductor device the Au-alloy extra fine wire is capable of preventing the deformation of wire loop at the time of bonding no matter how high-speed the bonding operation is made, and semiconductor device is made highly concentrated and large-sized and, moreover, owing to its superior wire drawability, it can easily be worked into an extra fine wire of <=0.05mm diameter.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、高強度、特に高い高温強度を有し、かつ耐
熱性にもすぐれたAu合金極細線にして、特にこれを半
導体装置のボンディングワイヤとして用いた場合に、ワ
イヤボンディング時のワイヤルーズの変形、さらに樹脂
モールド時のワイヤ流れやワイヤネック部の切れを防止
することができる半導体装置のボンディングワイヤ用A
u合金極細線に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] This invention provides an ultrafine Au alloy wire that has high strength, particularly high temperature strength, and has excellent heat resistance. Particularly when this is used as a bonding wire for semiconductor devices, it can prevent deformation of wire looseness during wire bonding, as well as wire flow and wire neck breakage during resin molding.
This relates to ultrafine u-alloy wires.

〔従来の技術〕[Conventional technology]

従来、一般に、工C+LSIなどの半導体装置は、 (a、)  まず、リード素材として板厚: 0.1−
0.3閣程度のCuおよびCu合金、あるいはN1およ
びNj金合金条材を用意し、 (b)  ついで、上記リード素材よりプレス打抜き加
工によシ製造せんとする半導体装置の形状に適合したリ
ードフレームを形成し、 (C)  上記リードフレームの所定個所に高純度$1
あるいはDelどの半導体素子を、AgR−ストなどの
導電性樹脂を用いて加熱接層するか、あるいは予め上記
リード素材の片面にメッキしておいたAu。
Conventionally, in general, semiconductor devices such as engineering C+LSI are manufactured using (a,) First, the lead material is plate thickness: 0.1-
Prepare a strip of Cu and Cu alloy or N1 and Nj gold alloy with a thickness of about 0.3 mm, (b) Then, press punch the above lead material to form a lead suitable for the shape of the semiconductor device to be manufactured. Forming a frame, (C) High-purity $1 at predetermined locations on the lead frame.
Alternatively, a semiconductor element such as Del is heat-bonded using a conductive resin such as AgR-st, or Au is plated on one side of the lead material in advance.

Ag、Ni、あるいはこれらの合金のメッキ層を介して
加熱圧着するかし、 (d)  上記半導体素子と上記リードフレームに渡っ
て純Au極細線によるワイヤボンディング(結線)を施
し、 (e)  引続いて、上記半導体素子、結線、および半
導体素子が接着された部分のリードフレームを、これら
を保護する目的で、プラスチックを用いて樹脂モールド
し、 (f)  上記リードフレームにおける相互に連なる部
分を切除してリード材を形成し、 fg)  最終的に、上記リード材の脚部に、半導体装
置の基板への接続を行なうためのはんだ材の被覆溶着を
行なう、 以上(a)〜(g)の主要工程によって製造され、特に
、上記の(d)工程におけるワイヤボンディングは、手
動式あるいは自動式のボンディングマシンを用い、純A
u極細線からなるボンディングワイヤを、酸水素炎また
は電気的に溶断し、その際にできる先端部のボール部を
、150〜350℃の温度に加熱された状態にある半導
体素子とリードフレームのそれぞれの表面に押圧するこ
とによ9行なわれている。
(d) Wire bonding (connection) using ultrafine pure Au wires across the semiconductor element and the lead frame; (e) Pulling. Next, in order to protect the semiconductor element, the wiring, and the part of the lead frame to which the semiconductor element is bonded, resin molding is performed using plastic, and (f) the interconnected parts of the lead frame are cut out. fg) Finally, the legs of the lead material are coated and welded with a solder material for connection to the substrate of the semiconductor device. In particular, the wire bonding in the above step (d) is performed using a manual or automatic bonding machine.
A bonding wire made of ultra-fine wire is cut using an oxyhydrogen flame or electrically, and the ball portion at the tip formed at that time is heated to a temperature of 150 to 350 degrees Celsius for each of the semiconductor element and lead frame. This is done by pressing on the surface of the

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、半導体装置の製造には、ボンディングワ
イヤとして純Au極細線が用いられているが、近年のボ
ンディング技術の向上に伴う高速化、集積度の高密度化
、さらに経済性などの面から、ボンディングワイヤにも
強度、特に高温強度や、耐熱性が要求されるようになっ
ているが、上記の純Au極細線においては、特に高温強
度が不足するために、上記の半導体装置の製造工程にお
ける(d)工程のワイヤボンディング時に、ワイヤルー
プにショート(短絡)の原因となる°たるみ“や“たれ
′などの変形が発生し易く、また耐熱性不足が原因で、
同じく上記(e)工程の樹脂モールド時に、同じくショ
ートの原因となるワイヤ流れや、ワイヤネック切れが生
じ易く、上記の要望を満足することができないのが現状
である。
As mentioned above, ultrafine pure Au wires are used as bonding wires in the manufacture of semiconductor devices, but recent improvements in bonding technology have led to increased speeds, higher integration density, and economic efficiency. Therefore, bonding wires are also required to have strength, especially high-temperature strength and heat resistance.However, the above-mentioned pure Au ultrafine wires lack particularly high-temperature strength, so it is difficult to manufacture the above-mentioned semiconductor devices. During wire bonding in step (d) in the process, deformations such as ``sagging'' and ``sagging'' that cause short circuits in the wire loops are likely to occur, and due to lack of heat resistance,
Similarly, at the time of resin molding in step (e) above, wire flow and wire neck breakage, which also cause short circuits, are likely to occur, and the above requirements cannot be satisfied at present.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、特に高
温強度および耐熱性のすぐれたボンディングワイヤを開
発すべく研究を行なった結果、上記の純All極細線に
、合金成分として、重量%で(以下チは重量%を示す)
、 5°・°1・2′・ゞ°・3よび°°”らな″1z9f
)1.旅宿土類元素のうちの1種または2種以上:O,
0OO1〜0.003%、 Be: 0.0005〜0.003%、Pb、0003
〜0008%、 を含有させると、純Au極細線のもつすぐれた伸線加工
性および接合強度を保持した状態で、強度、特に高温強
度および耐熱性が著しく向上するようになり、この結果
のAu合金極細線をボンディングワイヤとして用いた場
合には、ボンディングの高速化、並びに半導体装置の高
密度化および大型化にかかわらず、ボンディング時のワ
イヤループの変形が防止され、さらに樹脂モールド時に
おいてもワイヤ流れやワイヤネック切れが著しく抑制さ
れるようになるという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a bonding wire with particularly excellent high-temperature strength and heat resistance. (Hereinafter, ``chi'' indicates weight%)
, 5°・°1・2′・ゞ°・3 and °°”ra”1z9f
)1. One or more of the earth elements: O,
0OO1~0.003%, Be: 0.0005~0.003%, Pb, 0003
~0008%, while maintaining the excellent wire drawability and bonding strength of pure Au ultrafine wires, the strength, especially high temperature strength and heat resistance, is significantly improved, and as a result of this, Au When ultra-fine alloy wire is used as a bonding wire, the deformation of the wire loop during bonding is prevented despite the increase in bonding speed and the increase in the density and size of semiconductor devices. They found that flow and wire neck breakage were significantly suppressed.

この発明は、上記知見にもとづいてなされたものであっ
て、 La、 Ce 、 Pr 、 Nd、およびSmからな
るセリウム族希土類元素のうちの1種または2種以上:
0.0OO1〜0003%、 Be: 0.0005〜0.003%、Pb: 0.0
03〜0.008 %、を含有し、残りがAuと不可避
不純物からなる組成を有するA、u合金で構成された、
特に高温強度および耐熱性のすぐれた半導体装置のボン
ディングワイヤ用Au合金極細線に特徴を有するもので
ある。
This invention was made based on the above findings, and includes one or more of the cerium group rare earth elements consisting of La, Ce, Pr, Nd, and Sm:
0.0OO1~0003%, Be: 0.0005~0.003%, Pb: 0.0
03 to 0.008%, with the remainder consisting of Au and unavoidable impurities.
In particular, the present invention is characterized by ultrafine Au alloy wires for bonding wires of semiconductor devices, which have excellent high-temperature strength and heat resistance.

つぎに、この発明のAu極細線において、成分組成範囲
を上記の通りに限定した理由を説明する。
Next, the reason for limiting the component composition range as described above in the Au ultrafine wire of the present invention will be explained.

(a)  セリウム族希土類元素 これらの成分には、BeおよびPb酸成分の共存におい
て、ボンディング時および樹脂モールド時における加熱
に際して結晶粒の粗大化を抑制して高温強度を向上させ
る作用があるが、その含有量が0.0001%未満では
前記作用に所望の効果が得られず、一方その含有量が0
.003%を越えると、脆化が現われるようになって伸
線加工性が劣化するようになることから、その含有量を
O,OOOl〜0、 OO3%と定めた。
(a) Cerium Group Rare Earth Elements These components, in the coexistence of Be and Pb acid components, have the effect of suppressing coarsening of crystal grains and improving high-temperature strength during heating during bonding and resin molding. If its content is less than 0.0001%, the desired effect cannot be obtained;
.. If it exceeds 0.003%, embrittlement will appear and the wire drawability will deteriorate, so the content was determined to be O,OOOl~0,OO3%.

(b)  seおよびPb これらの成分には、セリウム族希土類元素との3者共存
において耐熱性を向上させる作用があるが、Beの含有
量が0.0005%未満であっても、またPbの含有量
がO,OO31未満であっても所望の耐熱性を確保する
ことができず、一方BeにあってはO,OO3チ、また
Pbにあっては0.0 O8%をそれぞれ越えた含有量
になると、脆化傾向が現われるようになって伸線刃ロエ
性が劣化するようになるばかりでなく、ポンディング時
の加熱温度で結晶粒界破断を起し易くなることから、そ
の含有量を、それぞれBe: 0.0005〜0.00
3 %、Pb:0.003〜o、oosチと定めた。
(b) se and Pb These components have the effect of improving heat resistance when they coexist with the cerium group rare earth elements, but even if the Be content is less than 0.0005%, the Pb Even if the content is less than 31% O, OO, the desired heat resistance cannot be secured, while for Be, the content exceeds 3% O, OO3, and for Pb, the content exceeds 0.0% O8%. If the content increases, not only will the drawing blade tend to become brittle and the Loe properties of the wire drawing blade will deteriorate, but also the grain boundary fracture will easily occur at the heating temperature during bonding. , respectively Be: 0.0005 to 0.00
3%, Pb: 0.003-0, ooschi.

〔実施例〕〔Example〕

つぎに、この発明のAu合金極細線を実施例により説明
する。
Next, the Au alloy ultrafine wire of the present invention will be explained with reference to Examples.

通常の溶解法によシそれぞれ第1表に示される成分組成
をもっだ溶湯を調製し、鋳造した後、公知の溝型圧延機
を用いて圧延し、引続いて線引加工を行なうことによっ
て直径:0.025門φを有する本発明Au合金極細線
1〜13、比較A、u合金極細線1〜4、および従来純
Au極細線をそれぞれ製造した。
By preparing a molten metal having the component composition shown in Table 1 by a normal melting method, casting it, rolling it using a known groove rolling mill, and subsequently performing wire drawing. Au alloy ultrafine wires 1 to 13 of the present invention, comparative A and u alloy ultrafine wires 1 to 4, and conventional pure Au ultrafine wires each having a diameter of 0.025 mm were manufactured.

なお、比較Au合金極細線1〜4は、いずれも構成成分
のうちのいずれかの成分(第1表に※印を付した成分)
の含有量がこの発明の範囲から少ない方に外れた組成を
もつものである。
In addition, comparative Au alloy ultrafine wires 1 to 4 all contain one of the constituent components (components marked with * in Table 1).
It has a composition in which the content of is slightly outside the scope of the present invention.

ついで、この結果得られた各種の極細線について、常温
引張試験を行ない、破断荷重と伸びを測定し、さらにワ
イヤがポンディング時にさらされる条件に相当する条件
、すなわち温度:250℃に308)間保持し六条性で
の高温破断荷重を測定し、また、これらの極細線をポン
ディングワイヤとして用い、ポンディングを、3,5u
の長いポンディング距離(通常:2朋)に渡り、0.1
8秒の高速で(通常の速さは023秒)行ない、半導体
素子との接合強度を測定すると共に、ループ変形の有無
を測定し、また樹脂モールド後のワイヤ流れ量を測定し
た。
Next, the resulting ultra-fine wires were subjected to room temperature tensile tests to measure the breaking load and elongation, and were further tested under conditions equivalent to those to which the wires are exposed during bonding, that is, at a temperature of 250°C for a period of 308°C. The high-temperature breaking load was measured at six strips, and using these ultra-thin wires as bonding wires, the bonding was carried out at 3.5 u.
0.1 over a long pumping distance (usually 2 tom)
This was carried out at a high speed of 8 seconds (normal speed is 0.23 seconds) to measure the bonding strength with the semiconductor element, the presence or absence of loop deformation, and the amount of wire flow after resin molding.

なお、ワイヤ流れ量は、樹脂モールド後のワイヤ(結線
)を直上からX線撮影し、この結果のX線写真にもとづ
いて、4つのコーナ一部における半導体素子とリードフ
レームのボンディング点を結んだ直線に対するワイヤ最
大膨出量をそれぞれ測定し、これらの平均値をもって表
わした。
The wire flow rate was determined by taking an X-ray photograph of the wire (connection) after resin molding from directly above, and connecting the bonding points of the semiconductor element and lead frame at some of the four corners based on the resulting X-ray photograph. The maximum amount of wire expansion with respect to a straight line was measured, and the average value of these values was expressed.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明Au合金極細線1〜
13は、いずれも従来純Au極細線に比して、一段と高
い強度、特に高温強度を有するので、ワイヤボンディン
グ時のループ変形が皆無であり、かつ従来純Au極細線
と同等の接合強度を示し、さらて耐熱性にもすぐれてい
るので樹脂モールド後のワイヤ流れがきわめて少ないも
のであるのに対して、従来純Au極細線ではループ変形
やワイヤ流れの著しいものであった。
From the results shown in Table 1, the Au alloy ultrafine wires 1 to 1 of the present invention
No. 13 has much higher strength, especially high-temperature strength, than conventional pure Au ultra-fine wires, so there is no loop deformation during wire bonding, and the bonding strength is equivalent to that of conventional pure Au ultra-fine wires. Moreover, since it has excellent heat resistance, there is very little wire flow after resin molding, whereas conventional pure Au ultrafine wires have had significant loop deformation and wire flow.

また、比較Au合金極細線1〜4に見られるように、構
成成分のいずれかの成分含有量でもこの発明の範囲から
外れて少ないと、上記の特性のうちの少なくともいずれ
かの特性が劣ったものになることが明らかである。
Furthermore, as seen in Comparative Au Alloy Ultrafine Wires 1 to 4, if the content of any of the constituent components is too low to be within the scope of the present invention, at least one of the above characteristics is inferior. It is clear that it will become a thing.

上述のように、この発明のAu合金極細線は、すぐれた
常温および高温強度、並びにすぐれた耐熱性を有し、さ
らに接合強度にもすぐれているので、これを半導体装置
のボンディングワイヤとして用いた場合には、ボンディ
ングの高速化、並びに半導体装置の高密度化および大型
化にもかかわらず、ボンディング時のワイヤループの変
形が防止され、さらに樹脂モールド時においてもワイヤ
流れやワイヤネック切れが著しく抑制されるようになっ
て高い信頼性が得られるものであシ、さらに伸線加工性
にもすぐれているので、直径:0.05mx以下の極細
線への加工も容易であるなど工業上有用な特性を有する
のである。
As mentioned above, the Au alloy ultrafine wire of the present invention has excellent room temperature and high temperature strength, excellent heat resistance, and also has excellent bonding strength, so it was used as a bonding wire for semiconductor devices. In some cases, deformation of wire loops during bonding is prevented, and even wire flow and wire neck breakage are significantly suppressed during resin molding, despite faster bonding and higher density and larger semiconductor devices. It has become highly reliable and has excellent wire drawability, making it easy to process into ultra-fine wires with a diameter of 0.05mx or less, making it an industrially useful wire. It has characteristics.

Claims (1)

【特許請求の範囲】 La、Ce、Pr、Nd、およびSmからなるセリウム
族希土類元素のうちの1種または2種以上:0.000
1〜0.003%、 Be:0.0005〜0.003%、 Pb:0.003〜0.008%、 を含有し、残りがAuと不可避不純物からなる組成(以
上重量%)を有するAu合金で構成されたことを特徴と
する半導体装置のボンディングワイヤ用Au合金極細線
[Claims] One or more cerium group rare earth elements consisting of La, Ce, Pr, Nd, and Sm: 0.000
1 to 0.003%, Be: 0.0005 to 0.003%, Pb: 0.003 to 0.008%, and the remainder is Au and unavoidable impurities (weight%). An ultrafine Au alloy wire for bonding wires of semiconductor devices, characterized in that it is made of an alloy.
JP61133061A 1986-06-09 1986-06-09 Au alloy extra fine wire for bonding wire of semiconductor device Expired - Fee Related JPH0726167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133061A JPH0726167B2 (en) 1986-06-09 1986-06-09 Au alloy extra fine wire for bonding wire of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133061A JPH0726167B2 (en) 1986-06-09 1986-06-09 Au alloy extra fine wire for bonding wire of semiconductor device

Publications (2)

Publication Number Publication Date
JPS62290835A true JPS62290835A (en) 1987-12-17
JPH0726167B2 JPH0726167B2 (en) 1995-03-22

Family

ID=15095913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133061A Expired - Fee Related JPH0726167B2 (en) 1986-06-09 1986-06-09 Au alloy extra fine wire for bonding wire of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0726167B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127635A (en) * 1987-11-09 1989-05-19 Mitsubishi Metal Corp Fine au alloy wire for bonding semiconductor device
JPH02170931A (en) * 1988-09-29 1990-07-02 Mitsubishi Metal Corp Fine gold-alloy wire for gold bump
US4938923A (en) * 1989-04-28 1990-07-03 Takeshi Kujiraoka Gold wire for the bonding of a semiconductor device
JPH03257129A (en) * 1990-03-06 1991-11-15 Mitsubishi Materials Corp Gold alloy wire for bonding of semiconductor device
JPH04304335A (en) * 1991-03-30 1992-10-27 Mitsubishi Materials Corp Pure gold foil for noble metal card
CN100394592C (en) * 2006-07-11 2008-06-11 中国印钞造币总公司 Gold bonding wire and method for manufacturing same
CN115029578A (en) * 2022-04-29 2022-09-09 有研亿金新材料有限公司 High-strength bonding alloy belt and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127635A (en) * 1987-11-09 1989-05-19 Mitsubishi Metal Corp Fine au alloy wire for bonding semiconductor device
JPH02170931A (en) * 1988-09-29 1990-07-02 Mitsubishi Metal Corp Fine gold-alloy wire for gold bump
US4938923A (en) * 1989-04-28 1990-07-03 Takeshi Kujiraoka Gold wire for the bonding of a semiconductor device
JPH03257129A (en) * 1990-03-06 1991-11-15 Mitsubishi Materials Corp Gold alloy wire for bonding of semiconductor device
JPH04304335A (en) * 1991-03-30 1992-10-27 Mitsubishi Materials Corp Pure gold foil for noble metal card
CN100394592C (en) * 2006-07-11 2008-06-11 中国印钞造币总公司 Gold bonding wire and method for manufacturing same
CN115029578A (en) * 2022-04-29 2022-09-09 有研亿金新材料有限公司 High-strength bonding alloy belt and preparation method thereof

Also Published As

Publication number Publication date
JPH0726167B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
KR890003143B1 (en) Fine gold alloy wire for bonding of a semiconductor device
US6063213A (en) High-purity hard gold alloy and method of manufacturing same
JPH0471975B2 (en)
JPS62290835A (en) Au-alloy extra fine wire for semiconductor device bonding wire
JPH0212022B2 (en)
US5989364A (en) Gold-alloy bonding wire
JP3573321B2 (en) Au bonding wire
JPS63235440A (en) Fine copper wire and its production
JPH0555580B2 (en)
JP2003059964A (en) Bonding wire and manufacturing method therefor
JPH03257129A (en) Gold alloy wire for bonding of semiconductor device
JPH0412623B2 (en)
JP2773202B2 (en) Au alloy extra fine wire for semiconductor element bonding
JPH0464121B2 (en)
JPS63238232A (en) Fine copper wire and its production
JPS63235442A (en) Fine copper wire and its production
JPS59177339A (en) Fine pd alloy wire for wire-bonding of semiconductor device
JP2621288B2 (en) Au alloy extra fine wire for semiconductor element bonding
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JPS63243238A (en) Au alloy extra fine wire for bonding semiconductor device
JPS63241942A (en) Fine copper wire and manufacture thereof
JP3615901B2 (en) Gold alloy wire for semiconductor element bonding
JPS63247325A (en) Fine copper wire and its production
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JPS6322062B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees