JPS6349903B2 - - Google Patents

Info

Publication number
JPS6349903B2
JPS6349903B2 JP56209991A JP20999181A JPS6349903B2 JP S6349903 B2 JPS6349903 B2 JP S6349903B2 JP 56209991 A JP56209991 A JP 56209991A JP 20999181 A JP20999181 A JP 20999181A JP S6349903 B2 JPS6349903 B2 JP S6349903B2
Authority
JP
Japan
Prior art keywords
oxide
aluminum
silicon carbide
substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209991A
Other languages
Japanese (ja)
Other versions
JPS58130546A (en
Inventor
Akira Enomoto
Hidetoshi Yamauchi
Shoji Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP56209991A priority Critical patent/JPS58130546A/en
Priority to US06/451,940 priority patent/US4499147A/en
Publication of JPS58130546A publication Critical patent/JPS58130546A/en
Priority to US06/858,834 priority patent/US4664946A/en
Publication of JPS6349903B2 publication Critical patent/JPS6349903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、集積回路用基板であるいはICパツ
ケージ用材料としての炭化珪素質基板およびその
製造方法に係り、特に、極めて安定した絶縁抵抗
性を有する酸化アルミニウムと二酸化珪素との共
融生成酸化物を主成分とする酸化物被膜を形成さ
せた炭化珪素質基板およびその製造方法に関す
る。 最近、電気工業技術の発達に伴つて、半導体等
の電子部品材料は小型化あるいは高集積化が進め
られている。そのため、電子部品の高集積化に伴
つて集積回路内における発熱量が増加し、基板の
放熱性が重要な問題となつている。ところで、従
来電子工業用の基板としては種々のものが知られ
実用化されており、特に高い信頼性を要求される
用途に対しては、アルミナ焼結体あるいはガラス
等が使用されている。しかしながら、前述の如き
従来使用されている基板は熱伝導率が低く放熱性
に劣るために蓄熱による問題を解決することが困
難であり、電子部品の高集積化を進める上で極め
て大きな障害となつている。 前記問題を解決する材料としては、従来よりベ
リリアあるいはホーロー等の材料が検討されてい
る。しかしながら、前者のベリリアはそのベリリ
アの有する毒性のために製造および取扱いが困難
である欠点を有し、一方後者のホーローは金属板
を基材とするため熱膨張率が大きく、またフリツ
トがドグボーン構造になり易く、さらに印刷して
からの切断が困難であるばかりでなく、ホーロー
にクラツクがはいるのでレーザートリミングがで
きない欠点があつた。 上述の如く、従来知られた基板はいずれも種々
の欠点を有していた。 本発明は前記欠点を解決することのできる基
板、すなわち高い熱伝導率を有し、高集積回路用
基板あるいはICパツケージ用材料として極めて
優れた特性を有する基板を提供することを目的と
するものである。 本発明によれば、酸化アルミニウムと二酸化珪
素との共融生成酸化物を主成分とする密着性に優
れた絶縁性表面被膜を有する炭化珪素質基板およ
びその製造方法を提供することによつて前記目的
を達成することができる。 次に本発明を詳細に説明する。 従来、基板として広く使用されているアルミナ
基板と炭化珪素質基板とを比較すると、炭化珪素
質基板は高い熱伝導率、高い耐熱衝撃性および常
温、熱間のいずれにおいても高い強度を有し、し
かもアルミナ基板は熱膨張率が通常集積回路とし
て使用されるシリコンチツプの熱膨張率と大きく
異なるため直接アルミナ基板上にシリコンチツプ
を接着して使用することが困難であるのに対し、
炭化珪素質基板の熱膨張率は前記シリコンチツプ
とほぼ同じであり、直接炭化珪素質基板表面にシ
リコンチツプを接着できる有利さを有している。
しかしながら、炭化珪素質基板は半導体的な特性
を有し、電気絶縁性をもたないことから基板とし
て使用されるに至らなかつた。 上述の如き観点に基づき、本発明者らは炭化珪
素焼結体を基板として適用すべく、炭化珪素質基
板に電気絶縁性を付与する方法を種々研究した。 ところで、本発明者らは、前記炭化珪素焼結体
に電気絶縁性を付与するために、炭化珪素焼結体
の表面に電気絶縁性物質、例えば酸化物よりなる
ガラス質物質等を塗布し、融着することによつて
電気絶縁性被膜を形成する手段あるいは炭化珪素
焼結体を酸化せしめ、焼結体表面に二酸化珪素を
生成させ、前記二酸化珪素よりなる電気絶縁性被
膜を形成する手段を試みた。しかしながら、前者
の手段によれば炭化珪素焼結体と酸化物との濡れ
性が極めて悪く、また酸化物被膜は密着性に劣り
剥離し易く、しかもピンホール等の欠陥が生じ易
く極めて信頼性が低かつた。一方後者の手段によ
れば炭化珪素焼結体の表面を均一に酸化させるこ
とが困難で酸化膜の厚さが不均一になり易く、ま
た生成する二酸化珪素は主としてクリストバライ
ト結晶を生成するため均一で緻密な被膜を形成す
ることが困難で、安定した電気絶縁性を有する被
膜を得ることが困難であつた。 よつて本発明者らは、前記諸欠点を解決するこ
とのできる安定した電気絶縁性を有する被膜の形
成方法についてさらに研究を種々行なつた結果、
酸化アルミニウムを共存させた酸化性雰囲気中で
炭化珪素焼結体表面を酸化せしめ、二酸化珪素を
主成分とし、酸化アルミニウムを含有する酸化物
を主体とする絶縁性被膜を形成することによつ
て、前記欠点を解決することのできることを新規
に知見し、本発明を完成した。 すなわち、炭化珪素焼結体を酸化して表面に絶
縁性被膜を形成せしめるに際し、酸化アルミニウ
ムの存在下で炭化珪素焼結体を酸化処理せしめる
ことによつて、極めて緻密で密着性に優れた絶縁
性の酸化アルミニウムと二酸化珪素との共融生成
酸化物を主体とする被膜を有する炭化珪素焼結体
を製造することに想到し、高集積回路用基板とし
て極めて優れた特性を有する基板を得た。 本発明によれば、前記絶縁性被膜は酸化アルミ
ニウムと二酸化珪素との共融生成酸化物を主成分
とすることが必要である。前記酸化アルミニウム
は炭化珪素の酸化によつて生成する二酸化珪素と
共融して生成される共融生成酸化物からなる酸化
物被膜を形成し、この被膜は極めて緻密でしかも
ピンホール等の欠陥のない被膜となり、比較的薄
い膜厚でもつて安定した絶縁性を有する。また炭
化珪素の酸化によつて生成する二酸化珪素は比較
的低温でも基板の表面に存在する酸化アルミニウ
ムと相互に共融した状態の酸化物を形成し易く、
しかも炭化珪素焼結体と入り組んだ還移層を有
し、炭化珪素焼結体と密着性に極めて優れた酸化
物被膜を形成することができる。 本発明によれば、前記絶縁性被膜中に含有され
る酸化アルミニウムと二酸化珪素はAl2O3/SiO2
モル比が0.024〜1.8の範囲内であることが好まし
い。その理由は前記Al2O3/SiO2モル比が0.024よ
り小さいと炭化珪素の酸化によつて生成する二酸
化珪素のクリストバライトを防止する効果が不充
分となり、均一で緻密を被膜を得ることができ
ず、安定した電気絶縁性を得難いからであり、一
方1.8より大きいと被膜の融点が高く、均一な厚
さの被膜となすことが困難であるばかりでなく、
被膜と炭化珪素焼結体との熱膨張率の差が大きく
なるため、被膜が剥離し易くなるからであり、な
かでも0.05〜1.0の範囲内で最も好適な結果が得
られる。 本発明によれば、前記絶縁性被膜の融点を降下
させて共融化を促進し、炭化珪素焼結体との密着
性を向上させるために融点降下剤を含有すること
が好ましい。前記融点降下剤としてはアルカリ金
属酸化物あるいはアルカリ土類金属酸化物のいず
れか少なくとも1種であることが好ましく、その
含有量は酸化物モル量に換算して60%以下である
ことが好ましく、特に高い絶縁性を必要とする場
合には30%以下が好適である。 前記アルカリ金属酸化物としては例えば酸化リ
チウム、酸化ナトリウム、酸化カリウムが有利で
あり、またアルカリ土類金属酸化物としては例え
ば酸化ベリリウム、酸化マグネシウム、酸化カル
シウムが有利であり、なかでも酸化マグネシウム
あるいは酸化カルシウムが最適である。 本発明によれば、前記絶縁性被膜はリン、ホウ
素、ゲルマニウム、ヒ素、アンチモン、ビスマ
ス、バナジウム、亜鉛、カドミウムあるいは鉛等
の酸化物を含有することもできる。 本発明によれば、前記絶縁性被膜の膜厚は0.5
〜25μmの範囲内であることが好ましい。その理
由は前記絶縁性被膜の膜厚が0.5μmより薄いと高
い絶縁性を安定して得ることが困難で信頼性に乏
しく、一方25μmより厚い絶縁性被膜と炭化珪素
焼結体との熱膨張率の差による影響が顕著にな
り、絶縁性被膜が剥離し易くなるばかりでなく、
熱伝導性が劣化するため本発明の目的とする高い
熱伝導性を有する基板となすことが困難になるか
らであり、1.0〜15μmの範囲内が最適である。 本発明によれば、前記基板の厚さは0.1〜30mm
の範囲内であることが好ましい。その理由は基板
の厚さは電子部品の小型化を進めたり、放熱性を
向上せしめる上でなるべく薄いことが好ましい
が、その厚さが0.1mmmmより薄いと、基板自体の
強度が弱くなり基板として使用することが困難で
あり、また30mmより厚いと電子部品の小型化が困
難であるばかりでなく、基板に要する費用が高く
なるため不経済であるからである。 次に本発明の絶縁性被膜を有する炭化珪素質基
板の電気的特性について説明する。 通常、日本工業規格(JIS−C−5012−7.3)に
基づいて測定される炭化珪素焼結体の電気抵抗値
は印加電圧が25Vの場合で約105Ω以下と低く、
基板として適用し難いが、本発明の絶縁性被膜を
有する炭化珪素質基板の絶縁抵抗値を印加電圧が
25Vの場合で2×109Ω以上、印加電圧が100Vの
場合で1×108Ω以上であり、さらに日本工業規
格(JIS−C−2110−8.3)に基づいて測定される
耐電圧は約0.2KW以上と基板として適用するの
に極めて適した特性を有するものである。 次に、本発明の炭化珪素質基板の製造方法につ
いて説明する。 本発明によれば、炭化珪素焼結体表面にあらか
じめアルミニウム含有物と必要により添加される
融点降下剤とを塗布し、次いで酸化性雰囲気中で
加熱して炭化珪素焼結体表面を酸化せしめると、
酸化アルミニウムと二酸化珪素との共融生成酸化
物を主成分とする絶縁性被膜が生成される。 本発明によれば、前記アルミニウム含有物は前
記絶縁性被膜が形成される際の酸化性雰囲気中で
酸化アルミニウムとなるものであり、その塗布量
は前記絶縁性被膜の膜厚を0.5〜25μm、酸化アル
ミニウムと二酸化珪素のAl2O3/SiO2モル比を
0.024〜1.8の範囲内とするために酸化アルミニウ
ムに換算して0.004〜2.9mg/cm2の範囲内とするこ
とが好ましい。前記アルミニウム含有物としては
例えばアルミナゾル、金属アルミニウム、アルミ
ニウム含有合金、酸化アルミニウム、水酸化アル
ミニウム、アルミン酸塩、アルミノ珪酸塩、リン
酸アルミニウムあるいは酢酸アルミニウムから選
ばれるいずれか少なくとも1種を使用することが
好ましく、特にアルミナゾルは前記絶縁性被膜が
形成される際に極めて微細で反応性の高い酸化ア
ルミニウムを供給することができるため最も好ま
しい。 本発明によれば、前記融点降下剤としてはアル
カリ金属含有物あるいはアルカリ土類金属含有物
のいずれか少なくとも1種を使用することが好ま
しい。前記アルカリ金属含有物およびアルカリ土
類金属含有物は前記絶縁性被膜が形成される際の
酸化性雰囲気中でアルカリ金属あるいはアルカリ
土類金属の酸化物になるものであり、前記含有物
の塗布量は5mg/cm2以下とすることが好ましく、
なかでも2.5mg/cm2以下とすることが最も好適で
ある。前記アルカリ金属含有物あるいはアルカリ
土類金属含有物は、例えばリチウム、ナトリウ
ム、カリウム、ベリリウム、マグネシウムあるい
はカルシウムの酸化物となるものであり、それら
を単独であるいは混合して使用することができ
る。 本発明によれば、前記酸化性雰囲気中における
加熱温度は750〜1650℃の範囲内とすることが好
ましい。前記温度が750℃より低いと炭化珪素焼
結体の酸化速度が著しく遅く実用的でないからで
あり、一方1650℃より高いと炭化珪素焼結体の酸
化速度が著しく速く目的とする膜厚に制御するこ
とが困難であるばかりでなく炭化珪素の酸化によ
つて生ずるCOガス等によつて被膜と炭化珪素焼
結体の間に気泡が生成するため均一で密着性の良
好な酸化物被膜を得ることが困難であるからであ
る。 本発明によれば、前記酸化性雰囲気として、雰
囲気中に水蒸気を含有させることが有利である。
その理由は前記雰囲気中に水蒸気を含有させるこ
とによつて炭化珪素の酸化を促進することがで
き、比較的低温でも効率的に絶縁性被膜を形成す
ることができるからである。 次に本発明を実施例について説明する。 実施例 1 炭化珪素焼結体はホウ素を1.0重量%、遊離炭
素を2.0重量%含有し、3.1g/cm3の密度を有する
無加圧焼結体であつて、50×20×2mmの薄板状の
ものをあらかじめポリツシング加工し、最終的に
#200砥石で表面仕上げしたものを使用した。 前記炭化珪素焼結体を、塩化カルシウム2.0g
をアルミナゾル1重量%水溶液100mlに溶解させ
た懸濁液中に浸漬した後、乾燥器中に装入し110
℃1時間乾燥した。前記炭化珪素焼結体の表面に
は酸化アルミニウムに換算して約0.13mg/cm2のア
ルミナゾルと酸カルシウムに換算して約0.25mg/
cm2の塩化カルシウムが存在していた。 次いで前記炭化珪素焼結体を内径が40mmの管状
炉に装入し酸化処理を行なつた。前記酸化処理は
酸素ガスを1/mmの割合で管状炉中へ装入し、
1400℃で3時間行なつた。 得られた酸化物被膜は透明なガラス状で、その
膜厚は約3μmであり、ピンホール、マイクロク
ラツク等の欠陥も殆ど観察されず、平滑な表面性
状を有していた。 前記酸化物被膜を有する炭化珪素焼結体の絶縁
抵抗は印加電圧100Vで3×1012Ωであり、また
耐電圧は1.7KVであつた。前記絶縁抵抗はJIS−
C−5012−7.3に、耐電圧はJIS−C−2110−8.3
に基づいて測定した。 なお、この酸化物被膜のAl2O3/SiO2モル比は
0.27であり、X線回折測定を行なつたところ、若
干クリストバライト結晶を含有していることが確
認された。 実施例 2 実施例1と同様の方法であるが、酸化処理時の
酸化性ガスとして水蒸気と酸素とをほぼ1:1の
比率で混合させたガスを使用して炭化珪素焼結体
表面に実施例1と同様にして酸化物被膜を形成し
た。 得られた酸化物被膜の膜厚は約5μmであり、
実施例1で得たものと同様に欠陥の殆どない極め
て平滑な表面性状を有していた。なお、酸化物被
膜の特性は実施例1と同様の方法で測定し、第1
表に示した。 実施例 3 実施例1とほぼ同様の方法であるが、酸化処理
時の温度および時間を変化させて酸化物被膜を形
成した。 得られた酸化物被膜の性状および特性は実施例
1と同様の方法で測定し、第1表に示した。 実施例 4 実施例1と同様の方法であるが、第1表に示し
た融点降下剤あるいは添加剤を溶解しているアル
ミナゾル水溶液を使用して酸化物被膜を得た。 乾燥後の炭化珪素焼結体の表面に存在する各物
質量の酸化物に換算した値および酸化処理して得
られた酸化物被膜の特性は実施例1と同様の方法
で測定し、第1表に示した。 比較例 1 実施例1と同様にして表面仕上げをした炭化珪
素焼結体を実施例1で使用した管状炉に装入し、
実施例1と同様の条件で酸化処理を行なつた。 得られた酸化物被膜は白色の不透明なものであ
り、絶縁抵抗は実施例1と同様にして測定したと
この2×107Ωと基板材料としては極めて不適当
であつた。 なお、この酸化物被膜のX線回折測定を行なつ
たところ、ほとんどがクリストバライト結晶であ
ることが確認された。 以上述べた如く、本発明によれば、高い熱伝導
率を有し、しかも熱膨張率が通常集積回路として
使用されるシリコンチツプとほぼ同じの高集積回
路用基板あるいはICパツケージ用材料として極
めて優れた基板を供給でき、産業上に寄与する効
果は極めて大きい。
The present invention relates to a silicon carbide substrate used as a substrate for integrated circuits or as a material for IC packages, and a method for manufacturing the same, and in particular, it relates to a silicon carbide substrate that is used as a substrate for integrated circuits or as a material for IC packages, and in particular to a silicon carbide substrate that uses a eutectic oxide of aluminum oxide and silicon dioxide, which has extremely stable insulation resistance. The present invention relates to a silicon carbide substrate on which an oxide film is formed as a main component, and a method for manufacturing the same. Recently, with the development of electrical engineering technology, electronic component materials such as semiconductors are becoming smaller and more highly integrated. Therefore, as electronic components become more highly integrated, the amount of heat generated within integrated circuits increases, and the heat dissipation of the substrate has become an important issue. By the way, various substrates for the electronic industry have been known and put into practical use, and for applications requiring particularly high reliability, alumina sintered bodies, glass, etc. have been used. However, the conventionally used substrates as mentioned above have low thermal conductivity and poor heat dissipation, making it difficult to solve the problem of heat accumulation, which is an extremely large obstacle in promoting higher integration of electronic components. ing. Materials such as beryllia or enamel have been considered as materials to solve the above problem. However, the former beryllia has the disadvantage that it is difficult to manufacture and handle due to the toxicity of beryllia, while the latter enamel has a high coefficient of thermal expansion because it is based on a metal plate, and the frit has a dogbone structure. Not only is it difficult to cut after printing, but the enamel also has cracks, making it impossible to perform laser trimming. As mentioned above, all conventionally known substrates have various drawbacks. The object of the present invention is to provide a substrate that can solve the above-mentioned drawbacks, that is, a substrate that has high thermal conductivity and has extremely excellent properties as a substrate for highly integrated circuits or as a material for IC packages. be. According to the present invention, by providing a silicon carbide substrate having an insulating surface coating with excellent adhesion and having an eutectic oxide of aluminum oxide and silicon dioxide as a main component, and a method for manufacturing the same, Able to achieve purpose. Next, the present invention will be explained in detail. Comparing alumina substrates and silicon carbide substrates, which have been widely used as substrates in the past, silicon carbide substrates have high thermal conductivity, high thermal shock resistance, and high strength both at room temperature and hot temperature. Moreover, the coefficient of thermal expansion of alumina substrates is significantly different from that of silicon chips, which are normally used for integrated circuits, so it is difficult to bond silicon chips directly onto alumina substrates.
The coefficient of thermal expansion of the silicon carbide substrate is almost the same as that of the silicon chip, and has the advantage that the silicon chip can be directly bonded to the surface of the silicon carbide substrate.
However, silicon carbide substrates have semiconductor-like characteristics and do not have electrical insulation properties, so they have not been used as substrates. Based on the above-mentioned viewpoints, the present inventors have conducted various studies on methods of imparting electrical insulation to a silicon carbide substrate in order to apply a silicon carbide sintered body as a substrate. By the way, the present inventors coated the surface of the silicon carbide sintered body with an electrically insulating substance, such as a glassy substance made of an oxide, in order to impart electrical insulation to the silicon carbide sintered body. A means for forming an electrically insulating film by fusing or a means for oxidizing a silicon carbide sintered body to generate silicon dioxide on the surface of the sintered body to form an electrically insulating film made of the silicon dioxide. I tried. However, with the former method, the wettability between the silicon carbide sintered body and the oxide is extremely poor, and the oxide film has poor adhesion and is easily peeled off. Furthermore, defects such as pinholes are likely to occur, making it extremely unreliable. It was low. On the other hand, with the latter method, it is difficult to uniformly oxidize the surface of the silicon carbide sintered body, and the thickness of the oxide film tends to be uneven, and the produced silicon dioxide is not uniform because it mainly produces cristobalite crystals. It has been difficult to form a dense film, and it has been difficult to obtain a film with stable electrical insulation. Therefore, the present inventors have further conducted various studies on a method for forming a film having stable electrical insulation properties that can solve the above-mentioned drawbacks.
By oxidizing the surface of the silicon carbide sintered body in an oxidizing atmosphere in which aluminum oxide coexists, and forming an insulating film mainly composed of silicon dioxide and an oxide containing aluminum oxide, The present invention was completed based on a new finding that the above-mentioned drawbacks can be solved. In other words, when oxidizing the silicon carbide sintered body to form an insulating film on its surface, the silicon carbide sintered body is oxidized in the presence of aluminum oxide to form an extremely dense insulation film with excellent adhesion. The inventors came up with the idea of producing a silicon carbide sintered body having a coating mainly composed of an eutectic oxide of aluminum oxide and silicon dioxide, and obtained a substrate with extremely excellent properties as a substrate for highly integrated circuits. . According to the present invention, it is necessary that the insulating film has an eutectic oxide of aluminum oxide and silicon dioxide as a main component. The aluminum oxide forms an oxide film consisting of a eutectic oxide produced by eutectic fusion with silicon dioxide produced by oxidation of silicon carbide, and this film is extremely dense and free from defects such as pinholes. The film has stable insulation properties even with a relatively thin film thickness. Furthermore, silicon dioxide produced by oxidation of silicon carbide tends to form an oxide in a eutectic state with aluminum oxide present on the surface of the substrate even at relatively low temperatures.
Furthermore, it is possible to form an oxide film having an intricate reduction layer with the silicon carbide sintered body and having extremely excellent adhesion to the silicon carbide sintered body. According to the present invention, aluminum oxide and silicon dioxide contained in the insulating film are Al 2 O 3 /SiO 2
It is preferable that the molar ratio is within the range of 0.024 to 1.8. The reason for this is that if the Al 2 O 3 /SiO 2 molar ratio is less than 0.024, the effect of preventing cristobalite from silicon dioxide produced by oxidation of silicon carbide will be insufficient, making it impossible to obtain a uniform and dense film. On the other hand, if it is larger than 1.8, the melting point of the film is high and it is difficult to form a film with a uniform thickness.
This is because the difference in coefficient of thermal expansion between the coating and the silicon carbide sintered body increases, making it easier for the coating to peel off, and the most preferable result is obtained within the range of 0.05 to 1.0. According to the present invention, it is preferable to contain a melting point depressant in order to lower the melting point of the insulating coating, promote eutectic formation, and improve adhesion to the silicon carbide sintered body. The melting point depressant is preferably at least one of an alkali metal oxide or an alkaline earth metal oxide, and its content is preferably 60% or less in terms of oxide molar amount. In cases where particularly high insulation is required, 30% or less is suitable. Preferred alkali metal oxides are, for example, lithium oxide, sodium oxide, potassium oxide, and preferred alkaline earth metal oxides are, for example, beryllium oxide, magnesium oxide, calcium oxide, especially magnesium oxide or magnesium oxide. Calcium is best. According to the invention, the insulating coating can also contain oxides such as phosphorus, boron, germanium, arsenic, antimony, bismuth, vanadium, zinc, cadmium or lead. According to the present invention, the thickness of the insulating film is 0.5
It is preferably within the range of ~25 μm. The reason for this is that if the thickness of the insulating film is thinner than 0.5 μm, it is difficult to stably obtain high insulation properties and the reliability is poor, and on the other hand, the thermal expansion of the insulating film thicker than 25 μm and the silicon carbide sintered body The effect of the difference in rate becomes noticeable, and the insulating film not only peels off easily, but also
This is because the thermal conductivity deteriorates, making it difficult to obtain a substrate with high thermal conductivity, which is the objective of the present invention, and the optimum range is 1.0 to 15 μm. According to the invention, the thickness of the substrate is 0.1~30mm
It is preferable that it is within the range of . The reason for this is that the thickness of the board is preferably as thin as possible in order to promote miniaturization of electronic components and improve heat dissipation, but if the thickness is thinner than 0.1 mm, the strength of the board itself will be weakened, making it difficult to use as a board. This is because it is difficult to use, and if it is thicker than 30 mm, it is not only difficult to miniaturize electronic components but also uneconomical because the cost required for the board increases. Next, the electrical characteristics of the silicon carbide substrate having an insulating film according to the present invention will be explained. Normally, the electrical resistance value of silicon carbide sintered bodies measured based on the Japanese Industrial Standards (JIS-C-5012-7.3) is as low as about 10 5 Ω or less when the applied voltage is 25 V.
Although it is difficult to apply it as a substrate, the insulation resistance value of the silicon carbide substrate having the insulating film of the present invention is determined by the applied voltage.
When the applied voltage is 25V, it is 2 x 10 9 Ω or more, and when the applied voltage is 100V, it is 1 x 10 8 Ω or more, and the withstand voltage measured based on the Japanese Industrial Standards (JIS-C-2110-8.3) is approximately It has characteristics that are extremely suitable for use as a substrate, with a power of 0.2KW or more. Next, a method for manufacturing a silicon carbide substrate of the present invention will be explained. According to the present invention, the surface of the silicon carbide sintered body is coated with an aluminum-containing material and a melting point depressant added if necessary, and then heated in an oxidizing atmosphere to oxidize the surface of the silicon carbide sintered body. ,
An insulating film containing an eutectic oxide of aluminum oxide and silicon dioxide as a main component is produced. According to the present invention, the aluminum-containing material turns into aluminum oxide in an oxidizing atmosphere when the insulating film is formed, and the coating amount is such that the thickness of the insulating film is 0.5 to 25 μm, The Al 2 O 3 /SiO 2 molar ratio of aluminum oxide and silicon dioxide is
In order to keep the content within the range of 0.024 to 1.8, it is preferably within the range of 0.004 to 2.9 mg/cm 2 in terms of aluminum oxide. As the aluminum-containing substance, for example, at least one selected from alumina sol, metal aluminum, aluminum-containing alloy, aluminum oxide, aluminum hydroxide, aluminate, aluminosilicate, aluminum phosphate, or aluminum acetate can be used. Particularly, alumina sol is most preferred since it can supply extremely fine and highly reactive aluminum oxide when the insulating film is formed. According to the present invention, it is preferable to use at least one of an alkali metal-containing substance and an alkaline earth metal-containing substance as the melting point depressant. The alkali metal-containing substance and the alkaline earth metal-containing substance become oxides of alkali metals or alkaline earth metals in the oxidizing atmosphere when the insulating film is formed, and the coating amount of the alkali metal-containing substance is preferably 5 mg/cm 2 or less,
Among these, it is most preferable to set it to 2.5 mg/cm 2 or less. The alkali metal-containing substance or alkaline earth metal-containing substance is, for example, an oxide of lithium, sodium, potassium, beryllium, magnesium, or calcium, and they can be used alone or in combination. According to the present invention, the heating temperature in the oxidizing atmosphere is preferably within the range of 750 to 1650°C. This is because if the temperature is lower than 750°C, the oxidation rate of the silicon carbide sintered body is extremely slow and is not practical, whereas if it is higher than 1650°C, the oxidation rate of the silicon carbide sintered body is extremely high and it is difficult to control the desired film thickness. It is not only difficult to obtain an oxide film that is uniform and has good adhesion, but also because bubbles are generated between the film and the silicon carbide sintered body due to CO gas generated by oxidation of silicon carbide. This is because it is difficult to do so. According to the invention, it is advantageous for the oxidizing atmosphere to contain water vapor.
The reason for this is that by including water vapor in the atmosphere, oxidation of silicon carbide can be promoted, and an insulating film can be efficiently formed even at a relatively low temperature. Next, the present invention will be explained with reference to examples. Example 1 The silicon carbide sintered body is a pressureless sintered body containing 1.0% by weight of boron and 2.0% by weight of free carbon, and has a density of 3.1 g/cm 3 , and is a thin plate of 50 x 20 x 2 mm. A shaped piece was polished in advance and the surface was finished using a #200 grindstone. The silicon carbide sintered body was mixed with 2.0 g of calcium chloride.
was immersed in a suspension of 100 ml of a 1% alumina sol aqueous solution, and then placed in a dryer.
It was dried at ℃ for 1 hour. On the surface of the silicon carbide sintered body, about 0.13 mg/cm 2 of alumina sol in terms of aluminum oxide and about 0.25 mg/cm 2 in terms of calcium oxide are present.
cm2 of calcium chloride was present. Next, the silicon carbide sintered body was placed in a tubular furnace having an inner diameter of 40 mm and subjected to oxidation treatment. The oxidation treatment involves charging oxygen gas into a tube furnace at a ratio of 1/mm,
The test was carried out at 1400°C for 3 hours. The obtained oxide film was transparent and glass-like, with a thickness of about 3 μm, and had a smooth surface with almost no defects such as pinholes or microcracks observed. The insulation resistance of the silicon carbide sintered body having the oxide film was 3×10 12 Ω at an applied voltage of 100 V, and the withstand voltage was 1.7 KV. The above insulation resistance is JIS-
C-5012-7.3, withstand voltage JIS-C-2110-8.3
Measured based on. The Al 2 O 3 /SiO 2 molar ratio of this oxide film is
0.27, and X-ray diffraction measurement confirmed that it contained some cristobalite crystals. Example 2 The same method as Example 1 was carried out on the surface of a silicon carbide sintered body using a gas in which water vapor and oxygen were mixed at a ratio of approximately 1:1 as the oxidizing gas during the oxidation treatment. An oxide film was formed in the same manner as in Example 1. The thickness of the obtained oxide film was approximately 5 μm,
Similar to that obtained in Example 1, it had an extremely smooth surface with almost no defects. The characteristics of the oxide film were measured in the same manner as in Example 1.
Shown in the table. Example 3 An oxide film was formed using substantially the same method as in Example 1, but varying the temperature and time during the oxidation treatment. The properties and characteristics of the obtained oxide film were measured in the same manner as in Example 1 and are shown in Table 1. Example 4 An oxide film was obtained in the same manner as in Example 1, but using an aqueous alumina sol solution in which the melting point depressants or additives listed in Table 1 were dissolved. The amount of each substance present on the surface of the silicon carbide sintered body after drying, converted into oxide, and the characteristics of the oxide film obtained by the oxidation treatment were measured in the same manner as in Example 1. Shown in the table. Comparative Example 1 A silicon carbide sintered body whose surface was finished in the same manner as in Example 1 was charged into the tubular furnace used in Example 1, and
Oxidation treatment was performed under the same conditions as in Example 1. The obtained oxide film was white and opaque, and the insulation resistance was measured in the same manner as in Example 1 and found to be 2×10 7 Ω, which is extremely inappropriate as a substrate material. In addition, when this oxide film was subjected to X-ray diffraction measurement, it was confirmed that most of the film was cristobalite crystal. As described above, according to the present invention, the material has high thermal conductivity and has a coefficient of thermal expansion that is almost the same as that of silicon chips normally used for integrated circuits, making it extremely excellent as a material for highly integrated circuit substrates or IC packages. This will make it possible to supply substrates with different characteristics, and the effect of contributing to industry will be extremely large.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 酸化アルミニウムと二酸化珪素との共融生成
酸化物を主成分とする密着性に優れた絶縁性表面
被膜を有する炭化珪素質基板。 2 前記二酸化珪素は主として基板を構成する炭
化珪素の酸化によつて生成した二酸化珪素である
特許請求の範囲第1項記載の基板。 3 前記絶縁性被膜の膜厚は0.5〜25μmの範囲内
である特許請求の範囲第1あるいは2項記載の基
板。 4 前記絶縁性被膜に含有される酸化アルミニウ
ムと二酸化珪素はAl2O3/SiO2モル比が0.024〜
1.8の範囲内である特許請求の範囲第1〜3項の
いずれかに記載の基板。 5 前記絶縁性被膜は前記主成分である共融生成
酸化物のほかに融点降下剤を含有する特許請求の
範囲第1〜4項のいずれかに記載の基板。 6 前記融点降下剤はアルカリ金属酸化物あるい
はアルカリ土類金属酸化物のいずれか少なくとも
1種である特許請求の範囲第5項記載の基板。 7 前記絶縁性被膜中に含有される融点降下剤の
含有モル百分率は60%以下である特許請求の範囲
第5あるいは6項記載の基板。 8 前記基板の厚さは0.1〜30mmの範囲内である
特許請求の範囲第1〜7項のいずれかに記載の基
板。 9 炭化珪素焼結体表面にあらかじめアルミニウ
ム含有物と必要により添加される融点降下剤とを
塗布し、次いで酸化性雰囲気中で加熱して炭化珪
素焼結体表面を酸化せしめ、酸化アルミニウムと
二酸化珪素との共融生成酸化物を主成分とする絶
縁性被膜を生成せしめることを特徴とする密着性
に優れた絶縁性表面被膜を有する炭化珪素質基板
の製造方法。 10 前記酸化性雰囲気中における加熱温度は
750〜1650℃の範囲内である特許請求の範囲第9
項記載の製造方法。 11 前記絶縁性被膜の膜厚は0.5〜25μmの範囲
内である特許請求の範囲第9あるいは10項記載
の製造方法。 12 前記アルミニウム含有物はアルミナゾル、
金属アルミニウム、アルミニウム含有合金、酸化
アルミニウム、水酸化アルミニウム、アルミン酸
塩、アルミノ珪酸塩、リン酸アルミニウムあるい
は酢酸アルミニウムのなかから選ばれるいずれか
少なくとも1種である特許請求の範囲第9〜11
項のいずれかに記載の製造方法。 13 前記アルミニウム含有物の塗布量は酸化ア
ルミニウムに換算して0.004〜2.9mg/cm2の範囲内
である特許請求の範囲第9〜12項のいずれかに
記載の製造方法。 14 前記融点降下剤はアルカリ金属含有物ある
いはアルカリ土類金属含有物のいずれか少なくと
も1種である特許請求の範囲第9〜13項のいず
れかに記載の製造方法。 15 前記融点降下剤の塗布量は酸化物に換算し
て5mg/cm2以下である特許請求の範囲第9〜14
項のいずれかに記載の製造方法。
[Scope of Claims] 1. A silicon carbide substrate having an insulating surface coating with excellent adhesion, the main component of which is a eutectic oxide of aluminum oxide and silicon dioxide. 2. The substrate according to claim 1, wherein the silicon dioxide is mainly silicon dioxide produced by oxidizing silicon carbide constituting the substrate. 3. The substrate according to claim 1 or 2, wherein the thickness of the insulating film is within the range of 0.5 to 25 μm. 4 The aluminum oxide and silicon dioxide contained in the insulating film have an Al 2 O 3 /SiO 2 molar ratio of 0.024 to
1.8. The substrate according to any one of claims 1 to 3, which is within the range of 1.8. 5. The substrate according to any one of claims 1 to 4, wherein the insulating film contains a melting point depressant in addition to the eutectic oxide as the main component. 6. The substrate according to claim 5, wherein the melting point depressant is at least one of an alkali metal oxide and an alkaline earth metal oxide. 7. The substrate according to claim 5 or 6, wherein a molar percentage of the melting point depressant contained in the insulating film is 60% or less. 8. The substrate according to any one of claims 1 to 7, wherein the thickness of the substrate is within a range of 0.1 to 30 mm. 9 Preliminarily coat the surface of the silicon carbide sintered body with an aluminum-containing material and a melting point depressant added if necessary, and then heat in an oxidizing atmosphere to oxidize the surface of the silicon carbide sintered body, thereby forming aluminum oxide and silicon dioxide. A method for producing a silicon carbide substrate having an insulating surface coating with excellent adhesion, the method comprising producing an insulating coating mainly composed of an oxide produced by eutectic formation with a silicon carbide substrate. 10 The heating temperature in the oxidizing atmosphere is
Claim 9 is within the range of 750 to 1650°C
Manufacturing method described in section. 11. The manufacturing method according to claim 9 or 10, wherein the thickness of the insulating film is within the range of 0.5 to 25 μm. 12 The aluminum-containing material is alumina sol,
Claims 9 to 11 are at least one selected from metal aluminum, aluminum-containing alloy, aluminum oxide, aluminum hydroxide, aluminate, aluminosilicate, aluminum phosphate, and aluminum acetate.
The manufacturing method described in any of paragraphs. 13. The manufacturing method according to any one of claims 9 to 12, wherein the coating amount of the aluminum-containing material is within the range of 0.004 to 2.9 mg/cm 2 in terms of aluminum oxide. 14. The manufacturing method according to any one of claims 9 to 13, wherein the melting point depressant is at least one of an alkali metal-containing substance and an alkaline earth metal-containing substance. 15 Claims 9 to 14, wherein the applied amount of the melting point depressing agent is 5 mg/cm 2 or less in terms of oxide.
The manufacturing method described in any of paragraphs.
JP56209991A 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof Granted JPS58130546A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56209991A JPS58130546A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof
US06/451,940 US4499147A (en) 1981-12-28 1982-12-21 Silicon carbide substrates and a method of producing the same
US06/858,834 US4664946A (en) 1981-12-28 1986-04-29 Silicon carbide substrates and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209991A JPS58130546A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58130546A JPS58130546A (en) 1983-08-04
JPS6349903B2 true JPS6349903B2 (en) 1988-10-06

Family

ID=16582041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209991A Granted JPS58130546A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58130546A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330386A (en) * 1986-07-23 1988-02-09 日本特殊陶業株式会社 Manufacture of reaction-sintered silicon carbide heat-resistant parts
JP2736460B2 (en) * 1989-11-30 1998-04-02 京セラ株式会社 Package for storing semiconductor elements
JP2736457B2 (en) * 1989-11-27 1998-04-02 京セラ株式会社 Package for storing semiconductor elements
JP2736461B2 (en) * 1989-11-30 1998-04-02 京セラ株式会社 Package for storing semiconductor elements
JP2736458B2 (en) * 1989-11-27 1998-04-02 京セラ株式会社 Package for storing semiconductor elements
US20060234858A1 (en) * 2003-08-12 2006-10-19 Shuichi Ichikawa Silicon carbide based catalyst material and method for preparation thereof
FR2876497B1 (en) * 2004-10-13 2007-03-23 Commissariat Energie Atomique MGO-BASED COATING FOR THE ELECTRICAL INSULATION OF SEMICONDUCTOR SUBSTRATES AND METHOD OF MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JPS58130546A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
US4664946A (en) Silicon carbide substrates and a method of producing the same
JP3723753B2 (en) Method for producing a coating on a fire-resistant component and use of such a coating
ES2213273T3 (en) SILICON NITRIDE COATING COMPOSITIONS.
JPS6349903B2 (en)
JPS5830759B2 (en) Screen printing paste and thick film conductive circuits
US2882187A (en) Electrical heating element
JPS6410100B2 (en)
JPS5925754B2 (en) Adhesive for ceramics and its adhesion method
US3189476A (en) Metallizing process for ceramics
JPS6357396B2 (en)
JPH0143714B2 (en)
JPH0465011A (en) Copper conductive paste
JPS62176960A (en) Aluminum nitride sintered body with metal electrode and manufacture
JP2001052526A (en) Electric insulating member and manufacture thereof
JP2730794B2 (en) Conductor paste for aluminum nitride substrate
US5198265A (en) Method of coating an aluminum compound substrate with a composition of elemental titanium and an alkali metal halide, melting the coating, and rinsing the coated substrate
JP6407180B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JPH0219988B2 (en)
JPS6261549B2 (en)
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JPH0328825B2 (en)
JPH0131697B2 (en)
JPH03112874A (en) Junction between ceramic base and copper
JPH0585869A (en) Surface treatment of aluminum nitride ceramic
JPH0131698B2 (en)