JPS6362993B2 - - Google Patents

Info

Publication number
JPS6362993B2
JPS6362993B2 JP55107756A JP10775680A JPS6362993B2 JP S6362993 B2 JPS6362993 B2 JP S6362993B2 JP 55107756 A JP55107756 A JP 55107756A JP 10775680 A JP10775680 A JP 10775680A JP S6362993 B2 JPS6362993 B2 JP S6362993B2
Authority
JP
Japan
Prior art keywords
iron
silicon
core
slurry
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55107756A
Other languages
Japanese (ja)
Other versions
JPS5734750A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10775680A priority Critical patent/JPS5734750A/en
Publication of JPS5734750A publication Critical patent/JPS5734750A/en
Publication of JPS6362993B2 publication Critical patent/JPS6362993B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Description

【発明の詳細な説明】 本発明は電磁鉄心に関し、特にけい素含有量が
4.5〜7.5%のけい素鉄よりなる積層構造の電磁鉄
心(以下、「積層鉄心」と記す)の製造方法に係
るものである。
[Detailed Description of the Invention] The present invention relates to an electromagnetic core, and in particular, the present invention relates to an electromagnetic core with a silicon content.
The present invention relates to a method for manufacturing an electromagnetic core having a laminated structure (hereinafter referred to as a "laminated core") made of 4.5 to 7.5% silicon iron.

積層鉄心は一般にトランスやモータに用いられ
る他、比較的な特殊なものとしてドツトプリンタ
等にも用いられる。従来、積層鉄心は3%けい素
鉄を薄板化してこれを絶縁層を介し多数積層する
方法によつて製造されている。しかるに、けい素
含有量が4.5%以上の高けい素鉄、特に6.5%けい
素鉄を用いれば、3%けい素鉄に比べて電気抵抗
が約2倍と高いためうず電流が減少し、従つて発
熱が減少してそれだけ消費電力が低減したり、ま
た磁歪が非常に小さいためトランスのうなりが減
少する他、透磁率が極大となり、保持力が極小と
なる等、多くのすぐれた効果が得られる。しか
し、4.5%以上のけい素を含むけい素鉄はその機
械的性質が非常に脆く、切削加工はもちろんのこ
と、圧延、鍛造などの加工が極めて困難である。
このため6.5%けい素鉄の薄板化がこれまで試み
られてきたが実現されていない。
Laminated cores are generally used in transformers and motors, and are also used in relatively special products such as dot printers. Conventionally, laminated iron cores have been manufactured by a method in which 3% silicon iron is made into thin plates and laminated in large numbers with insulating layers interposed therebetween. However, if high-silicon iron with a silicon content of 4.5% or more is used, especially 6.5% silicon iron, the electrical resistance is about twice as high as that of 3% silicon iron, which reduces eddy current. As a result, heat generation is reduced, which reduces power consumption, magnetostriction is extremely low, so transformer beats are reduced, magnetic permeability is maximized, and holding force is minimized, among other excellent effects. It will be done. However, silicon iron containing 4.5% or more silicon has extremely brittle mechanical properties and is extremely difficult to process, such as cutting, rolling, and forging.
For this reason, attempts have been made to reduce the thickness of 6.5% silicon iron, but this has not been achieved.

従つて本発明の目的は、上述のような4.5〜7.5
%けい素鉄よりなる積層構造の電磁鉄心を容易に
且つ安価に製造し得る製造方法を提供することに
ある。
Therefore, the object of the present invention is to
It is an object of the present invention to provide a manufacturing method that can easily and inexpensively manufacture an electromagnetic core having a laminated structure made of % silicon iron.

本発明は、概略的には、けい素含有量が4.5〜
7.5%のけい素鉄泥しようをシート状に成形し、
該シートの表面に絶縁材泥しようで絶縁層を形成
した上で該シートを複数重に積層し、該積層体を
断面方向へ切断して所定形状の鉄心を形成し、し
かる後に成形鉄心の焼結を行ない、4.5〜7.5%け
い素鉄よりなる積層鉄心を製造するものである。
ここで、けい素含有量を4.5〜7.5%と限定したの
は次の理由による。すなわち、けい素含有量が増
大するほど、電気抵抗が増し、交流特性が向上す
る。しかしながら、けい素含有量が増すと材質は
脆くなる。けい素含有量4.5%までは熱間加工に
よつてようやく加工できるが、これ以上では薄板
にすることが困難である。一方、けい素含有量が
更に増すと、磁歪が減少し、6.5%Siでほぼ0と
なり、それからまた増大する。磁歪があまり大き
くなると、鉄心に適用した場合、うなりが生じ
る。また、けい素含有量が多くなるほど、飽和磁
束密度は減少するから、鉄心形状を大きくする必
要がある。このような磁歪と飽和磁束密度を考慮
してけい素含有量の上限を7.5%としてある。(参
考文献:R.M.BOZORTH、
“FERROMAGNETISM”、D.VAN
NOSTRAND COMPANY、INC.、USA、
1963、P.76、77、80、81、及びR.C.HALL、
“JOURNAL OF APPLIED PHYSICS”、
Vol.30、No.6、1959、P.816〜819)尚、シートの
積層の仕方によつて異なる形状の鉄心を成形する
ことができる。
Generally speaking, the present invention has a silicon content of 4.5 to 4.5.
Forming 7.5% silicon iron slurry into a sheet shape,
An insulating layer is formed on the surface of the sheet using insulating slurry, the sheets are laminated in multiple layers, the laminated body is cut in the cross-sectional direction to form an iron core of a predetermined shape, and then the formed iron core is sintered. This method produces a laminated core made of 4.5 to 7.5% silicon iron.
Here, the reason why the silicon content is limited to 4.5 to 7.5% is as follows. That is, as the silicon content increases, the electrical resistance increases and the AC characteristics improve. However, as the silicon content increases, the material becomes brittle. Silicon content up to 4.5% can be processed by hot working, but above this it is difficult to make thin sheets. On the other hand, as the silicon content increases further, the magnetostriction decreases, becoming almost zero at 6.5% Si, and then increasing again. If magnetostriction becomes too large, beats will occur when applied to an iron core. Furthermore, as the silicon content increases, the saturation magnetic flux density decreases, so it is necessary to increase the size of the iron core. Considering such magnetostriction and saturation magnetic flux density, the upper limit of silicon content is set at 7.5%. (References: RMBOZORTH,
“FERROMAGNETISM”, D.VAN
NOSTRAND COMPANY, INC., USA,
1963, P.76, 77, 80, 81, and RCHALL,
“JOURNAL OF APPLIED PHYSICS”
(Vol. 30, No. 6, 1959, P. 816-819) Note that the core can be formed into different shapes depending on how the sheets are laminated.

以下、本発明について実施例にもとづき図面を
参照して詳細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

本発明による積層電磁鉄心の製造方法は、概略
的には次の3工程、すなわち (1) 表面に絶縁層を有するけい素鉄シートの成形 (2) シートの積層及び鉄心の成形 (3) 成形鉄心の焼結 から成る。
The method for manufacturing a laminated electromagnetic core according to the present invention generally includes the following three steps: (1) Forming a silicon iron sheet having an insulating layer on the surface (2) Laminating the sheets and forming the core (3) Forming Consists of sintered iron core.

最初の第(1)工程においては、まず、けい素含有
量が4.5〜7.5%のけい素鉄泥しようを調製する。
一例として、−400メツシユのカルボニル鉄粉及び
−350メツシユのFe−17%Si合金粉を最終組成が
6.5%けい素鉄となるように秤量した後、これら
粉末100gに対してバインダ(例えばポリビニル
ブチラール)3g、及び可塑剤(例えばジブチル
フタレート)4g、メタノール7g、ブタノール
2g、メチルエチルケトン10gをボールミルにて
約72時間混合すれば、6.5%けい素鉄泥しようを
調製することができる。そして、第1図イに示す
ように、泥しよう10(特に点を付して明示す
る)を例えばテープ状の成形キヤリア11上にド
クターブレード12を用いて流し、約0.4mm厚さ
のシート(グリーンシート)13に成形する。次
に、このけい素鉄シート13に絶縁材泥しようで
絶縁層を形成する。絶縁材泥しようは例えば次の
方法で調製する。まず、マグネシア、シリカ、ア
ルミナ及び酸化バリウムの各粉末を重量%で50:
40:5:5の割合で混合し、この混合粉末を1200
℃で1時間熱処理し、その後24時間ボールミリン
グすることにより粉砕する。これによつて得られ
た粉末100gにバインダ(ポリビニルブチラール)
9g、可塑剤(ジブチルフタレート)11g、分散
剤(日本油脂製OP−85R)1g、メチルエチル
ケトン80g、メチルアルコール50g、ブチルアル
コール15gを加えて約72時間ボールミリングする
ことによつて絶縁材泥しようが得られる。そし
て、第1図ロに示すように、この絶縁材泥しよう
14を先に成形したけい素鉄シート13上に同じ
くドクターブレード法によつて流し、約1mmの厚
さの絶縁層15を形成する。このようにして、第
1図ハに示す如く6.5%けい素鉄シート13に絶
縁層15が形成されたシート16が得られる。
In the first step (1), first, a silicon iron slurry having a silicon content of 4.5 to 7.5% is prepared.
As an example, the final composition of -400 mesh carbonyl iron powder and -350 mesh Fe-17%Si alloy powder is
After weighing to give 6.5% silicon iron, 3 g of binder (e.g. polyvinyl butyral), 4 g of plasticizer (e.g. dibutyl phthalate), 7 g of methanol, 2 g of butanol, and 10 g of methyl ethyl ketone were added to 100 g of these powders in a ball mill. After mixing for 72 hours, 6.5% silicon iron slurry can be prepared. Then, as shown in FIG. 1A, a slurry 10 (particularly indicated by dots) is poured onto a tape-shaped molded carrier 11 using a doctor blade 12, and a sheet of approximately 0.4 mm thick ( green sheet) 13. Next, an insulating layer is formed on the silicon iron sheet 13 using an insulating slurry. Insulating slurry is prepared, for example, by the following method. First, each powder of magnesia, silica, alumina, and barium oxide was added at 50% by weight:
Mix at a ratio of 40:5:5 and add this mixed powder to 1200
℃ for 1 hour and then ground by ball milling for 24 hours. Add a binder (polyvinyl butyral) to 100g of the powder thus obtained.
9g of plasticizer (dibutyl phthalate), 11g of dispersant (NOF OP-85R), 80g of methyl ethyl ketone, 50g of methyl alcohol, and 15g of butyl alcohol were added and ball-milled for about 72 hours to form insulation slurry. can get. Then, as shown in FIG. 1B, this insulating slurry 14 is poured onto the previously formed silicon iron sheet 13 using the same doctor blade method to form an insulating layer 15 with a thickness of approximately 1 mm. . In this way, a sheet 16 having an insulating layer 15 formed on a 6.5% silicon-iron sheet 13 is obtained as shown in FIG. 1C.

次に第(2)工程において、前工程で得られたシー
ト16を複数重に積層し、その積層体から鉄心を
所定形状に切断成形する。この場合に、シート1
6の積層及び切断の仕方によつて第2図及び第3
図に示すような異なる形状の鉄心を成形すること
ができる。まず第2図の例は、シート16を適当
なサイズに截断したものを約10枚程重ね合わせて
第2図イに示すような積層体17を形成し、これ
を型打抜き等によつて第2図ロに示すリング状鉄
心18を成形するものである。この方法では、打
抜き型を変えるなどして種々の形状の鉄心を成形
することができる。次に第3図の例は、シート1
6を連続長尺となし、これを渦巻き状に巻き重ね
て第3図イに示すようなコイル状積層体19を形
成し、そしてこれを点線20で示す如く切断する
ことにより第3図ロに示すような三角柱状鉄心2
1を成形するものである。この三角柱状鉄心は具
体的にはドツトプリンタのドツトワイヤ駆動部に
用いられる。三角柱状鉄心の場合、その磁気特性
上、矢印Mで示す磁束方向(長手方向)に対して
垂直に半径方向へ積層することが要求され、従つ
て各層を構成するシートの寸法はそれぞれ異なる
ことになる。もしこれらのシートを1枚1枚成形
して積層するとすれば積層枚数だけの打抜き型を
必要とするなど手間及びコストが非常に大きくな
るが、第3図の方法によれば非常に簡単に成形で
きる。
Next, in the second step, the sheets 16 obtained in the previous step are laminated in multiple layers, and the laminated body is cut and formed into a predetermined shape. In this case, sheet 1
Figures 2 and 3 depend on the method of stacking and cutting 6.
It is possible to form the core in different shapes as shown in the figure. First, in the example shown in FIG. 2, about 10 sheets 16 are cut to an appropriate size and stacked together to form a laminate 17 as shown in FIG. A ring-shaped core 18 shown in FIG. 2B is formed. With this method, the core can be formed into various shapes by changing the punching die. Next, in the example in Figure 3, sheet 1
6 is made into a continuous length, and this is spirally wound to form a coiled laminate 19 as shown in FIG. Triangular prism core 2 as shown
1. Specifically, this triangular prism-shaped core is used in a dot wire drive section of a dot printer. In the case of a triangular prism-shaped core, due to its magnetic properties, it is required to be laminated in the radial direction perpendicular to the magnetic flux direction (longitudinal direction) shown by arrow M, and therefore the dimensions of the sheets constituting each layer are different. Become. If these sheets were to be formed one by one and then laminated, it would require as many punching dies as the number of sheets to be laminated, which would require a great deal of effort and cost, but the method shown in Figure 3 makes it very easy to form them. can.

最後に第(3)工程において、成形鉄心を大気中に
て200℃で約2時間加熱してバインダを飛散させ、
しかる後に1350℃で1時間乾燥水素中にて焼結す
る。これにより鉄心が完成する。
Finally, in the third step, the formed iron core is heated in the air at 200°C for about 2 hours to scatter the binder.
Thereafter, it is sintered in dry hydrogen at 1350°C for 1 hour. This completes the iron core.

以上の方法で製作した積層鉄心に巻線を施し、
トランスやパルスモータあるいはドツトプリンタ
等に用いて試験をしたところ、従来の3%けい素
鉄からなる積層鉄心を用いた場合に比べて、出力
トルクはほぼ同等であり、発熱が20%以上減少す
る効果が得られた。
Winding is applied to the laminated core manufactured by the above method,
When tested using it in transformers, pulse motors, dot printers, etc., the output torque was almost the same and the heat generation was reduced by more than 20% compared to when using a conventional laminated core made of 3% silicon iron. was gotten.

以上のように、本発明によれば4.5〜7.5%けい
素鉄よりなる磁気特性のすぐれた積層電磁鉄心の
製造が実現され、しかも工程が比較的簡単でコス
トが安価である等、多くの利点を有する。
As described above, according to the present invention, it is possible to manufacture a laminated electromagnetic core made of 4.5 to 7.5% silicon iron with excellent magnetic properties, and it has many advantages such as a relatively simple process and low cost. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法における表面に絶縁層を
有するけい素鉄シートの成形工程を略示する図、
第2図および第3図は絶縁層付きけい素鉄シート
の積層体及びそれから成形される鉄心のそれぞれ
異なる実施例を示す図である。 10……けい素鉄泥しよう、11……成形キヤ
リア、12……ドクターブレード、13……けい
素鉄シート、14……絶縁材泥しよう、15……
絶縁層、16……シート、17,19……積層
体、18,21……鉄心。
FIG. 1 is a diagram schematically illustrating the process of forming a silicon iron sheet having an insulating layer on its surface in the method of the present invention;
FIGS. 2 and 3 are diagrams showing different embodiments of a laminate of silicon-iron sheets with an insulating layer and an iron core formed from the laminate. 10...Silicon iron slurry, 11...Molded carrier, 12...Doctor blade, 13...Silicon iron sheet, 14...Insulating material slurry, 15...
Insulating layer, 16... sheet, 17, 19... laminate, 18, 21... iron core.

Claims (1)

【特許請求の範囲】 1 けい素含有量が4.5〜7.5%のけい素鉄よりな
る積層構造の電磁鉄心を製造する方法であつて、 カルボニル鉄粉及びFe−17%Si合金粉を最終
組成がけい素含有量が4.5〜7.5%のけい素鉄とな
るように秤量し、これら粉末に対しバインダ、可
塑剤、有機溶剤を添加混合してけい素含有量が
4.5〜7.5%のけい素鉄泥しようを調整する工程
と、 マグネシア、シリカ、アルミナ及び参加バリウ
ムを含む混合物の熱処理絶縁材粉末に対しバイン
ダ、可塑剤、有機溶剤を添加混合して絶縁材泥し
ようを調整する工程と、 前記けい素鉄泥しようを成形キヤリア上にドク
ターブレードを用いて流し、シート状に成形する
工程と、 前記絶縁材泥しようを該けい素鉄シート上にド
クターブレードを用いて流し、絶縁層を形成し、
けい素鉄シートに絶縁層が形成されたシートを形
成する工程と、 そして該シートを複数重に積層し、該積層体か
ら鉄心を所定形状に切断成形する工程と、 しかる後に成形鉄心の焼結を行う工程と、を特
徴とする焼結積層電磁鉄心の製造方法。
[Scope of Claims] 1. A method for manufacturing an electromagnetic core with a laminated structure made of silicon iron having a silicon content of 4.5 to 7.5%, which comprises carbonyl iron powder and Fe-17%Si alloy powder having a final composition of Weigh silicon iron with a silicon content of 4.5 to 7.5%, and add and mix binders, plasticizers, and organic solvents to these powders to reduce the silicon content.
A process of preparing 4.5-7.5% silicon iron slurry, and adding and mixing a binder, plasticizer, and organic solvent to heat-treated insulation powder of a mixture containing magnesia, silica, alumina, and participating barium to form insulation slurry. a step of pouring the silicon-iron slurry onto the molded carrier using a doctor blade and forming it into a sheet; and a step of pouring the insulating slurry onto the silicon-iron sheet using a doctor blade. sink, form an insulating layer,
A process of forming a silicon iron sheet with an insulating layer formed thereon, a process of laminating the sheets in multiple layers, cutting and forming an iron core from the laminated body into a predetermined shape, and then sintering the formed iron core. A method of manufacturing a sintered laminated electromagnetic core, characterized by a step of performing the same.
JP10775680A 1980-08-07 1980-08-07 Manufacture of electromagnetic core Granted JPS5734750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10775680A JPS5734750A (en) 1980-08-07 1980-08-07 Manufacture of electromagnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10775680A JPS5734750A (en) 1980-08-07 1980-08-07 Manufacture of electromagnetic core

Publications (2)

Publication Number Publication Date
JPS5734750A JPS5734750A (en) 1982-02-25
JPS6362993B2 true JPS6362993B2 (en) 1988-12-06

Family

ID=14467178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10775680A Granted JPS5734750A (en) 1980-08-07 1980-08-07 Manufacture of electromagnetic core

Country Status (1)

Country Link
JP (1) JPS5734750A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69716847T2 (en) * 1996-08-28 2003-07-17 Nec Corp Electrostatic ink jet recording apparatus which uses ink containing charged particles
KR101255938B1 (en) * 2011-09-28 2013-04-23 삼성전기주식회사 Laminated Core and Manufacturing method thereof
US20130162064A1 (en) * 2011-12-22 2013-06-27 Samsung Electro-Mechanics Co., Ltd. Laminated core and method for manufacturing the same
EP3595148B1 (en) * 2018-07-13 2021-06-09 Siemens Aktiengesellschaft Method for producing a material layer and a material layer structure for a dynamoelectric rotary machine
EP3654356A1 (en) * 2018-11-16 2020-05-20 Siemens Aktiengesellschaft Printed electrical sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450918A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Iron core manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450918A (en) * 1977-09-30 1979-04-21 Matsushita Electric Ind Co Ltd Iron core manufacture

Also Published As

Publication number Publication date
JPS5734750A (en) 1982-02-25

Similar Documents

Publication Publication Date Title
US7498080B2 (en) Ferromagnetic powder for dust core
EP1710815B1 (en) Powder core and method of producing thereof
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
JP2783788B2 (en) Ferrite element for temperature sensor
JPS6362993B2 (en)
JP2006097124A (en) METHOD FOR PRODUCING SOFT MAGNETIC METAL POWDER COATED WITH Mg-CONTAINING OXIDE FILM AND METHOD FOR PRODUCING COMPOSITE SOFT MAGNETIC MATERIAL FROM THE POWDER
JP5515195B2 (en) Ni-Zn ferrite powder, green sheet containing the Ni-Zn ferrite powder, and Ni-Zn ferrite sintered body.
JP2009059954A (en) Disc type reactor
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JPS6234122B2 (en)
JPH05275247A (en) Thin inductor/transformer
JPH06132109A (en) Compressed powder magnetic core for high frequency
EP2258671A1 (en) Sintered ferrite material and a method for the production of sintered ferrite material
CN115626820A (en) Preparation method of heterogeneous laminated co-fired ferrite ceramic
JPH11238614A (en) Soft magnetic material and manufacture thereof and electrical equipment using the same
JPH10208923A (en) Composite magnetic material and production thereof
JPH08169756A (en) Low loss manganese-zinc ferrite core and its production
JPS60210572A (en) Low temperature sintered oxide magnetic material
JPH0897025A (en) Chip transformer magnetic material and chip transformer
JP3155574B2 (en) Manufacturing method of magnetic core
JP5256172B2 (en) Soft magnetic flakes for magnetic cores and magnetic cores for electromagnetic parts
JP3222458B2 (en) Manufacturing method of magnetic core
JP2918255B2 (en) Manufacturing method of magnetic core
JP2006237548A (en) Mg-CONTAINING OXIDE FILM COATED IRON POWDER
JP2002043154A (en) Manufacturing for complex sintered dust core