JPS6362369A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6362369A
JPS6362369A JP20815486A JP20815486A JPS6362369A JP S6362369 A JPS6362369 A JP S6362369A JP 20815486 A JP20815486 A JP 20815486A JP 20815486 A JP20815486 A JP 20815486A JP S6362369 A JPS6362369 A JP S6362369A
Authority
JP
Japan
Prior art keywords
layer
polycide
electrode
channel mos
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20815486A
Other languages
Japanese (ja)
Inventor
Naoya Matsumoto
直哉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20815486A priority Critical patent/JPS6362369A/en
Publication of JPS6362369A publication Critical patent/JPS6362369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent reaction between an electrode material and a polysilicon layer, without deteriorating the characteristics of an element, by providing a high-melting-point polycide layer or a silicide layer at the contact part of each diffused layer and lead-out electrodes. CONSTITUTION:In a P-channel MOS field effect transistor (a), lead-out electrodes 14a and 14b are led out through source and drain regions 3 and 4 in a P<+> diffused layer, a gate electrode 5 and a high-melting-point metal silicide layer 21. In an N-channel MOS field effect transistor (b), lead-out electrodes 15a and 15b are led out through source and drain regions 7 and 8 in an N<+> diffused layer, a gate electrode 9 and a high-melting-point metal polycide layer 22. In an N-P-N bipolar transistor, N<+> collector regions 10 and 11, a P-type base electrode 12, an emitter electrode 16b and a collector electrode 16c are provided. Since the polycide layer 22 does not damage the surface of the shallow diffused layer, the chemical reaction between an electrode material and a polysilicon layer can be prevented.

Description

【発明の詳細な説明】 〔発明が解決しようとする問題点〕 本発明は、半導体装置に関し、特にNPNバイポーラ・
トランジスタと導電形を異にするPチャネルおよびNチ
ャネル2種類のMOS電界効果トランジスタとが互いに
混在する半導体装置の取出電極の構造に関する。
[Detailed Description of the Invention] [Problems to be Solved by the Invention] The present invention relates to a semiconductor device, and in particular to an NPN bipolar device.
The present invention relates to a structure of an extraction electrode of a semiconductor device in which two types of P-channel and N-channel MOS field effect transistors having different conductivity types coexist with each other.

〔従来の技術〕[Conventional technology]

従来、パイ・モス(Bi−MOS)と呼ばれるこの種半
導体装置の電極は、N膨拡散層との間にはN形のポリシ
リコン層を、また、P形波散層との間にはP形のポリシ
リコン層をそれぞれ介在させ拡散層内へ電極材の拡散を
この介在層により抑え込む取出構造が一般に採用される
Conventionally, the electrode of this type of semiconductor device called Bi-MOS has an N-type polysilicon layer between it and the N-swelling diffusion layer, and a P-type polysilicon layer between it and the P-type wave diffusion layer. Generally, a lead-out structure is adopted in which a polysilicon layer of a shape is interposed between the electrodes and the diffusion of the electrode material into the diffusion layer is suppressed by the intervening layer.

第3図は従来のパイ・モス(Bi−MOS)半導体装置
の断面構造図で、上記の電極構造を詳細に示したもので
ある。第3図によれば、P形半導体基板1のNウェル2
内にはソース領域3.ドレイン領域4およびシリコン・
ゲート電極5から成るPチャネルMOS電界効果トラン
ジスタが、また、Pウェル6内にはソース領域7.ドレ
イン領域8およびシリコン・ゲート電極9から成るNチ
ャネルMOS電界効果トランジスタがそれぞれ形成され
、更にこれと隣接してN−およびN1形コレクタ領域1
0および11.ベース領域12およびエミッタ領域13
から成るNPNバイポーラ・トランジスタが形成され、
それらの取出電極と各拡散領域との接触部分には拡散領
域の導電形に應しこれと等しい導電形のN形またはP形
のポリシリコン層がそれぞれ介在される。すなわち、P
チャネルMOS電界効果トランジスタのソース、ドレイ
ン電極14a、14bの接触部分にはソース。
FIG. 3 is a cross-sectional structural diagram of a conventional Bi-MOS semiconductor device, showing the above-mentioned electrode structure in detail. According to FIG. 3, an N-well 2 of a P-type semiconductor substrate 1
Inside is the source area 3. Drain region 4 and silicon
A P-channel MOS field effect transistor consisting of a gate electrode 5 and a source region 7 . N-channel MOS field effect transistors are formed, each consisting of a drain region 8 and a silicon gate electrode 9, and further adjacent N- and N1 type collector regions 1.
0 and 11. Base region 12 and emitter region 13
An NPN bipolar transistor is formed consisting of
At the contact portions between these extraction electrodes and each diffusion region, an N-type or P-type polysilicon layer having the same conductivity type as that of the diffusion region is interposed. That is, P
A source is provided at the contact portion of the source and drain electrodes 14a and 14b of the channel MOS field effect transistor.

ドレイン領域3,4のP′″拡散層に合わせてP形ポリ
シリコン層17がそれぞれ介在され、また、Nチャネル
MOS電界効果トランジスタのソース。
A P-type polysilicon layer 17 is interposed to match the P'' diffusion layers of the drain regions 3 and 4, and also serves as the source of the N-channel MOS field effect transistor.

ドレイン電極15a、i5bの接触部分にはソース、ド
レイン領域7,8のn+拡散層に合わせてN形ポリシリ
コン層18がそれぞれ介在される。
N-type polysilicon layers 18 are interposed at the contact portions of the drain electrodes 15a and i5b, corresponding to the n+ diffusion layers of the source and drain regions 7 and 8, respectively.

更にNPNバイポーラ・トランジスタのベース電極16
a、エミッタ電極16b、コレクタ電極16cの各接触
部分に対しても全く同様にしてP形ポリシリコン層17
またはN形ポリシリコン層18が下部拡散層の導電形に
応じてそれぞれ介在される。なお、19および20は厚
膜のフィールド絶縁膜およびリン硅酸ガラス膜(PSG
)をそれぞれ示すものである。
Furthermore, the base electrode 16 of the NPN bipolar transistor
P-type polysilicon layer 17 is applied to each contact portion of a, emitter electrode 16b, and collector electrode 16c in exactly the same manner.
Alternatively, an N-type polysilicon layer 18 is interposed depending on the conductivity type of the lower diffusion layer. Note that 19 and 20 are thick field insulating films and phosphosilicate glass films (PSG).
) respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来の電i構造では、電極の金属材
が下部の拡散層内に拡散することは防止できるものの他
方では電極材が介在させたポリシリコン層と化学反応し
て、シリコンを析出せしめ電極すなわち配線寿命を短縮
して半導体装置の信頼性を著しく低下させる場合が生じ
る。また、バイポーラ・トランジスタのベース抵抗はポ
リシリコン層を介する分だけ高くなるので素子の高速化
に対して障害を与えるようになる。このような電極材と
ポリシリコン層との反応を抑えるにはそれぞれの接触部
をシリサイド化すれば良いが、バイポーラ・トランジス
タのエミッタ領域およびNチャネルMOS電界効果トラ
ンジスタのソース、ドレイン領域は高速化を目的として
微細化され、特に拡散層が浅く形成されるので取出電極
との接触部をシリサイド化すると素子特性を劣化させる
という新たな問題を生じる0以上は特にパイ・モス(B
i−MOS)半導体装置について述べたが浅い拡散層を
有する半導体装置では共通した問題点として常に存在す
る。
However, in this conventional electrical structure, although it is possible to prevent the metal material of the electrode from diffusing into the diffusion layer below, on the other hand, the electrode material chemically reacts with the intervening polysilicon layer to precipitate silicon, causing the electrode to In other words, the life of the wiring may be shortened and the reliability of the semiconductor device may be significantly lowered. Furthermore, the base resistance of the bipolar transistor increases due to the presence of the polysilicon layer, which poses an obstacle to increasing the speed of the device. In order to suppress such a reaction between the electrode material and the polysilicon layer, each contact part can be silicided, but the emitter region of a bipolar transistor and the source and drain regions of an N-channel MOS field effect transistor need to be formed at higher speeds. Since the purpose of miniaturization is to form a shallow diffusion layer, silicide of the contact part with the extraction electrode causes a new problem of deteriorating the device characteristics.
Although the i-MOS) semiconductor device has been described above, this problem always exists as a common problem in semiconductor devices having a shallow diffusion layer.

本発明の目的は、上記の情況に鑑み、浅い拡散層との接
触部におけるポリシリコン層との反応を素子特性を劣化
せしめることなく有効に抑止することのできる取出電極
構造を備えた半導体装置を提供することである。
In view of the above circumstances, an object of the present invention is to provide a semiconductor device equipped with an extraction electrode structure that can effectively suppress reactions with a polysilicon layer at a contact portion with a shallow diffusion layer without deteriorating device characteristics. It is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば半導体装置は、n+エミッタ拡散層およ
びP形ベース拡散層との接触部分にはそれぞれ高融点金
属のポリサイド層およびシリサイド層を、またn+コレ
クタ拡散層との接触部分には高融点金属のポリサイド層
またはシリサイド層をそれぞれ介在せしめる取出電極を
備えるNPNバイポーラ・トランジスタを含み、またn
+エミッタ拡散層およびNチャネルMO5IE界効果ト
ランジスタのn+ソース、ドレイン拡散層との接触部分
にはそれぞれ高融点金属のポリサイド層を、またP形ベ
ース拡散層およびPチャネルMOS電界トランジスタの
P+ソース、トレイン拡散層との接触部分には高融点金
属のシリサイド層を、更にn+コレクタ拡散層との接触
部分には高融点金属のポリサイド層またはシリサイド層
をそれぞれ介在せしめる取出電極を備えるNPNバイポ
ーラ・トランジスタ、NチャネルMOS電界効果トラン
ジスタおよびPチャネルMOS電界効果トランジスタと
を含んでパイ・モス(Bi−MOS)1成とされ、更に
、前記高融点金属のポリサイド層またはシリサイド層と
電極材との間に前記電極材の遷移金属からなるバリア層
を付加形成される場合を含んでそれぞれ構成される。
According to the present invention, the semiconductor device includes a polycide layer and a silicide layer of high melting point metal in the contact portions with the n+ emitter diffusion layer and the P type base diffusion layer, respectively, and a high melting point metal polycide layer and silicide layer in the contact portion with the n+ collector diffusion layer. It includes an NPN bipolar transistor equipped with an extraction electrode in which a metal polycide layer or silicide layer is interposed, respectively;
A polycide layer of a refractory metal is applied to the contact portions of the + emitter diffusion layer and the n+ source and drain diffusion layers of the N-channel MO5IE field effect transistor, and the P-type base diffusion layer and the P+ source and train of the P-channel MOS field effect transistor. NPN bipolar transistor, NPN bipolar transistor, equipped with an extraction electrode in which a silicide layer of a refractory metal is interposed in a contact portion with the diffusion layer, and a polycide layer or a silicide layer of a refractory metal is interposed in a contact portion with the n+ collector diffusion layer, respectively; A Bi-MOS (Bi-MOS) single structure is formed including a channel MOS field effect transistor and a P channel MOS field effect transistor, and the electrode is further provided between the polycide layer or silicide layer of the refractory metal and the electrode material. Each structure includes a case where a barrier layer made of a transition metal is additionally formed.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す半導体装置の断面図で
、NおよびPの各チャネルMOS電界効果トランジスタ
とNPNバイポーラ・トランジスタとを含むパイ・モス
(B 1−MOS ) 84成に実施した場合を示すも
のである。本実施例によれば、本発明の半導体装置は、
P形半導体基板1と、Nウェル2内に形成されたP+拡
散層のソースおよびドレイン領域3および4.シリコン
・ゲート電極5および高融点金属(例えばタングステン
)のシリサイド層21を介してそれぞれ引出されたソー
スおよびドレインの各取出電極14a、14bとを備え
るPチャネルMOS電界効果トランジスタと、Pウェル
6内に形成されなP+拡散層のソースおよびドレイン領
域7および8.シリコン・ゲート電極9および高融点金
属のポリサイド層22を介してそれぞれ引出されたソー
スおよびドレインの各取出電極15aおよび15bを備
えるNチャネルMO9tJ界効果トランジスタと、N形
およびN形コレクタ領域10および11.P形ベース領
域12.n+エミッタ電極16b、コレクタ電極16c
を備えるNPNバイポーラ・トランジスタとを含む。こ
こで、19は厚膜フィールド絶縁膜、20はリン硅酸ガ
ラス層、23はCVDシリコン酸化膜である。
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention, which is implemented in a 84-channel PMOS (B1-MOS) structure including N and P channel MOS field effect transistors and an NPN bipolar transistor. This shows the case where According to this embodiment, the semiconductor device of the present invention is
A P type semiconductor substrate 1 and source and drain regions 3 and 4 of a P+ diffusion layer formed in an N well 2. A P-channel MOS field effect transistor is provided with a silicon gate electrode 5 and source and drain extraction electrodes 14a and 14b respectively drawn out through a silicide layer 21 of a high melting point metal (for example, tungsten), and a P-channel MOS field effect transistor in a P well 6. Source and drain regions 7 and 8 of unformed P+ diffusion layers. An N-channel MO9tJ field-effect transistor comprising source and drain extraction electrodes 15a and 15b respectively drawn out through a silicon gate electrode 9 and a polycide layer 22 of high-melting point metal, and N-type and N-type collector regions 10 and 11. .. P-shaped base region 12. n+ emitter electrode 16b, collector electrode 16c
and an NPN bipolar transistor. Here, 19 is a thick field insulating film, 20 is a phosphosilicate glass layer, and 23 is a CVD silicon oxide film.

本実施例の半導体装置は次の順序工程図で容易に製造し
得る。すなわちNチャネルとPチャネルの各MOS電界
効果トランジスタのソース、ドレイン3,4,7.8お
よびNPNバイポーラ・トランジスタのベース領域12
.コレクタ領域11をそれぞれ形成した後CVDシリコ
ン酸化膜23を3000人成長させ、ついでバイポーラ
・トランジスタのエミッタ部およびNチャネルMOS電
界効果トランジスタのソース、ドレイン部をそれぞれ開
口する。ここでポリシリコンを2500人成長させ、前
記開口部以外のポリシリコンを除去した後、砒素(A、
)を全面にイオン注入する。
The semiconductor device of this example can be easily manufactured using the following sequential process diagram. namely, the source, drain 3, 4, 7.8 of each N-channel and P-channel MOS field effect transistor and the base region 12 of the NPN bipolar transistor.
.. After forming the collector regions 11, 3000 CVD silicon oxide films 23 are grown, and then the emitter portion of the bipolar transistor and the source and drain portions of the N-channel MOS field effect transistor are opened. Here, 2,500 polysilicon layers were grown, and after removing the polysilicon area other than the opening, arsenic (A,
) is ion-implanted over the entire surface.

ついで熱処理を行ない、エミッタ領域13を形成した後
リン硅酸ガラス膜(PSG)20を成長させ、リフロー
後、各トランジスタとのコンタクト孔をそれぞれ開口し
更に開口部のポリシリコンおよびシリコンを、例えば、
タングステン・シリサイドまたはポリサイドにそれぞれ
変換した後アルミニウムを金属層的0.6μm被着して
所定の電極パターンを形成すればよい。
Then, heat treatment is performed to form an emitter region 13, a phosphosilicate glass film (PSG) 20 is grown, and after reflow, contact holes for each transistor are opened, and the polysilicon and silicon in the openings are removed, for example.
After converting into tungsten silicide or polycide, a metal layer of aluminum of 0.6 μm is deposited to form a predetermined electrode pattern.

本実施例によれば、浅いn+エミッタ領域13およびN
チャネルMOS電界効果トランジスタの同じく浅いソー
ス、ドレイン領域7.8の取出電極はそれぞれポリサイ
ド層22を介して引出され、その他の深い拡散領域の取
出電極にはシリサイド層21がそれぞれ介在される。こ
のように浅い拡散層にポリサイド層が形成された場合は
シリサイド層の如く拡散層表面を傷めないので電極材と
ポリシリコン層との化学反応を素子特性を劣化すること
なく有効に阻止せしめることが可能である。
According to this embodiment, the shallow n+ emitter region 13 and the N+
The lead electrodes of the similarly shallow source and drain regions 7.8 of the channel MOS field effect transistor are each led out through a polycide layer 22, and the lead electrodes of the other deep diffusion regions are each interposed with a silicide layer 21. When a polycide layer is formed in a shallow diffusion layer like this, unlike a silicide layer, it does not damage the surface of the diffusion layer, so it is possible to effectively prevent the chemical reaction between the electrode material and the polysilicon layer without deteriorating the device characteristics. It is possible.

以上はパイ・モス(Bi−MOS)構成の場合を説明し
たが、勿論NPNバイポーラ・トランジスタまたはNチ
ャネルMOS電界効果トランジスタ単独について実施し
得ることも明らかである。
Although the case of the Bi-MOS (Bi-MOS) configuration has been described above, it is obvious that the present invention can also be implemented with an NPN bipolar transistor or an N-channel MOS field effect transistor alone.

また、この場合コレクタ領域11からの引出しにはポリ
サイド層22に変えてシリサイド層21を介在させても
よい、何故なら拡散層11が深いからである。
Further, in this case, a silicide layer 21 may be interposed in place of the polycide layer 22 for leading out from the collector region 11, since the diffusion layer 11 is deep.

なお、電極材(アルミ)とポリサイド層22またはシリ
サイド層21との間で稀に反応が生じることがあるが、
そのような場合は更にチタン・ニッケル(TiN)の如
き遷移金属をバリヤとして両者の間に介在せしめればよ
い。
Note that in rare cases a reaction may occur between the electrode material (aluminum) and the polycide layer 22 or silicide layer 21;
In such a case, a transition metal such as titanium-nickel (TiN) may be interposed between the two as a barrier.

第2図は本発明の他の実施例を示す半導体装置の断面図
で、取出電極14a、14b、15a。
FIG. 2 is a sectional view of a semiconductor device showing another embodiment of the present invention, showing extraction electrodes 14a, 14b, and 15a.

15b、16a、16b、16cとシリサイド層21ま
たはポリサイド層22との間にチタン・ニッケル(Ti
N)層のバリア層24を付加形成したもので、上記反応
の発生を阻止せしめたものである。
Titanium/nickel (Ti
A barrier layer 24 (N) layer is additionally formed to prevent the above reaction from occurring.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、浅い拡散
層をもつNPNバイポーラ・トランジスタまたはNチャ
ネルMOS電界効果トランジスタの素子特性を劣化せし
めることなく、電極材とポリシリコン層との反応をきわ
めて有効に阻止し得るので、電極寿命すなわち配線寿命
の短縮化を防止し得る他NPNバイポーラ・トランジス
タのベース抵抗を下げて高速化し得る効果を有する。
As explained in detail above, according to the present invention, the reaction between the electrode material and the polysilicon layer can be greatly enhanced without deteriorating the device characteristics of the NPN bipolar transistor or the N-channel MOS field effect transistor having a shallow diffusion layer. Since this can be effectively prevented, shortening of the electrode life, that is, the wiring life can be prevented, and the base resistance of the NPN bipolar transistor can be lowered to increase the speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半導体装置の断面図、
第2図は本発明の他の実施例を示す半導体装置の断面図
、第3図は従来のパイ・モス(Bi−MOS)半導体装
置の断面構造図である。 1・・・P形半導体基板、2・・・Nウェル、3・・・
P+ソース領域、4・・・P+ドレイン領域、5,9・
・・シリコン・ゲート電極、6・・・Pウェル、7・・
・n′″ソース領域、8・・・n+ドレイン領域、10
.11・・・N形コレクタ領域、12・・・P形ベース
領域、13・・・n“エミッタ領域、14a、15a・
・・ソース電極、14b、15b・・・ドレインを極、
16a・・・ベース電極、16b・・・エミッタ電極、
16c・・・コレクタ電極、17・・・P形ポリシリコ
ン層、18・・・N形ポリシリコン層、1つ・・・厚膜
フィールド絶縁膜、20・・・リン硅酸ガラス膜(PS
G)、21・・・高融点金属のシリサイド層、22・・
・高融点金属のポリサイド層、23・・・CVDシリコ
ン酸化膜、24・・・遷移金属からなるバリア層(Tt
N)。
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention;
FIG. 2 is a sectional view of a semiconductor device showing another embodiment of the present invention, and FIG. 3 is a sectional view of a conventional Bi-MOS semiconductor device. 1...P-type semiconductor substrate, 2...N well, 3...
P+ source region, 4... P+ drain region, 5, 9.
...Silicon gate electrode, 6...P well, 7...
・n′″ source region, 8...n+ drain region, 10
.. DESCRIPTION OF SYMBOLS 11... N type collector region, 12... P type base region, 13... n'' emitter region, 14a, 15a.
...source electrode, 14b, 15b...drain as a pole,
16a...Base electrode, 16b...Emitter electrode,
16c...Collector electrode, 17...P type polysilicon layer, 18...N type polysilicon layer, one...thick film field insulating film, 20...phosphosilicate glass film (PS
G), 21... Silicide layer of high melting point metal, 22...
・Polycide layer of high melting point metal, 23...CVD silicon oxide film, 24...barrier layer made of transition metal (Tt
N).

Claims (3)

【特許請求の範囲】[Claims] (1)n^+エミッタ拡散層およびP形ベース拡散層と
の接触部分にはそれぞれ高融点金属のポリサイド層およ
びシリサイド層を、またn^+コレクタ拡散層との接触
部分には高融点金属のポリサイド層またはシリサイド層
をそれぞれ介在せしめる取出電極を備えるNPNバイポ
ーラ・トランジスタを含むことを特徴とする半導体装置
(1) A polycide layer and a silicide layer of high-melting point metal are applied to the contact areas with the n^+ emitter diffusion layer and the P-type base diffusion layer, respectively, and a high-melting point metal polycide layer and silicide layer are applied to the contact areas with the n^+ collector diffusion layer, respectively. 1. A semiconductor device comprising an NPN bipolar transistor having lead electrodes each having a polycide layer or a silicide layer interposed therebetween.
(2)n^+エミッタ拡散層およびNチャネルMOS電
界効果トランジスタのn^+ソース、ドレイン拡散層と
の接触部分にはそれぞれ高融点金属のポリサイド層を、
またP形ベース拡散層およびPチャネルMOS電界トラ
ンジスタのP^+ソース、トレイン拡散層との接触部分
には高融点金属のシリサイド層を、更にn^+コレクタ
拡散層との接触部分には高融点金属のポリサイド層また
はシリサイド層をそれぞれ介在せしめる取出電極を備え
るNPNバイポーラ・トランジスタ、NチャネルMOS
電界効果トランジスタおよびPチャネルMOS電界効果
トランジスタを含むことを特徴とする特許請求の範囲第
(1)項記載の半導体装置。
(2) A polycide layer of a refractory metal is applied to the n^+ emitter diffusion layer and the contact portions with the n^+ source and drain diffusion layers of the N-channel MOS field effect transistor, respectively.
In addition, a silicide layer of a high melting point metal is applied to the contact area with the P type base diffusion layer and the P^+ source and train diffusion layers of the P channel MOS electric field transistor, and a high melting point metal silicide layer is applied to the contact area with the n^+ collector diffusion layer. NPN bipolar transistor, N-channel MOS, equipped with lead electrodes each having a metal polycide layer or silicide layer interposed therein
The semiconductor device according to claim (1), characterized in that it includes a field effect transistor and a P-channel MOS field effect transistor.
(3)前記高融点金属のポリサイド層またはシリサイド
層と電極材との間に前記電極材の遷移金属からなるバリ
ア層を付加形成することを特徴とする特許請求の範囲第
(1)項または第(2)項記載の半導体装置。
(3) A barrier layer made of a transition metal of the electrode material is additionally formed between the polycide layer or silicide layer of the high melting point metal and the electrode material. The semiconductor device described in (2).
JP20815486A 1986-09-03 1986-09-03 Semiconductor device Pending JPS6362369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20815486A JPS6362369A (en) 1986-09-03 1986-09-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20815486A JPS6362369A (en) 1986-09-03 1986-09-03 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6362369A true JPS6362369A (en) 1988-03-18

Family

ID=16551539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20815486A Pending JPS6362369A (en) 1986-09-03 1986-09-03 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6362369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584858A (en) * 1991-07-18 1993-04-06 Sanyo Chem Ind Ltd Skin integrated polyurethane foam molded product and production thereof
JPWO2013190759A1 (en) * 2012-06-21 2016-02-08 パナソニックIpマネジメント株式会社 Solid-state imaging device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730366A (en) * 1980-07-30 1982-02-18 Oki Electric Ind Co Ltd Schottky transistor and manufacture thereof
JPS60201655A (en) * 1984-03-27 1985-10-12 Seiko Epson Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730366A (en) * 1980-07-30 1982-02-18 Oki Electric Ind Co Ltd Schottky transistor and manufacture thereof
JPS60201655A (en) * 1984-03-27 1985-10-12 Seiko Epson Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584858A (en) * 1991-07-18 1993-04-06 Sanyo Chem Ind Ltd Skin integrated polyurethane foam molded product and production thereof
JPH0759389B2 (en) * 1991-07-18 1995-06-28 三洋化成工業株式会社 Surface-integrated polyurethane foam molded product and its manufacturing method
JPWO2013190759A1 (en) * 2012-06-21 2016-02-08 パナソニックIpマネジメント株式会社 Solid-state imaging device and manufacturing method thereof
US9735204B2 (en) 2012-06-21 2017-08-15 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0897310A (en) Manufacture of semiconductor integrated circuit device
JP2003324197A (en) Semiconductor device and method for manufacturing the same
JPH0348457A (en) Semiconductor device and manufacture thereof
KR0178551B1 (en) Method of manufacturing semiconductor integrated circuit
KR960012554A (en) Bipolar Transistors and Manufacturing Method Thereof
JPS6362369A (en) Semiconductor device
JPH02192161A (en) Semiconductor integrated circuit device
JP2509173B2 (en) Method of manufacturing semiconductor integrated circuit device having complementary MISFET
JPS621276A (en) Mos type semiconductor device
JP3432577B2 (en) Semiconductor device
JP2732523B2 (en) Semiconductor integrated circuit device
JPS61194764A (en) Manufacture of semiconductor device
JPH0247849A (en) Semiconductor device
JPS6347962A (en) Semiconductor device
JPH11238817A (en) Semiconductor device and its manufacture
JPH07273197A (en) Semiconductor device and its fabrication
JPS63215076A (en) Semiconductor integrated circuit device
JPH07221300A (en) Manufacture of semiconductor device
JPS592363A (en) Complementary insulated gate field effect device
JP2770576B2 (en) Method for manufacturing semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH03261168A (en) Bicmos integrated circuit device
JPS59204276A (en) Insulated gate field effect semiconductor device
JPH04239170A (en) Manufacture of semiconductor integrated circuit device
JPS63152168A (en) Semiconductor device