JPS6365036A - Fine copper wire and its production - Google Patents

Fine copper wire and its production

Info

Publication number
JPS6365036A
JPS6365036A JP61208894A JP20889486A JPS6365036A JP S6365036 A JPS6365036 A JP S6365036A JP 61208894 A JP61208894 A JP 61208894A JP 20889486 A JP20889486 A JP 20889486A JP S6365036 A JPS6365036 A JP S6365036A
Authority
JP
Japan
Prior art keywords
wire
ball
copper wire
bonding
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208894A
Other languages
Japanese (ja)
Other versions
JPH0555580B2 (en
Inventor
Toru Tanigawa
徹 谷川
Shoji Shiga
志賀 章二
Masaaki Kurihara
正明 栗原
Kozo Okuda
耕三 奥田
Ichiro Kaga
加賀 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURUKAWA TOKUSHU KINZOKU KOGYO KK
Furukawa Electric Co Ltd
Original Assignee
FURUKAWA TOKUSHU KINZOKU KOGYO KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURUKAWA TOKUSHU KINZOKU KOGYO KK, Furukawa Electric Co Ltd filed Critical FURUKAWA TOKUSHU KINZOKU KOGYO KK
Priority to JP61208894A priority Critical patent/JPS6365036A/en
Publication of JPS6365036A publication Critical patent/JPS6365036A/en
Publication of JPH0555580B2 publication Critical patent/JPH0555580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01037Rubidium [Rb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01038Strontium [Sr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01056Barium [Ba]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012066N purity grades, i.e. 99.9999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Abstract

PURPOSE:To manufacture a fine copper wire excellent in deformability and having high wire strength, by subjecting an ingot having a specific composition consisting of Ti, Na, etc., and Cu and cast under vacuum or under nonoxidizing atmosphere to wire drawing and to annealing treatment under proper conditions. CONSTITUTION:The ingot consisting of 0.2-2,000ppm, in total, of 0.1-50ppm Ti and 0.1-1,000ppm of at least one element among Na, K, Rb, Cs, Be, Sr, Ba, Y, Zr, Mo, W, Ag, Zn, Ga, Tl, and Sn and the balance Cu is cast under vacuum or nonoxidizing atmosphere. It is desirable to use pure copper of >=99.999wt% purity, preferably of >=99.9999%, as the above Cu. The above ingot is repeatedly subjected to wire drawing and annealing treatment to be formed into the prescribed wire diameter. At this time, at least final draft is regulated to 70-99.99%, and then elongation is also regulated to 2-20% by means of annealing treatment or by further application of working at 1-5% draft. In this way, the fine copper wire combining excellent deformability with high wire strength, causing neither softening at ordinary temp. nor sag of loop, having superior shape of ball and suitable for ball bonding wire can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子機器用途に用いられる銅細線に関し、特
に半導体製造に用いられるボンデインクワイヤに関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fine copper wire used in electronic equipment, and particularly to a bonded ink wire used in semiconductor manufacturing.

(従来の技術) ICやトランジスタ等の半導体の製造において、Siチ
ップ上の回路素子と外部の電源への接続や、外部との情
報のやりとりを行うために、回路素子に接続したパッド
と、半導体のリート間に線径15〜io04mの金やア
ルミニウムあるいはアルミニウム合金等の細線が用いら
れている。
(Prior art) In the manufacture of semiconductors such as ICs and transistors, in order to connect circuit elements on a Si chip to an external power source and to exchange information with the outside, pads connected to circuit elements and semiconductor A thin wire made of gold, aluminum, aluminum alloy, or the like with a wire diameter of 15 to io04 m is used between the reets.

(発明か解決しようとする問題点) このうち、アルミニウムやアルミニウム合金は電源との
接合は同種金属で行える利点を有し、安価であるけれど
もボールボンドが困難であり、生産性に劣るa音波を用
いるウェッジボンドか行われているのみならず、さらに
耐食性に劣るために、樹脂封止型の半導体では透湿水に
よるワイヤの腐食か生じるので、一部の気密廚止型半導
体に専ら使用されている。
(Problem to be solved by the invention) Of these, aluminum and aluminum alloys have the advantage that they can be bonded to the power source using the same metal, and although they are inexpensive, ball bonding is difficult, and a-sound waves are inferior in productivity. Not only is wedge bonding used, but it is also inferior in corrosion resistance, and in resin-sealed semiconductors, the wires may corrode due to moisture permeation, so it is used exclusively for some airtight-sealed semiconductors. There is.

一方、金は耐食性に優れ、生産性の高いボールボンディ
ングを利用できる等の利点を有し、樹脂封止型の半導体
を中心に広く利用されている。しかしながら、素材であ
る金が著しく高価であるばかりか、電極バッドのアルミ
ニウムやアルミニウム合金と脆弱なAn−Auの金属間
化合物を形成したり、あるいは透湿水の存在下でアルミ
ニウムと主食対を形成してアルミニウムを腐食せしめる
等により、電気回路の断線を生じることが知られている
。 cfに半導体の高度1に積化によって熱発生による
温度上昇やチップ面積の増大による透湿水経路の短縮と
ともに多ビン化による信頼性の大幅な低下が懸念される
On the other hand, gold has advantages such as excellent corrosion resistance and the ability to use highly productive ball bonding, and is widely used mainly in resin-sealed semiconductors. However, not only is the material gold extremely expensive, but it also forms a fragile An-Au intermetallic compound with the aluminum or aluminum alloy of the electrode pad, or forms a staple pair with aluminum in the presence of permeable water. It is known that electrical circuits can be disconnected due to corrosion of aluminum. There are concerns that due to the high stacking of semiconductors on the CF, the temperature will rise due to heat generation, the moisture permeable water path will be shortened due to an increase in the chip area, and reliability will be significantly reduced due to the increase in the number of bins.

このために金に代替でき、かつ、特性的にも金に劣らな
いワイヤの開発が望まれていた。
For this reason, it has been desired to develop a wire that can replace gold and has properties comparable to gold.

このために、銅のワイヤか提案されているけれども、そ
の変形能が金に劣り、パッド下にクラックを生じたり、
電極のアルミニウムとの接合が不十分であるという問題
点を生じている。特に高集積ICでは、電極パッド下に
5i02等の脆い絶縁層が存在する例が多く、金に匹敵
するかまたはそれ以上の変形能を有する銅ワイヤの開発
が期待されていた。
For this reason, copper wire has been proposed, but its deformability is inferior to gold, and it may cause cracks under the pad.
A problem arises in that the bonding of the electrode to the aluminum is insufficient. In particular, in highly integrated ICs, there are many cases in which a fragile insulating layer such as 5i02 is present under the electrode pad, and it has been expected to develop a copper wire with a deformability comparable to or better than that of gold.

(問題点を解決するための手段) 本発明は上記に鑑みて鋭意検討の結果成されたものであ
り、0.1〜50ppmのTiと0.1〜11000p
pの、Na、K、Rb、Cs。
(Means for Solving the Problems) The present invention was achieved as a result of intensive studies in view of the above, and includes Ti of 0.1 to 50 ppm and Ti of 0.1 to 11000 ppm.
p, Na, K, Rb, Cs.

Be、Sr、Ba、Y、Zr、Mo、W、Ag、Zn、
Ga、Tl及びSnから成る群から選ばれた少なくとも
1種の元素とを合計で0.2〜2000ppm含有し、
残部Cuから成ることを特徴とする銅細線及び真空また
は非酸化性雰囲気下で鋳造された0、1〜50ppmの
Tiと0.1〜1000pprnの、Na、に、Rb。
Be, Sr, Ba, Y, Zr, Mo, W, Ag, Zn,
Contains a total of 0.2 to 2000 ppm of at least one element selected from the group consisting of Ga, Tl and Sn,
Copper fine wire characterized by having the balance consisting of Cu and 0.1 to 50 ppm of Ti and 0.1 to 1000 pprn of Na, Rb, cast in vacuum or in a non-oxidizing atmosphere.

Cs、Be、Sr、Ba、Y、Zr、Mo、W、Ag、
Zn、Ga、Tl及びSnから成る群から選ばれた少な
くとも1種の元素とを合計で0.2〜2000ppm含
有し、残部Cuから成る鋳塊を、伸線加工と焼鈍処理を
繰り返して所定の線径にするに当り、少なくとも最終加
工率を70〜99.99%とし、焼鈍処理により2〜2
0%の伸びとすることを特徴とする銅細線の製造方法を
提供するものである。
Cs, Be, Sr, Ba, Y, Zr, Mo, W, Ag,
An ingot containing a total of 0.2 to 2000 ppm of at least one element selected from the group consisting of Zn, Ga, Tl, and Sn, with the remainder being Cu, is repeatedly subjected to wire drawing and annealing to achieve a predetermined shape. In making the wire diameter, the final processing rate should be at least 70 to 99.99%, and the annealing treatment should reduce the
The present invention provides a method for manufacturing thin copper wire characterized by elongation of 0%.

本発明の銅細線の製造は、非酸化性雰囲気、もしくは真
空中で前記組成の銅合金の鋳塊ビレットをpJ造した後
、必要に応じて熱間加工を行い、その後伸線加工と焼鈍
を繰り返して所定線径とした後、厳重焼鈍を行って所定
の性能とする工程により行うことができる。この際少な
くとも焼鈍前の最終加工率を70〜99.99%、好ま
しくは90〜99.95%とし、さらに150〜400
℃の温度で所定時間焼鈍して伸びを2〜20%、好まし
くは6〜16%に調整すると、より優れた特性とするこ
とができる。また、焼鈍により細線の特性を発現する代
わりに、過剰に焼鈍した後、1〜5%の加工率の伸線加
工を行って同様の特性としてもよい。
The production of the thin copper wire of the present invention involves producing a copper alloy ingot billet having the above composition in a non-oxidizing atmosphere or vacuum, then hot working as required, and then wire drawing and annealing. This can be carried out by repeating the process to obtain a predetermined wire diameter and then performing severe annealing to achieve a predetermined performance. At this time, the final processing rate at least before annealing is 70 to 99.99%, preferably 90 to 99.95%, and further 150 to 400%.
If the elongation is adjusted to 2 to 20%, preferably 6 to 16%, by annealing at a temperature of 10.degree. C. for a predetermined period of time, more excellent properties can be obtained. Moreover, instead of developing the characteristics of a fine wire by annealing, the same characteristics may be obtained by excessively annealing and then drawing the wire at a processing rate of 1 to 5%.

半導体素子とインナーリード間のワイヤボンディングは
ポールボンディングされる例が多い。
Wire bonding between a semiconductor element and an inner lead is often pole bonding.

ポールボンディングにおいて、細線はH2炎又は放電に
より先端をメルトしてボールを形成されるがボールか真
珠に近く偏芯していないこと、ボールが電極であるアル
ミニウムバッドに容易に接合すること、ワイヤのループ
か適裏な高さを保持すること、ステッチ側の接合か十分
であること等が必要とされる。
In pole bonding, the tip of a fine wire is melted by H2 flame or electric discharge to form a ball, but the ball is close to a pearl and is not eccentric, the ball is easily bonded to the aluminum pad that is the electrode, and the wire is It is necessary to maintain the appropriate height of the loop, to have sufficient joints on the stitch side, etc.

銅は純度の向上により、変形能が優れたものとできるけ
れども、常温軟化し易くループのダレを生じたりするこ
と、ロットによる特性のバラツキを生じ易いこと、また
ボールボンディング時に電極パットのアルミニウムと接
合しない、ボール浮き現象を生じ易いことなどの欠点を
有していた。
Copper can be made to have excellent deformability by improving its purity, but it tends to soften at room temperature, causing loops to sag, and tends to vary in properties from lot to lot, and is difficult to bond with the aluminum of the electrode pad during ball bonding. However, it has disadvantages such as the fact that it does not work well, and that it tends to cause the ball to float.

また、従来Ti単独でも、ボンディング特性の改善効果
が知られているけれども、Tiそれ自身0□やN2と反
応し易く、そのため特性のバラツキが大きいこと、また
Tiの添加によってECか大きく変化することが欠点と
して知られていた。
Furthermore, although it has been known that Ti alone can improve bonding properties, Ti itself easily reacts with 0□ and N2, resulting in large variations in properties, and the addition of Ti causes large changes in EC. was known as a drawback.

本発明によれば、0.1〜50ppmのTiと0.1〜
1000 p p m、好ましくは0.1〜1100p
pの、Na、K、Rb、Cs、Be。
According to the present invention, 0.1 to 50 ppm of Ti and 0.1 to 50 ppm of Ti
1000 ppm, preferably 0.1-1100p
p, Na, K, Rb, Cs, Be.

Sr、Ba、Y、Zr、Mo及びWから成る群から選ば
れた少なくとも1種又は2種以上の元素を合計で0.2
〜200ppm添加することにより、上記に述べた欠点
を解消できるばかりではなく、チップの機械的損傷を防
止するために、低荷重、低超音波出力を要求される高集
積ICに対するボールボンドでも金に匹敵する以上のボ
ンディング特性を得ることができる。
A total of 0.2 or more elements selected from the group consisting of Sr, Ba, Y, Zr, Mo, and W.
By adding ~200 ppm, not only can the above-mentioned drawbacks be eliminated, but also ball bonds for highly integrated ICs that require low load and low ultrasonic output can be used to prevent mechanical damage to the chip. Comparable or better bonding properties can be obtained.

以上の効果は、Na、K、Rb、Cs、Be、Sr、B
a、Y、Zr、Mo及びWをベースの銅に添加後、Ti
を添加すること及び、99.999%以上、好ましくは
99.9999%以上の純銅を使用することにより一層
発現できる。
The above effects include Na, K, Rb, Cs, Be, Sr, B
After adding a, Y, Zr, Mo and W to the base copper, Ti
Further improvement can be achieved by adding pure copper of 99.999% or more, preferably 99.9999% or more.

なお、Na、に、Rh、Cs、Be、Sr、Ba、Y、
Zr、Mo及びWの添加量は0.1〜1100pp、T
iとの合計で0.1〜200ppmとするのが好ましい
が、各々0.1〜11000pp、O,1〜2000p
pmでも一部の機種に十分使用することが可1.@であ
る。
In addition, Na, Rh, Cs, Be, Sr, Ba, Y,
The amount of Zr, Mo and W added is 0.1 to 1100 pp, T
It is preferable that the total amount with i is 0.1 to 200 ppm, respectively 0.1 to 11000 ppm and O, 1 to 2000 ppm.
Even pm can be used sufficiently for some models.1. It is @.

銅細線については以上のボール及びステッチ側ボンディ
ング性と共にループ形状やワイヤ強度が実用的に重要で
ある。これらの特性には、ワイヤの機械的特性が関与す
るけれども半導体の種類や、ボンディング方式及び装置
条件によって要求される特性は異なる。しかしながら、
伸びが著しく小さいと、ループ高さが大きくなり、ワイ
ヤ間でのシミートを引起こす原因となる他、ワイヤ変形
悌が小さく、ステッチボンドを行うに高荷重、高超音波
出力を必要とするほど、ボンディング性が低下する。一
方、伸びが著しく大きいと、ループ高さが低くなり、チ
ップとの接触を招く危険がある他、ステッチボンドでの
ワイヤ潰れが大きくなり、ネック部が脆弱となり易い、
また、ボンド後のワイヤテイルが不均一となり、ボール
形成が行えない事態が生じることとなる。
Regarding the copper thin wire, the loop shape and wire strength are practically important, as well as the above-mentioned ball and stitch side bonding properties. These characteristics are related to the mechanical characteristics of the wire, but the characteristics required differ depending on the type of semiconductor, bonding method, and device conditions. however,
If the elongation is extremely small, the loop height will be large, which may cause shimmy between the wires, and the wire deformation will be small, making the bonding difficult to the point where high loads and high ultrasonic power are required to perform stitch bonding. Sexuality decreases. On the other hand, if the elongation is extremely large, the loop height will be low and there is a risk of contact with the chip, and the wire will be more likely to be crushed at the stitch bond, making the neck part vulnerable.
Further, the wire tail after bonding becomes non-uniform, and a ball cannot be formed.

このため、前記の機械的特性が実用上有効である。これ
らの特性を実用的に安定して有利に発現するためには、
製造工程、特に最終伸線工程での加工率が特に重要であ
り、前記加工範囲が必要とされる。
Therefore, the mechanical properties described above are practically effective. In order to stably and advantageously exhibit these properties in practical terms,
The processing rate in the manufacturing process, particularly in the final wire drawing step, is particularly important, and the processing range described above is required.

(実施例) 次に本発明を実施例に基づきさらに詳しく説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 真空溶解炉を用いて99.9996%の純銅に添加元素
を加え第1表の実験No、l〜19に示した合金組成の
鋳塊(25mmx140■■)ビレットを鋳造した。こ
のビレットを面出して約20v(直径)xloOmm(
長さ)とした後、熱間圧延で直径約10mmとし、その
後直径8■■まで皮ムキを入れて伸線を行った。
Example 1 Using a vacuum melting furnace, additive elements were added to 99.9996% pure copper, and billets (25 mm x 140 mm) having alloy compositions shown in Experiment Nos. 1 to 19 in Table 1 were cast. This billet is surfaced to approximately 20v (diameter) x loOmm (
After that, the wire was hot rolled to a diameter of about 10 mm, and then the wire was peeled to a diameter of 8 mm and wire drawn.

さらに92%の加工率での伸線と、350℃での真空焼
鈍を繰り返して、直径25gmのワイヤとした。最後に
アルゴン雰囲気中250〜400℃の温度とした走間焼
鈍炉で焼鈍を行い、伸び約15%前後にしたワイヤを製
造した。この実験No、1−19で得られたワイヤの機
械的特性を第2表に示した。同表中Blは破断強度、E
lは伸びである。
Further, wire drawing at a processing rate of 92% and vacuum annealing at 350° C. were repeated to obtain a wire with a diameter of 25 gm. Finally, annealing was performed in a running annealing furnace at a temperature of 250 to 400° C. in an argon atmosphere to produce a wire with an elongation of about 15%. The mechanical properties of the wire obtained in Experiment No. 1-19 are shown in Table 2. In the same table, Bl is breaking strength, E
l is elongation.

ワイヤ中の酸素量はいずれも5ppm以下てあった。The amount of oxygen in each wire was 5 ppm or less.

これらのワイヤをlO%H2−N2雰囲気中で、ボンデ
ィング条件を、荷重35g、超音波出力0.02W、時
間30 m s e c、ステージ温度275°Cとし
てマニュアル型のワイヤボンダーでボールボンドを行い
、次の項目について比較試験した。
These wires were ball-bonded using a manual wire bonder in a 10% H2-N2 atmosphere under bonding conditions of a load of 35 g, an ultrasonic output of 0.02 W, a time of 30 msec, and a stage temperature of 275°C. A comparative test was conducted on the following items.

l)ボールの形状(真球度、偏芯) 2)ボールの歪(ボールアップ直後のボールの径と押潰
した後のボール径との比較) 3)ポール浮き(Siウェハ上に蒸着した14m厚のA
nにボールボンドした時の接合不成功率) 4)チップ割れ 5)接合ワイヤ破断モード(ボンディング後ワイヤプル
試験を行った時の破断の部位が接合部かワイヤ切れかを
みる。ワイヤ切れの割合(%)で示す、) 6)ループ形状(ボンディング後のループの形状) なお、5)、6)の項目については基材とじてメッキレ
スのCu−0,15cr−0,1Sn合金条(0−25
mm厚)を用いた。
l) Ball shape (sphericity, eccentricity) 2) Ball distortion (comparison of ball diameter immediately after ball up and ball diameter after crushing) 3) Pole float (14 m evaporated on Si wafer) Thick A
4) Chip cracking 5) Bonding wire breakage mode (When performing a wire pull test after bonding, check whether the breakage occurs at the joint or the wire breakage. Rate of wire breakage (%) ) 6) Loop shape (shape of the loop after bonding) For items 5) and 6), the base material is a non-plated Cu-0,15cr-0,1Sn alloy strip (0-25
mm thickness) was used.

この結果を第2表に示した。同表より本発明のワイヤは
機械的特性及びボンディング特性が優れるのに対して実
験No、16〜19(過剰添加)は同じレベルのボール
変形能を有するけれどもボール浮き率が大きいこと、ル
ープ形状が適当でないことがわかる。また無添加(実験
No、13)やTi単独(実験No、14.15)に対
して本発明はボール浮き率が小さくチップ割れ性の少な
いことがわかる。
The results are shown in Table 2. From the same table, the wires of the present invention have excellent mechanical properties and bonding properties, whereas Experiment Nos. 16 to 19 (excess addition) have the same level of ball deformation ability but have a large ball floating rate and a poor loop shape. I know it's not appropriate. Furthermore, it can be seen that the present invention has a smaller ball floating rate and less chip cracking than no additive (experiment No. 13) and Ti alone (experiment No. 14.15).

実施例2 実施例1の実験No、2と同じ合金組成の鋳塊ビレット
を用いてワイヤを製造した。この場合最終伸線加工率を
80.99.95.99.97%とするとともに、焼鈍
温度を変えて種々の伸びのものを作った以外は実施例1
と同様にして行った。
Example 2 A wire was manufactured using an ingot billet having the same alloy composition as in Experiment No. 2 of Example 1. In this case, the final wire drawing rate was set to 80.99.95.99.97%, and the annealing temperature was changed to produce wires with various elongations.
I did it in the same way.

これらワイヤについて実施例1の条件でメッキレスのC
u−0,15cr−0,1Sn合金条(0,25am厚
)にボールボンドを行い、そのプル試験を実施して、ワ
イヤ破断モードの割合を求めた。
These wires were plated-free C under the conditions of Example 1.
Ball bonding was performed on a u-0,15cr-0,1Sn alloy strip (0.25 am thick), a pull test was performed, and the percentage of wire breakage mode was determined.

結果を第1図に示した。The results are shown in Figure 1.

同図の結果より高加工率でも、2〜20%の範囲内で良
好なボンディング特性が得られることがわかる。
From the results shown in the figure, it can be seen that even at a high processing rate, good bonding characteristics can be obtained within the range of 2 to 20%.

(発明の効果) 本発明の銅細線は変形渣が優れるばかりでなく、ワイヤ
強度が高く、常温軟化せず、ループのダレを生じない、
またボールの形状が良好でボールボンディングにおいて
電極パッドのアルミニウムとの接合性がよく、ボール浮
き率が大きいという優れた効果を奏する。
(Effects of the invention) The thin copper wire of the present invention not only has excellent deformation residue, but also has high wire strength, does not soften at room temperature, and does not cause loop sag.
In addition, the ball has a good shape, has good bonding properties with the aluminum of the electrode pad in ball bonding, and has excellent effects such as a high ball floating rate.

さらに本発明の銅細線によれば、チップの機械的損傷を
防止できるため低荷重、低超音波出力条件を要求される
高集積ICのボールボンドにおいても金に匹敵する以上
のボンディング特性が得られる。
Furthermore, according to the thin copper wire of the present invention, mechanical damage to the chip can be prevented, so bonding properties comparable to or better than gold can be obtained even in ball bonding of highly integrated ICs that require low load and low ultrasonic output conditions. .

本発明によれば安価な銅線を用いて金線を有利に代替で
きる。
According to the present invention, inexpensive copper wire can be used to advantageously replace gold wire.

本発明は、高純度Cuの特性を追求して得られた成果で
あり、上記の効果のほか長期の信頼性については、前述
の如<AM/Auは固相拡散して脆弱な界面相を形成し
、パープルプラーグ現象を起こし易いが、A11−Cu
はこれに比して数分の1以下であることか知られており
、この意味でも効果は極めて大きい。
The present invention is a result of pursuing the characteristics of high-purity Cu, and in addition to the above-mentioned effects, long-term reliability has been achieved as described above. A11-Cu
is known to be less than a fraction of this, and in this sense as well, the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCu−0,15Cr−0,ISn条にボールボ
ンドしたワイヤの破断モード中、正常なワイヤ切れの割
合を、ワイヤの最終伸線加工率と伸びについて比較した
結果である。 特許出願人 古河電気工業株式会社 回   古河特殊金属工業株式会社 第  1  図 ワイヤ伸び(チ)
FIG. 1 shows the results of comparing the percentage of normal wire breakage during the breakage mode of wire ball-bonded to Cu-0, 15Cr-0, and ISn strips with respect to the final wire drawing rate and elongation. Patent applicant Furukawa Electric Co., Ltd. Furukawa Special Metals Co., Ltd. Figure 1 Wire elongation (chi)

Claims (4)

【特許請求の範囲】[Claims] (1)0.1〜50ppmのTiと0.1〜1000p
pmの、Na、K、Rb、Cs、Be、Sr、Ba、Y
、Zr、Mo、W、Ag、Zn、Ga、Tl及びSnか
ら成る群から選ばれた少なくとも1種の元素とを合計で
0.2〜2000ppm含有し、残部Cuから成ること
を特徴とする銅細線。
(1) 0.1-50ppm Ti and 0.1-1000p
pm, Na, K, Rb, Cs, Be, Sr, Ba, Y
, Zr, Mo, W, Ag, Zn, Ga, Tl and Sn in a total amount of 0.2 to 2000 ppm, the balance being Cu. Thin line.
(2)残部のCuが純度99.999重量%以上のCu
である特許請求の範囲第1項記載の銅細線。
(2) The remaining Cu is Cu with a purity of 99.999% by weight or more
A thin copper wire according to claim 1.
(3)真空または非酸化性雰囲気下で鋳造された0.1
〜50ppmのTiと0.1〜1000ppmの、Na
、K、Rb、Cs、Be、Sr、Ba、Y、Zr、Mo
、W、Ag、Zn、Ga、Tl及びSnから成る群から
選ばれた少なくとも1種の元素とを合計で0.2〜20
00ppm含有し、残部Cuから成る鋳塊を、伸線加工
と焼鈍処理を繰り返して所定の線径にするに当り、少な
くとも最終加工率を70〜99.99%とし、焼鈍処理
により2〜20%の伸びとすることを特徴とする銅細線
の製造方法。
(3) 0.1 cast under vacuum or non-oxidizing atmosphere
~50ppm Ti and 0.1~1000ppm Na
, K, Rb, Cs, Be, Sr, Ba, Y, Zr, Mo
, W, Ag, Zn, Ga, Tl, and at least one element selected from the group consisting of Sn, in total 0.2 to 20
When an ingot containing 00 ppm and the remainder is Cu is repeatedly drawn and annealed to a predetermined wire diameter, the final processing rate is at least 70 to 99.99%, and the annealing process is performed to reduce the wire diameter to 2 to 20%. A method for manufacturing a thin copper wire, characterized by elongation of the wire.
(4)焼鈍処理後に1〜5%の加工を加えて2〜20%
の伸びとする特許請求の範囲第3項記載の銅細線の製造
方法。
(4) 2-20% by adding 1-5% processing after annealing treatment
A method for manufacturing a fine copper wire according to claim 3, wherein the elongation is as follows.
JP61208894A 1986-09-05 1986-09-05 Fine copper wire and its production Granted JPS6365036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208894A JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208894A JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Publications (2)

Publication Number Publication Date
JPS6365036A true JPS6365036A (en) 1988-03-23
JPH0555580B2 JPH0555580B2 (en) 1993-08-17

Family

ID=16563889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208894A Granted JPS6365036A (en) 1986-09-05 1986-09-05 Fine copper wire and its production

Country Status (1)

Country Link
JP (1) JPS6365036A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077005A (en) * 1989-03-06 1991-12-31 Nippon Mining Co., Ltd. High-conductivity copper alloys with excellent workability and heat resistance
US5616447A (en) * 1994-09-08 1997-04-01 Tdk Corporation Optical disc having printable label layer
JP2009153851A (en) * 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor
CN108603251A (en) * 2016-04-06 2018-09-28 三菱综合材料株式会社 superconducting line and superconducting coil
WO2019041587A1 (en) * 2017-09-01 2019-03-07 华南理工大学 High-reliability copper alloy bonding wire for electronic packaging, and method for manufacturing same
CN111910102A (en) * 2020-07-14 2020-11-10 中南大学 Copper-silver composite material wire and preparation method thereof
US10964453B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting stabilization material, superconducting wire, and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62253745A (en) * 1986-04-25 1987-11-05 Mitsubishi Metal Corp Ultrafine cu alloy wire having satisfactory drawability and electric conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62253745A (en) * 1986-04-25 1987-11-05 Mitsubishi Metal Corp Ultrafine cu alloy wire having satisfactory drawability and electric conductivity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077005A (en) * 1989-03-06 1991-12-31 Nippon Mining Co., Ltd. High-conductivity copper alloys with excellent workability and heat resistance
US5616447A (en) * 1994-09-08 1997-04-01 Tdk Corporation Optical disc having printable label layer
JP2009153851A (en) * 2007-12-27 2009-07-16 Konica Minolta Medical & Graphic Inc Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor
US10964453B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting stabilization material, superconducting wire, and superconducting coil
CN108603251A (en) * 2016-04-06 2018-09-28 三菱综合材料株式会社 superconducting line and superconducting coil
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor
WO2019041587A1 (en) * 2017-09-01 2019-03-07 华南理工大学 High-reliability copper alloy bonding wire for electronic packaging, and method for manufacturing same
CN111910102A (en) * 2020-07-14 2020-11-10 中南大学 Copper-silver composite material wire and preparation method thereof

Also Published As

Publication number Publication date
JPH0555580B2 (en) 1993-08-17

Similar Documents

Publication Publication Date Title
JP4482605B1 (en) High purity Cu bonding wire
JP2542370B2 (en) Copper alloy for semiconductor leads
WO2011118009A1 (en) HIGH-PURITY Cu BONDING WIRE
JPS6365036A (en) Fine copper wire and its production
JPH0547608B2 (en)
JPS63235440A (en) Fine copper wire and its production
US5989364A (en) Gold-alloy bonding wire
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPH0464121B2 (en)
JPS63235442A (en) Fine copper wire and its production
JPS63238232A (en) Fine copper wire and its production
JPH0520494B2 (en)
JPS6365034A (en) Fine copper wire and its production
JPS62290835A (en) Au-alloy extra fine wire for semiconductor device bonding wire
JPS63247325A (en) Fine copper wire and its production
JPS6365035A (en) Fine copper wire and its production
JPS63243243A (en) Fine copper wire and its production
JPS6365037A (en) Fine copper wire and its production
JPS6112011B2 (en)
JPS63241942A (en) Fine copper wire and manufacture thereof
JPS63238233A (en) Fine copper wire and its production
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JPS63239960A (en) Thin copper wire and manufacture thereof
JPS63247324A (en) Fine copper wire and its production
JP3615901B2 (en) Gold alloy wire for semiconductor element bonding