JPS63152168A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63152168A
JPS63152168A JP30208686A JP30208686A JPS63152168A JP S63152168 A JPS63152168 A JP S63152168A JP 30208686 A JP30208686 A JP 30208686A JP 30208686 A JP30208686 A JP 30208686A JP S63152168 A JPS63152168 A JP S63152168A
Authority
JP
Japan
Prior art keywords
substrate
impurity diffusion
diffusion region
type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30208686A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP30208686A priority Critical patent/JPS63152168A/en
Publication of JPS63152168A publication Critical patent/JPS63152168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the area of a common contact and make the size of an integrated circuit small, by connecting commonly an N-type region and a P-type region not only on a substrate surface but also in the thickness direction of the substrate in a semiconductor device having a P-N junction in the thickness direction of the substrate. CONSTITUTION:On the surface layer part of a P-type Si substrate 2, an N<+> type diffusion region 4a is formed, which is slightly larger than a contact hole 10a which is made in the next process, and on the whole surface, an insulating film 8 is stuck, which has a contact hole 10a corresponding with a region 4a. The depth of the hole 10a is set in the manner in which the hole penetrates the region 4a and reaches the middle part of the substrate 2. A metal wiring is stuck which covers the bottom surface and the side surface of the hole 10a and extends on the film 8. Thereby the region 4a and the substrate 2 are connected, and an alloy is made. Thus a small area is available for forming a common contact which makes the chip size of an integrated circuit small.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体基板の一主面に基板厚さ方向に連なるP
N接合をもつ半導体装置、例えばパワーMO5FET、
に関し、特にP型不純物拡散領域領域とN型不純物拡散
領域領域にともに接続される共通コンタクトをもつ半導
体装置に関するものである。
Detailed Description of the Invention (Technical Field) The present invention provides a semiconductor substrate having P
Semiconductor devices with N junctions, such as power MO5FETs,
In particular, the present invention relates to a semiconductor device having a common contact connected to both a P-type impurity diffusion region and an N-type impurity diffusion region.

(従来技術) 共通コンタクト部分を第4図及び第5図により一般的に
説明する。
(Prior Art) The common contact portion will be generally described with reference to FIGS. 4 and 5.

P型車結晶シリコン基板2の表面にN型不純物拡散領域
4が形成されており、基板2の厚さ方向にPN接合が形
成されている。このようなPN接合をもつ半導体装置で
、N型不純物拡散領域4と基板2のP型頭域にともに接
続される共通コンタクトを形成しようとした場合、図に
示されるようにN型不純物拡散領域4の面積内に基板2
のP型頭域が表面に露出する窓6を形成し、基板2上に
絶縁膜8を形成した後、コンタクト孔10はN型不純物
拡散領域4の一部と窓6をともに含む大きさに形成し、
金属配線12を形成した後、金属配線12と基板2とを
合金化させる。
An N-type impurity diffusion region 4 is formed on the surface of a P-type wheel crystal silicon substrate 2, and a PN junction is formed in the thickness direction of the substrate 2. In a semiconductor device having such a PN junction, when attempting to form a common contact that is connected to both the N-type impurity diffusion region 4 and the P-type head region of the substrate 2, as shown in the figure, the N-type impurity diffusion region 2 substrates within the area of 4
After forming a window 6 through which the P-type head region of is exposed on the surface and forming an insulating film 8 on the substrate 2, the contact hole 10 has a size that includes both a part of the N-type impurity diffusion region 4 and the window 6. form,
After forming the metal wiring 12, the metal wiring 12 and the substrate 2 are alloyed.

従来の共通コンタクトは、このように基板の表面におい
てP型頭域とN型領域にともに接続させているので、コ
ンタクト面積内にN型領域とP型頭域をともに含んでい
なければ共通のオーミックコンタクトを取ることができ
ず、したがって共通コンタクトの面積が大きくなり、集
積回路装置には好ましくない。
Conventional common contacts connect both the P-type head area and the N-type head area on the surface of the substrate in this way, so if the contact area does not include both the N-type area and the P-type head area, the common contact It is not possible to make ohmic contact, and therefore the area of the common contact becomes large, which is not preferable for integrated circuit devices.

(目的) 本発明は基板の厚さ方向にPN接合をもつ半導体装置に
おいて、N型領域とP型頭域にともに接続される共通コ
ンタクトの面積を小さくし、集積回路装置を小型化する
ことのできる半導体装置を提供することを目的とするも
のである。
(Objective) The present invention aims to reduce the area of a common contact connected to both an N-type region and a P-type head region in a semiconductor device having a PN junction in the thickness direction of a substrate, thereby reducing the size of an integrated circuit device. The purpose of the present invention is to provide a semiconductor device that can be used.

(構成) 本発明ではN型領域とP型頭域の共通の接続を基板の表
面だけで行なうのではなく、基板の厚さ方向でも行なう
ことによってコンタクト面積を小さくする。
(Structure) In the present invention, the common connection between the N-type region and the P-type head region is made not only on the surface of the substrate, but also in the thickness direction of the substrate, thereby reducing the contact area.

すなわち本発明の半導体装置では、半導体基板の一主面
に基板厚さ方向に重なる表面側の第1導電型不純物拡散
領域と内部側の第2導電型不純物拡散領域とが形成され
ており、前記表面側不純物拡散領域の一部を貫通して前
記内部側不純物拡散領域に達するコンタクト孔が設けら
れ、このコンタクト孔を介して前記両不純物拡散領域に
ともに接続された共通コンタクトが形成されている。
That is, in the semiconductor device of the present invention, a first conductivity type impurity diffusion region on the front side and a second conductivity type impurity diffusion region on the inside side are formed on one main surface of the semiconductor substrate, and overlap in the thickness direction of the substrate. A contact hole is provided that penetrates a portion of the front side impurity diffusion region and reaches the inner side impurity diffusion region, and a common contact is formed that is connected to both of the impurity diffusion regions through the contact hole.

以下、実施例について具体的に説明する。Examples will be specifically described below.

第1図は第4図に対応してPN接合部分の共通コンタク
ト部分を示す図であり、第2図はその部分のコンタクト
孔を主として示す平面図である。
FIG. 1 is a view corresponding to FIG. 4, showing a common contact portion of the PN junction portion, and FIG. 2 is a plan view mainly showing the contact hole in that portion.

P型車結晶シリコン基板2の表面にN型不純物拡散領域
4aが形成されている。不純物拡散領域4aの面積は、
その面積内に基板2のP型頭域の窓を設ける必要がなく
1次に開口するコンタクト孔より僅かに大きい面積を有
するだけでよい。
An N-type impurity diffusion region 4 a is formed on the surface of the P-type wheel crystal silicon substrate 2 . The area of the impurity diffusion region 4a is
There is no need to provide a window for the P-shaped head area of the substrate 2 within that area, and it is only necessary to have an area slightly larger than the primary contact hole.

シリコン基板2上には絶縁膜8が形成されており、絶縁
膜8にはコンタクト孔10aが形成されている。このコ
ンタクト孔10aは不純物拡散領域4aの面積内で不純
物拡散領域4aを貫通して基板2のP型頭域に到達する
深さに形成されている。
An insulating film 8 is formed on the silicon substrate 2, and a contact hole 10a is formed in the insulating film 8. This contact hole 10a is formed to a depth that penetrates the impurity diffusion region 4a and reaches the P-type head region of the substrate 2 within the area of the impurity diffusion region 4a.

コンタクト孔10aには金属配線12が形成され、コン
タクト孔10aにおいて金属配4112がN型不純物拡
散領域4aと基板2のP型頭域にともに接続し合金化さ
れている。
A metal wiring 12 is formed in the contact hole 10a, and in the contact hole 10a, a metal wiring 4112 is connected to both the N-type impurity diffusion region 4a and the P-type head region of the substrate 2 and alloyed.

本実施例の共通コンタクトを形成する方法を説明すると
、基板2の表面にN型不純物拡散領域4aを形成し、基
板2の表面を絶縁膜8で被う(第3図参照)。次に絶縁
膜8上に共通コンタクト孔用のレジストパターンを形成
し、そのレジストパターンをマスクにして絶縁膜8をド
ライエツチング法によってエツチングする。このエツチ
ングは不純物拡散領域4aを貫通して基板2のP型頭域
が現われるまで行なう1次にレジストを除去し、金属配
線12を形成し、熱処理によって金属配線12と基板2
の合金化を行なう。
To explain the method of forming the common contact in this embodiment, an N-type impurity diffusion region 4a is formed on the surface of the substrate 2, and the surface of the substrate 2 is covered with an insulating film 8 (see FIG. 3). Next, a resist pattern for a common contact hole is formed on the insulating film 8, and the insulating film 8 is etched by dry etching using the resist pattern as a mask. This etching is carried out until the P-type head region of the substrate 2 appears through the impurity diffusion region 4a.First, the resist is removed, the metal wiring 12 is formed, and the metal wiring 12 and the substrate 2 are heat-treated.
Alloying is carried out.

第2図を第5図と比較すれば明らかなように、コンタク
ト孔10aの面積の方がコンタクト孔10の面積より小
さい。これは、本実施例では金属配線12とN型不純物
拡散領域4aとの接続が基板2の深さ方向で行なわれ、
基板2の表面上の面積を必要としないからである。
As is clear from comparing FIG. 2 with FIG. 5, the area of the contact hole 10a is smaller than the area of the contact hole 10. This is because, in this embodiment, the connection between the metal wiring 12 and the N-type impurity diffusion region 4a is made in the depth direction of the substrate 2,
This is because no area on the surface of the substrate 2 is required.

基板の厚さ方向にPN接合をもつ半導体装置の例として
は、パワーMO3FETがある。
An example of a semiconductor device having a PN junction in the thickness direction of the substrate is a power MO3FET.

第6図に従来のパワーMO5FETの構造を示す0図に
は2個のパワーMO3FETの基本セルが示されている
FIG. 6 shows the structure of a conventional power MO3FET. FIG. 6 shows the basic cell of two power MO3FETs.

不純物濃度の高いN型単結晶シリコン基板20上に不純
物濃度の低いN型エピタキシャル層22が形成されてお
り、エピタキシャル層22の表面にP型ウェル24が形
成されている。P型ウェル24内ではその表面にソース
となるN型不純物拡散領域26が形成され、N型不純物
拡散領域26内にP型ウェル24を基板表面に露出させ
るための窓24aが設けられている。
An N-type epitaxial layer 22 with a low impurity concentration is formed on an N-type single crystal silicon substrate 20 with a high impurity concentration, and a P-type well 24 is formed on the surface of the epitaxial layer 22. In the P-type well 24, an N-type impurity diffusion region 26 serving as a source is formed on the surface thereof, and a window 24a is provided in the N-type impurity diffusion region 26 to expose the P-type well 24 to the substrate surface.

28はゲート酸化膜、30はゲート電極であり、ゲート
電極30はN型不純物拡散領域26よりも外側に形成さ
れており、N型不純物拡散領域26とエピタキシャル層
22の間のウェル24がチャネル領域となる。
28 is a gate oxide film, 30 is a gate electrode, the gate electrode 30 is formed outside the N-type impurity diffusion region 26, and the well 24 between the N-type impurity diffusion region 26 and the epitaxial layer 22 is a channel region. becomes.

32は絶縁膜であり、絶縁膜32にはウェルの窓24a
とN型不純物拡散領域26の一部がともに含まれる面積
のコンタクト孔34が形成されそいる。36は金属配線
であり、コンタクト孔34内で金属配線36がN型不純
物拡散領域26とウェル24aにともに接続し合金化さ
れている。
32 is an insulating film, and the insulating film 32 has a well window 24a.
A contact hole 34 having an area that includes both the N-type impurity diffusion region 26 and the N-type impurity diffusion region 26 is about to be formed. Reference numeral 36 denotes a metal wiring, and the metal wiring 36 is connected to both the N-type impurity diffusion region 26 and the well 24a in the contact hole 34, and is alloyed.

このように従来のパワーMO5FETには基本セルに面
積の大きい共通コンタクトが1個ずつ設けられているた
め、面積の無駄が多く、単位面積当りのチャネル領域が
少なくなって、それだけオン抵抗が高くなる問題がある
In this way, in conventional power MO5FETs, each basic cell is provided with one common contact with a large area, so there is a lot of wasted area, the channel area per unit area is reduced, and the on-resistance increases accordingly. There's a problem.

パワーMOSFETのオン抵抗にはドレイン抵抗、チャ
ネル抵抗、ソース抵抗及びソース・メタルオーミック抵
抗があり、先に挙げた抵抗はど支配的であるので、ドレ
イン抵抗とチャネル抵抗を低くすることがオン抵抗を低
減させることとなる。
The on-resistance of a power MOSFET includes drain resistance, channel resistance, source resistance, and source metal ohmic resistance.The resistances mentioned above are dominant, so lowering the drain resistance and channel resistance will increase the on-resistance. It will be reduced.

そこで、チャネル抵抗を低くするために本発明を適用し
たパワーMO5FETを第7図に示す。
Therefore, a power MO5FET to which the present invention is applied in order to lower the channel resistance is shown in FIG.

N型単結晶シリコン基板20及びN型エピタキシャル層
22は第6図のものと同じである。24aはP型ウェル
であり、ウェル24の表面にソースとなるN型不純物拡
散領域26aが形成されている。このN型不純物拡散領
域26aは第6図のN型不純物拡散領域26に比べてウ
ェル24aのP型頭域を基板表面に露出させる窓を必要
としないので、N型不純物拡散領域26aの面積は第6
図のN型不純物拡散領域26よりも小さくてすむ。
The N-type single crystal silicon substrate 20 and the N-type epitaxial layer 22 are the same as those shown in FIG. 24a is a P-type well, and an N-type impurity diffusion region 26a serving as a source is formed on the surface of the well 24. Compared to the N-type impurity diffusion region 26 of FIG. 6, this N-type impurity diffusion region 26a does not require a window for exposing the P-type head region of the well 24a to the substrate surface, so the area of the N-type impurity diffusion region 26a is 6th
It is smaller than the N-type impurity diffusion region 26 shown in the figure.

したがって、ウェル24aの面積も第6図におけるウェ
ル24の面積より小さくてすむ。
Therefore, the area of the well 24a can also be smaller than the area of the well 24 in FIG.

28はゲート酸化膜、30はゲート電極であり。28 is a gate oxide film, and 30 is a gate electrode.

これらは第6図のMOSFETと同様にN型不純物拡散
領域26aとエピタキシャル層22の間のウェル24a
を被うように設けられている。
These are the well 24a between the N-type impurity diffusion region 26a and the epitaxial layer 22, similar to the MOSFET shown in FIG.
It is designed to cover the

32は絶縁膜であり、絶縁膜32にはN型不純物拡散領
域26aの面積内で、N型不純物拡散領域26を貫通し
てウェル24aのP型頭域に到達する深さのコンタクト
孔34aが形成されている。
32 is an insulating film, and the insulating film 32 has a contact hole 34a within the area of the N-type impurity diffusion region 26a and having a depth that penetrates the N-type impurity diffusion region 26 and reaches the P-type head region of the well 24a. It is formed.

金属配線36はこのコンタクト孔34aを介してN型不
純物拡散領域26aとウェル24aにともに接続し合金
化されている。
The metal wiring 36 is connected to both the N-type impurity diffusion region 26a and the well 24a through the contact hole 34a and is alloyed.

本実施例における共通コンタクトの形成方法は。The method for forming the common contact in this example is as follows.

第1図及び第3図で説明した方法と同じである。This is the same method as explained in FIGS. 1 and 3.

第7図の実施例によれば、パワーMOSFETでソース
領域26aとウェル24aを共通に接続する共通コンタ
クトの面積が小さくなり、パワーMO3FETの基本セ
ルを小さくすることができる。したがって、単位面積当
りのチャネル領域は第6図に示された従来のパワーMO
5FETに比べて広くなり、チャネル抵抗が低下するた
めにオン抵抗が小さくなる。
According to the embodiment shown in FIG. 7, the area of the common contact that commonly connects the source region 26a and well 24a of the power MOSFET is reduced, and the basic cell of the power MOSFET can be made smaller. Therefore, the channel area per unit area of the conventional power MO shown in FIG.
It is wider than a 5FET and has a lower channel resistance, resulting in a smaller on-resistance.

なお、第7図の実施例ではNチャネル型のパワーMOS
FETについて説明したが、Pチャネル型のパワーMO
5FETについても導電型が逆になるだけであり、構造
は全く同じである。
In the embodiment shown in FIG. 7, an N-channel type power MOS is used.
Although we have explained FET, P-channel type power MO
The structure of the 5FET is exactly the same except that the conductivity type is reversed.

第1図及び第7図の実施例において、コンタクト孔10
a、34aはそれらの側面が基板表面に対して垂直方向
になるように開けられているが、これらのコンタクト孔
10a、34aの側面を基板表面に対して斜め方向に形
成してコンタクト孔10a、34aがすり鉢状になるよ
うにすることもできる。そのようなすり鉢状のコンタク
ト孔を形成することによって1表面側の不純物拡散領域
と金属配線との接触面積を増すことができる。
In the embodiments of FIGS. 1 and 7, the contact hole 10
The contact holes 10a, 34a are formed so that their side surfaces are perpendicular to the substrate surface, but the side surfaces of these contact holes 10a, 34a are formed obliquely to the substrate surface to form contact holes 10a, 34a. 34a can also be shaped like a mortar. By forming such a cone-shaped contact hole, the contact area between the impurity diffusion region on one surface side and the metal wiring can be increased.

単結晶シリコン基板に斜め方向のエツチングを施こすに
は、ドライエツチングよりも例えばカセイソーダを用い
たウェットエツチングの方が好都合である。
For etching a single crystal silicon substrate in an oblique direction, wet etching using, for example, caustic soda is more convenient than dry etching.

(効果) 本発明の半導体装置では基板の厚さ方向に形成されたP
N接合に共通コンタクトを設ける際、表面側の第1導電
型不純物拡散領域を貫通して内部側の第2導電型不純物
拡散領域に到達するコンタクト孔を形成し、そのコンタ
クト孔を介して金属配線と両不純物拡散領域のコンタク
トをとるようにしたので、共通コンタクトに必要な面積
を小さくすることができ1表面側の不純物拡散領域の面
積も小さくでき、この共通コンタクトを使用した半導体
集積回路装置のチップサイズを小さくすることができる
(Effect) In the semiconductor device of the present invention, P formed in the thickness direction of the substrate
When providing a common contact in the N junction, a contact hole is formed that penetrates the first conductivity type impurity diffusion region on the front side and reaches the second conductivity type impurity diffusion region on the inside side, and the metal wiring is connected through the contact hole. Since contact is made between both impurity diffusion regions, the area required for the common contact can be reduced, and the area of the impurity diffusion region on the first surface side can also be reduced. Chip size can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例における共通コンタクト部分を示す断
面図、第2図は同実施例における主としてコンタクト孔
を示す平面図、第3図は同実施例の製造途中の状態を示
す概略断面図、第4図は従来の共通コンタクト部分を示
す断面図、第5図は同従来例における主としてコンタク
ト孔を示す平面図、第6図は従来のパワーMO5FET
を示す断面図、第7図は本発明を適用したパワーMO5
FETを示す断面図である。 2・・・・・・P型車結晶シリコン基板、4a、26a
・・・・・・N型不純物拡散領域、10a、34a・・
・・・コンタクト孔、12・・・・・・金属配線、 20・・・・・・N型単結晶シリコン基板、22・・・
・・・N型エピタキシャル層、24a・・・・・・P型
ウェル。
FIG. 1 is a sectional view showing a common contact portion in one embodiment, FIG. 2 is a plan view mainly showing contact holes in the same embodiment, and FIG. 3 is a schematic sectional view showing a state in the middle of manufacturing of the same embodiment. Fig. 4 is a sectional view showing a conventional common contact portion, Fig. 5 is a plan view mainly showing the contact hole in the conventional example, and Fig. 6 is a conventional power MO5FET.
7 is a cross-sectional view showing the power MO5 to which the present invention is applied.
It is a sectional view showing FET. 2...P type car crystal silicon substrate, 4a, 26a
...N-type impurity diffusion region, 10a, 34a...
...Contact hole, 12...Metal wiring, 20...N-type single crystal silicon substrate, 22...
...N type epitaxial layer, 24a...P type well.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の一主面に基板厚さ方向に重なる表面
側の第1導電型不純物拡散領域と内部側の第2導電型不
純物拡散領域とが形成されており、前記表面側不純物拡
散領域の一部を貫通して前記内部側不純物拡散領域に達
するコンタクト孔が設けられ、このコンタクト孔を介し
て前記両不純物拡散領域にともに接続された共通コンタ
クトが形成されている半導体装置。
(1) A first conductivity type impurity diffusion region on the front side and a second conductivity type impurity diffusion region on the inside side are formed on one main surface of the semiconductor substrate, overlapping in the thickness direction of the substrate, and the front side impurity diffusion region A semiconductor device comprising: a contact hole extending through a part of the inner impurity diffusion region to reach the inner impurity diffusion region; and a common contact connected to both of the impurity diffusion regions via the contact hole.
(2)前記表面側不純物拡散領域がソース領域であり、
前記内部側不純物拡散領域がウェル又は基板であり、パ
ワーMOSFETを構成する特許請求の範囲第1項に記
載の半導体装置。
(2) the surface-side impurity diffusion region is a source region;
2. The semiconductor device according to claim 1, wherein the internal impurity diffusion region is a well or a substrate and constitutes a power MOSFET.
JP30208686A 1986-12-16 1986-12-16 Semiconductor device Pending JPS63152168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30208686A JPS63152168A (en) 1986-12-16 1986-12-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30208686A JPS63152168A (en) 1986-12-16 1986-12-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63152168A true JPS63152168A (en) 1988-06-24

Family

ID=17904754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30208686A Pending JPS63152168A (en) 1986-12-16 1986-12-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63152168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373563A (en) * 1989-08-14 1991-03-28 Fujitsu Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373563A (en) * 1989-08-14 1991-03-28 Fujitsu Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPS63102264A (en) Thin film semiconductor device
US6995055B2 (en) Structure of a semiconductor integrated circuit and method of manufacturing the same
JPH01128568A (en) Semiconductor device
JPS5816337B2 (en) Manufacturing method of semiconductor device
JP3294001B2 (en) Method for manufacturing insulated gate semiconductor device
JPH06177242A (en) Semiconductor integrated circuit device
US5757047A (en) Semiconductor device and method of manufacturing the same
JPS63152168A (en) Semiconductor device
JPS618969A (en) Semiconductor integrated circuit device
JP3071615B2 (en) Semiconductor device and manufacturing method thereof
JPS62248256A (en) Semiconductor device
JPS63133662A (en) Manufacture of semiconductor device
JPS6237816B2 (en)
JPS6313352B2 (en)
JPH0247849A (en) Semiconductor device
JPS62159468A (en) Semiconductor device
JPH0691250B2 (en) Semiconductor device
KR940009351B1 (en) Edge seal and manufacturing method of a semiconductor chip
JPS6114663B2 (en)
JPH03120830A (en) Semiconductor device
JPS6230364A (en) Manufacture of mis semiconductor device
JPS59181669A (en) Mos type semiconductor device
JPS63204628A (en) Semiconductor integrated circuit device
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPS6370572A (en) Mos field-effect transistor