JPH0131697B2 - - Google Patents
Info
- Publication number
- JPH0131697B2 JPH0131697B2 JP57197765A JP19776582A JPH0131697B2 JP H0131697 B2 JPH0131697 B2 JP H0131697B2 JP 57197765 A JP57197765 A JP 57197765A JP 19776582 A JP19776582 A JP 19776582A JP H0131697 B2 JPH0131697 B2 JP H0131697B2
- Authority
- JP
- Japan
- Prior art keywords
- thin plate
- silicon carbide
- ceramic
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 124
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 124
- 239000000758 substrate Substances 0.000 claims description 68
- 239000000919 ceramic Substances 0.000 claims description 53
- 238000010438 heat treatment Methods 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 21
- 238000003466 welding Methods 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- 229910052788 barium Inorganic materials 0.000 claims description 14
- 229910052790 beryllium Inorganic materials 0.000 claims description 14
- 229910052796 boron Inorganic materials 0.000 claims description 14
- 229910052793 cadmium Inorganic materials 0.000 claims description 14
- 229910052791 calcium Inorganic materials 0.000 claims description 14
- 238000010292 electrical insulation Methods 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 14
- 229910052700 potassium Inorganic materials 0.000 claims description 14
- 229910052708 sodium Inorganic materials 0.000 claims description 14
- 229910052712 strontium Inorganic materials 0.000 claims description 14
- 229910052787 antimony Inorganic materials 0.000 claims description 13
- 229910052785 arsenic Inorganic materials 0.000 claims description 13
- 229910052732 germanium Inorganic materials 0.000 claims description 13
- 229910052745 lead Inorganic materials 0.000 claims description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000007767 bonding agent Substances 0.000 claims description 11
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 10
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052863 mullite Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 229910052582 BN Inorganic materials 0.000 claims description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000000395 magnesium oxide Substances 0.000 claims description 5
- -1 sialon Chemical compound 0.000 claims description 5
- 229910052851 sillimanite Inorganic materials 0.000 claims description 5
- 229910052839 forsterite Inorganic materials 0.000 claims description 4
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052596 spinel Inorganic materials 0.000 claims description 4
- 239000011029 spinel Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 90
- 239000011133 lead Substances 0.000 description 19
- 229910004298 SiO 2 Inorganic materials 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 11
- 239000011777 magnesium Substances 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000005496 eutectics Effects 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 210000003298 dental enamel Anatomy 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 229910015365 Au—Si Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910021541 Vanadium(III) oxide Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000006023 eutectic alloy Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- XMFOQHDPRMAJNU-UHFFFAOYSA-N lead(II,IV) oxide Inorganic materials O1[Pb]O[Pb]11O[Pb]O1 XMFOQHDPRMAJNU-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
Description
本発明は、集積回路用基板あるいはICパツケ
ージ用材料として用いられる電子回路用炭化珪素
質基板の製造方法に係り、特に本発明は、炭化珪
素質薄板の表面にセラミツクス薄板が接合されて
なる電子回路用炭化珪素質基板の製造方法に関す
る。
近年、電子工業技術の進歩に伴い、電子機器に
対する高密度化あるいは演算機能の高速化が進め
られている。その結果、集積回路内における発熱
量が増加するため、集積回路の性能を確保し、高
い信頼性を維持することが困難になるという問題
が生じる。したがつて、集積回路用基板あるいは
ICパツケージ用材料としての電子回路用基板に
は電気的絶縁性、気密性、機械的強度などの特性
に加えて、放熱特性に優れることが要求されてい
る。
ところで、従来電子回路用基板としては種々の
ものが知られ、実用化されており、特に信頼性の
要求される用途に対しては、主としてアルミナ焼
結体基板(以下アルミナ焼結体基板を単にアルミ
ナ基板と称す)が使用されている。しかしなが
ら、アルミナ基板は熱伝導率が低く、集積回路内
において発生した熱の放散特性に劣るため、電子
機器の高密度化あるいは、演算機能の高速化を進
める上で極めて大きな障害となつており、また、
アルミナ基板は熱膨張率が通常集積回路として使
用されるシリコンチツプの熱膨張率と大きく異な
るため直接基板上にシリコンチツプを接着して使
用することが困難である。
前記熱の放散特性における問題を解決するため
に、従来ベリリアあるいはホーロー等を用いた基
板が検討されている。しかしながら、前者のベリ
リア基板はそのベリリアの有する毒性のために製
造および取扱いが困難でしかも高価である欠点を
有し、一方後者のホーロー基板は金属板を基材と
するためめ熱膨張率が大きく、またフリツトがド
グボーン構造になり易く、さらに印刷してからの
切断が困難であるばかりでなく、ホーローにクラ
ツクがはいるのでレーザートリミングができない
欠点があつた。
上述の如き欠点を解決するために、特開昭56−
66086号公報に、「炭化ケイ素を主成分とし、これ
に酸化ベリリウム、窒化ホウ素の少なくとも1種
を含む焼結体から成る電気絶縁用基体」に係る発
明が開示されている。しかしながら、この電気絶
縁用基体はホツトプレス法で焼結されるため、量
産が困難でしかも高価であり、さらに酸化ベリリ
ウムを含有する場合には、ベリリウムの毒性によ
る問題を有している。
また、本発明者らは炭化珪素焼結体を電子回路
用基板として適用すべく、炭化珪素焼結体に電気
的絶縁性を付与する方法について種々研究し、先
に特願昭56−209991号により、「酸化アルミニウ
ムと二酸化珪素との共融生成酸化物を主成分とす
る密着性に優れた絶縁性表面被膜を有する炭化珪
素質基板」およびその製造方法を、特願昭56−
209992号により、「炭化珪素焼結体の表面にSiO2
とP2O5、B2O3、GeO2、As2O3、Sb2O3、Bi2O3、
V2O3、ZnO、PbO、Pb3O4、PbO2、CdO、
Na2O、K2O、Li2O、CaO、MgO、BaO、SrOの
なかから選ばれるいずれか少なくとも1種との共
融生成酸化物を主成分とする絶縁性被膜を有する
炭化珪素質基板」およびその製造方法を、また特
願昭57−48958号により、「炭化珪素質基板上に下
記の溶着層(イ)を有し、前記溶着層(イ)上に下記の溶
着層(ロ)を有することを特徴とする印加電圧が25V
の場合の絶縁抵抗値が3×109Ω以上である炭化
珪素質基板。(イ)酸化アルミニウムと二酸化珪素と
を主成分とする溶着層。(ロ)アルミニウム、珪素、
リン、ホウ素、ゲルマニウム、ヒ素、アンチモ
ン、ビスマス、バナジウム、亜鉛、カドミウム、
鉛、ナトリウム、カリウム、リチウム、カルシウ
ム、マグネシウム、バリウム、ストロンチウムよ
り選ばれるいずれか少なくとも2種の酸化物を主
成分とする溶着層。」およびその製造方法に係る
発明を提案した。
ところで、酸化物絶縁性被膜層を形成すること
により電気絶縁性を付与した炭化珪素質基板は炭
化珪素が半導体的な特性を有しており、アルミナ
基板に比較して誘電率の影響を受け易く信号伝搬
速度が遅くなるため、前記酸化物絶縁性被膜層を
厚くして静電容量を小さくすることが要求されて
いる。しかしながら、前記酸化物絶縁性被膜層は
余り厚くすると被膜層と炭化珪素との熱膨張率の
差により、クラツク等の欠陥が生じ易く、場合に
よつては剥離するため、欠陥のない厚い酸化物絶
縁性被膜層を形成することは困難であつた。
ところで、電子回路用基板には他の回路部品と
の接続用として一般にリードピンが設けられる。
前記リードピンには取扱い時において比較的大き
な応力が加わる場合があるため、容易に外れるこ
とのない程度の接合強度が要求される。しかしな
がら、前記応力はリードピンの接合部付近に集中
するため、前述の如き酸化物絶縁性被膜層にリー
ドピンを接合すると、被膜層と炭化珪素の接合面
から破壊することが多く、強い接合強度を有する
リードピンを設けることは困難であつた。
本発明は、従来知られた炭化珪素質基板製造技
術の有する諸欠点を除去改善した電子回路用炭化
珪素質基板の製造方法を提供することを目的と
し、
(a) 炭化珪素質薄板を酸化性雰囲気中で加熱する
手段
(b) 炭化珪素質薄板の表面にAl、Si、P、B、
Ge、As、Sb、Bi、V、Zn、Cd、Pb、Na、
K、Li、Be、Ca、Mg、Ba、SrあるいはZrよ
り選ばれる元素あるいはそれらの化合物のいず
れか少なくとも1種を主成分とする組成物を塗
布した後、炭化珪素質薄板を酸化性雰囲気中で
加熱する手段
上記(a)、(b)のいずれかの手段により炭化珪素質
薄板の表面に酸化被膜層を形成させ、次いで酸化
被膜層上あるいはセラミツクス薄板の少なくとも
いずれかにAl、Si、P、B、Ge、As、Sb、Bi、
V、Zn、Cd、Pb、Na、K、Li、Be、Ca、Mg、
Ba、SrあるいはZrより選ばれる元素あるいはそ
れらの化合物のいずれか少なくとも1種を含有す
る接合剤組成物を塗布した後、炭化珪素質薄板と
セラミツクス薄板を重ねて250〜1200℃の温度範
囲内に加熱することにより、炭化珪素質薄板とセ
ラミツクス薄板との間にAl、Si、P、B、Ge、
As、Sb、Bi、V、Zn、Cd、Pb、Na、K、Li、
Be、Ca、Mg、Ba、SrあるいはZrより選ばれる
いずれか少なくとも2種の酸化物を主成分とする
溶着層を形成せしめて接合させることを特徴とす
る電気的絶縁性に優れた電子回路用炭化珪素質基
板の製造方法によつて前記目的を達成することが
できる。
次に本発明を詳細に説明する。
本発明者らは前記炭化珪素質基板の電気的絶縁
性、静電特性およびリードピンの接合性について
種々研究を重ねた結果、炭化珪素質薄板にセラミ
ツクス薄板を接合せしめて第1図に示す如き積層
構造とすることにより、前記諸欠点を解決するこ
とのできることを新規に知見し、本発明を完成し
た。
すなわち、炭化珪素質基板にセラミツクス薄板
を接合せしめた積層構造とすることにより、極め
て安定した電気的絶縁性、十分に低い静電容量お
よび優れたリードピンとの接合性等の特性を有す
る炭化珪素質基板となすことのできることに想到
し、電子回路用基板として極めて優れた特性を有
する炭化珪素質基板を得た。
本発明の製造方法によつて得られる炭化珪素質
基板は炭化珪素質薄板の表面に106Ωcm以上の体
積固有抵抗率を有するセラミツク薄板が接合され
てなる積層構造を有することが必要である。その
理由は、炭化珪素質薄板の表面に106Ωcm以上の
体積固有抵抗率を有するセラミツクス薄板が接合
されてなる積層構造を有する炭化珪素質基板は、
高い印加電圧の条件下においても信頼性に優れた
電気的絶縁性を有し、しかも静電容量が小さく、
さらに他の回路部品との接続用として設けられる
リードピンとの接合性に極めて優れるからであ
る。また前記セラミツクス薄板が106Ωcm以上の
体積固有抵抗率を有するものであることが必要な
理由は、前記炭化珪素質基板には通常、印刷、焼
着あるいはエツチング等の手段によつて電気回路
が設けられるが、前記セラミツクス薄板の体積固
有抵抗率が106Ωcmより低いと電気的絶縁性を維
持することができず、回路内において短絡状態と
なるため回路機能が正常に働かないからであり、
より高い信頼性が要求されるような場合には108
Ωcm以上の体積固有抵抗率を有するセラミツクス
薄板であることが有利である。
前記の基板を主として構成する炭化珪素質薄板
とセラミツクス薄板はAl、Si、P、B、Ge、
As、Sb、Bi、V、Zn、Cd、Pb、Na、K、Li、
Be、Ca、Mg、Ba、SrあるいはZrより選ばれる
いずれか少なくとも1種の酸化物を主成分とする
接合層によつて強固に接合されている。
前記接合層は酸化被膜層とAl、Si、P、B、
Ge、As、Sb、Bi、V、Zn、Cd、Pb、Na、K、
Li、Be、Ca、Mg、Ba、SrあるいはZrより選ば
れるいずれか少なくとも2種の酸化物を主成分と
する溶着層とからなり、酸化被膜層は炭化珪素質
薄板の表面に形成されており、溶着層は酸化被膜
層とセラミツクス薄板を溶着させてなるものであ
ることが好ましい。その理由は、前記酸化被膜層
は炭化珪素質薄板の表面を酸化せしめることによ
つて形成されるものであり、炭化珪素質薄板と入
り組んだ遷移層によつて炭化珪素質薄板と極めて
強固に接合されており、さらに前記溶着層を構成
する酸化物との濡れ性が極めて良好で、酸化被膜
層と溶着層とが共融層を形成して一体化するた
め、炭化珪素質薄板とセラミツクス薄板との接合
性を著しく良好にすることができるからである。
前記接合層の熱膨張係数は2.9×10-6〜4.9×
10-6/℃の範囲内であることが有利である。その
理由は前記熱膨張係数が前記範囲内でないと、炭
化珪素質薄板と前記接合層との熱膨張差が大き
く、温度サイクルあるいはサーマルシヨツクなど
による熱ストレスによつて接合層が破壊され易
く、炭化珪素質薄板とセラミツクス薄板との接合
性に劣るためである。
前記接合層の軟化点は400℃以上であることが
好ましい。その理由はチツプを基板に載置して固
定するダイボンデイング工程において一般的に用
いられる放熱性、耐熱性およびオーミツクコンタ
クト性などに優れたAu―Si共晶合金法の作業温
度が400℃前後であること、また基板の気密封止
工程において広く用いられる電気的絶縁性および
金属、ガラス、セラミツクスなどの濡れ性に優れ
た低融点ガラス法の作業温度が400〜500℃である
ことから、前記記接合層の軟化点が400℃以上で
あれば前記炭化珪素質薄板とセラミツクス薄板と
の接合性を劣化させることなくチツプをダイボン
デイングしたり、基板の気密封止を行なうことが
できるからである。
前記酸化被膜層の膜厚は0.01〜25μmの範囲内
であることが有利である。その理由は前記膜厚が
0.01μmより薄いと入り組んだ遷移層の形成が不
充分になるばかりでなく、前記酸化被膜層と溶着
層との共融層の形成も不充分になるため、炭化珪
素質薄板と接合層との接合性をそれ程改善するこ
とができず、一方25μmより厚い酸化被膜層は形
成せしめるのに極めて長時間を要し、効率的でな
いからであり、なかでも0.1〜10μmの範囲内で最
適な結果が得られる。
前記酸化被膜層は比較的厚い膜厚でしかも緻密
さが要求されるような場合には酸化アルミニウム
を含有させて前記酸化被膜層が形成される際のク
リストバライト化を防止することが有利であり、
前記酸化被膜層に含有される酸化アルミニウムと
二酸化珪素のAl2O3/SiO2モル比を0.024〜1.8の
範囲内とすることが有効である。
前記酸化被膜層と溶着層よりなる接合層の厚さ
は1〜500μmの範囲内であることが好ましい。そ
の理由は、前記接合層の厚さが1μmより薄いと前
記炭化珪素質薄板とセラミツクス薄板との接合強
度を十分に得ることができず、一方500μmより厚
いと接合層と炭化珪素質薄板あるいは接合層とセ
ラミツクス薄板との熱膨張率の差に基づく影響が
顕著になり易く、セラミツクス薄板と炭化珪素質
薄板が剥離し易くなるからであり、前記接合層の
厚さは3〜200μmの範囲内で最も好適な結果が得
られる。
前記セラミツクス薄板は電気的絶縁性に優れ、
かつ誘電率の低いセラミツクスであることが重要
であり、アルミナ、ムライト、シリマナイト、コ
ージエライト、ジルコニア、ステアタイト、スピ
ネル、フオルステライト、マグネシア、リシア、
チタニア、サイアロン、窒化珪素あるいは窒化ホ
ウ素より選ばれるいずれか少なくとも1種を主成
分とするセラミツクスであることが好ましく、な
かでもムライト、シリマナイト、コージエライ
ト、サイアロン、窒化珪素等はその熱膨張率が炭
化珪素の熱膨張率に比較的近いことから温度サイ
クルあるいはサーマルシヨツクなどによつて生ず
る熱ストレスが小さく、炭化珪素質薄板との接合
性に優れるためより好適である。
前記セラミツクス薄板の厚さは0.05mm以上であ
ることが好ましい。その理由はセラミツクス薄板
の厚さは電子部品の小型化や軽量化を進めたり、
放熱特性を向上せしめる上でなるべく薄い方が好
ましいが、その厚さが0.05mmより薄いと、印加電
圧が高い場合における電気的絶縁性が低下した
り、静電容量が大きくなり、基板としての機能性
が劣化するからである。
前記セラミツクス薄板は基板上にチツプが載置
されるようチツプ載置用開口部を有するものであ
ることが好ましい。その理由は、チツプ載置用開
口部を有するセラミツクス薄板が炭化珪素質薄板
の表面に接合された基板には、チツプがセラミツ
クス薄板を介することなく炭化珪素質薄板の表面
に直接接合されることからチツプで発生した熱は
直ちに炭化珪素質薄板に伝わり優れた放熱特性を
示し、また炭化珪素質薄板とチツプの熱膨張率が
ほぼ同じであることから温度サイクルあるいは、
サーマルシヨツクなどによる熱ストレスが殆ど生
じないためチツプが剥離したり、破損したりする
ことがなく極めて信頼性の高い接合を得ることの
できる利点を有するからである。
本発明において、前記炭化珪素質薄板の厚さは
0.1〜30mmの範囲内であることが有利である。そ
の理由は、前記炭化珪素質薄板の厚さは電子部品
の小型化を進めたり、放熱性を向上せしめる上で
なるべく薄いことが好ましいが、その厚さが0.1
mmより薄いと、炭化珪素質薄板自体の強度が弱く
取扱い性に劣り、一方30mmより厚いと電子部品の
小型化が困難であるばかりでなく、基板に要する
費用が高くなるため不経済であるからである。
以下に、本発明の炭化珪素質基板の製造方法に
ついて詳しく説明する。
本発明によれば、(a)炭化珪素質薄板を酸化性雰
囲気中で加熱する手段、(b)炭化珪素質薄板の表面
にAl、Si、P、B、Ge、As、Sb、Bi、V、Zn、
Cd、Pb、Na、K、Li、Be、Ca、Mg、Ba、Sr
あるいはZrより選ばれる元素あるいはそれらの
化合物のいずれか少なくとも1種を主成分とする
組成物を塗布した後、炭化珪素質薄板を酸化性雰
囲気中で加熱する手段、上記(a)、(b)のいずれかの
手段により炭化珪素質薄板の表面に酸化被膜層を
形成させ、次いで酸化被膜層上あるいはセラミツ
クス薄板の少なくともいずれかにAl、Si、P、
B、Ge、As、Sb、Bi、V、Zn、Cd、Pb、Na、
K、Li、Be、Ca、Mg、Ba、SrあるいはZrより
選ばれる元素あるいはそれらの化合物のいずれか
少なくとも1種を含有する接合剤組成物を塗布し
た後、炭化珪素質薄板とセラミツクス薄板を重ね
て250〜1200℃の温度範囲内に加熱することによ
り、炭化珪素質薄板とセラミツクス薄板との間に
Al、Si、P、B、Ge、As、Sb、Bi、V、Zn、
Cd、Pb、Na、K、Li、Be、Ca、Mg、Ba、Sr
あるいはZrより選ばれるいずれか少なくとも2
種の酸化物を主成分とする溶着層を形成せしめて
接合させることによつて電気的絶縁性に優れた電
子回路用炭化珪素質基板が製造される。
本発明によれば、炭化珪素質薄板を酸化性雰囲
気中で加熱して酸化被膜層を形成することが必要
である。その理由は、炭化珪素質薄板を酸化性雰
囲気中で加熱することによつて、炭化珪素質薄板
の表面に入り組んだ遷移層を有する酸化被膜層を
形成して溶着層を構成する酸化物との濡れ性を改
善することができ、酸化被膜層と溶着層とを共融
層によつて一体化させることができるため、極め
て均一でしかも密着性に優れた接合層となすこと
ができるからである。
前記炭化珪素質薄板を酸化性雰囲気中で加熱す
ることによつて、炭化珪素質薄板と接合層との密
着性が著しく改善される機構は、炭化珪素質薄板
の表面に付着している異物、例えば遊離炭素等の
不純物が除去されること、あるいは炭化珪素質薄
板の表面が酸化されることによつてミクロ的に粗
化された状態となり、接合層との接合面積を著し
く増大させることができ、炭化珪素質薄板と接合
層とが入り組んだ遷移層によつて接合されること
によるものと推察される。
本発明によれば、炭化珪素質薄板の表面に酸化
被膜層を形成させる手段としては、前記(a)あるい
は(b)のいずれの手段をも有利に適用できるが、特
に均一で極めて緻密な酸化被膜層が要求される場
合には(b)の手段によることが必要である。(b)の手
段によつて均一で極めて緻密な酸化被膜層を形成
できる機構は、炭化珪素質薄板の表面に前記組成
物を塗布した後、酸化性雰囲気中で加熱すること
によつて炭化珪素質薄板の表面に前記組成物を酸
化物の状態で存在させて炭化珪素質薄板の表面を
酸化せしめることができ、炭化珪素質薄板の酸化
によつて生成するSiO2のクリストバライト化を
防止することができることによるものと考えられ
る。なお、さらに均一で緻密な酸化被膜層が要求
されるような場合には、前記SiO2のクリストバ
ライト化を防止する効果が顕著な酸化アルミニウ
ムを共融させることが有効であり、前記酸化被膜
層が形成される際の酸化性雰囲気中でアルミニウ
ムを酸化物の状態で供給できるAlあるいはその
化合物のいずれか少なくとも1種を含有する組成
物をAl2O3に換算して0.004〜2.9mg/cm2の割合で
塗布することが有利である。前記Alあるいはそ
の化合物としては種々の物質を使用することがで
きるが、なかでもアルミナゾルは極めて微細で反
応性の高い酸化アルミニウムを供給することがで
き最も好適である。
本発明によれば、前記酸化性雰囲気中における
加熱温度750〜1650℃の範囲内であることが好ま
しく、少なくとも10分間前記範囲内の温度に加熱
することが有利である。その理由は、前記加熱温
度が750℃より低いと炭化珪素質薄板の酸化速度
が遅く効率的に酸化被膜層を生成せしめることが
困難であり、一方1650℃より高いと酸化速度が著
しく速く酸化被膜層を目的とする膜厚に制御する
ことが困難であるばかりでなく炭化珪素の酸化の
際に生ずるCOガス等によつて前記酸化被膜層と
炭化珪素質薄板の間に気泡が生成するため密着性
が劣化するからである。また少なくとも10分間前
記範囲内の温度に加熱することが有利である理由
は加熱時間が10分間より短かいと充分に信頼性の
高い酸化被膜層を得ることが困難であるからであ
る。なお、前記加熱温度は900〜1450℃の範囲で
最もよい結果を得ることができる。
本発明によれば、酸化被膜層上あるいはセラミ
ツクス薄板の少なくともいずれかにAl、Si、P、
B、Ge、As、Sb、Bi、V、Zn、Cd、Pb、Na、
K、Li、Be、Ca、Mg、Ba、SrあるいはZrより
選ばれる元素あるいはそれらの化合物のいずれか
少なくとも1種を含有する接合剤組成物を塗布し
た後、炭化珪素質薄板とセラミツクス薄板を重ね
て250〜1200℃の温度範囲内に加熱することによ
り、炭化珪素質薄板とセラミツクス薄板との間に
Al、Si、P、B、Ge、As、Sb、Bi、V、Zn、
Cd、Pb、Na、K、Li、Be、Ca、Mg、Ba、Sr
あるいはZrより選ばれるいずれか少なくとも2
種の酸化物を主成分とする溶着層を形成せしめて
接合させることによつて電気的絶縁性に優れた電
子回路用炭化珪素質基板を製造することができ
る。
前記溶着層を形成せしめる際の加熱温度を250
〜1200℃の範囲内とする理由は、前記温度が250
℃より低いと酸化被膜層と溶着層とを相互に共融
せしめて均一な接合層となすことが困難であり、
一方1200℃より高いと接合剤組成物より生成する
酸化物の粘性が著しく低下するため均一な接合層
となすことが困難になるからである。なお、前記
加熱温度は300〜1100℃の範囲内で最もよい結果
を得ることができる。
本発明によれば、前記セラミツクス薄板はアル
ミナ、ムライト、シリマナイト、ジルコニア、ス
テアタイト、スピネル、フオルステライト、マグ
ネシア、リシア、チタニア、サイアロン、窒化珪
素あるいは窒化ホウ素より選ばれるいずれか少な
くとも1種を主成分とするとセラミツクスである
ことが好ましいが、特に窒化珪素あるいは窒化ホ
ウ素を主成分とするセラミツクス薄板を使用する
に際しては、あらかじめそれらの表面を酸化処理
して酸化物被膜層を形成させてから使用すること
が有利である。
本発明によれば、基板上にチツプが載置される
ようチツプ載置用開口部を有するセラミツクス薄
板を炭化珪素質薄板の表面に接合することが好ま
しいが、前記チツプ載置用開口部を有するセラミ
ツクス薄板は、例えばグリーンシートを打抜きな
どいわゆる生加工した後焼成する方法、チツプ載
置用開口部を有する生成形体を成形することので
きる押し型で成形した後焼成する方法、あるいは
一旦焼成された薄板を超音波加工法などにより加
工する方法によつて製造することができる。
なお、本発明によれば、さらに高密度化するこ
とを目的として前記セラミツクス薄板の上にさら
に接合層を介してセラミツクス薄板を2枚以上積
層した構造とすることもできる。
次に本発明を実施例について説明する。
実施例 1
炭化珪素質薄板はホウ素を1.0重量%、遊離炭
素を2.0重量%含有し、3.1g/cm3の密度を有する
炭化珪素無加圧焼結体であつて、30×30×2mmの
薄板状のものをあらかじめポリツシング加工し、
最終的に#1200砥石で表面仕上げをし、次いでア
セトン中で煮沸して脱脂処理したものを使用し
た。
塩化カルシウム1.6gをアルミナゾル1重量%水
溶液100mlに溶解させた水溶液中に前記炭化珪素
質薄板を浸漬した後、乾燥器中に装入し110℃で
1時間乾燥した。前記炭化珪素質薄板の表面には
Al2O3に換算して約0.04mg/cm2のアルミナゾルと
CaOに換算して約0.07mg/cm2の塩化カルシウムが
存在していた。
次いで、前記炭化珪素質薄板を内径が70mmの管
状炉に装入し酸化処理を行なつた。前記酸化処理
は酸素ガスを3l/minの割合で前記管状炉中へ装
入し1400℃で1時間加熱することにより行なつ
た。
得られた酸化被膜層は透明なガラス状であり、
その膜厚は約0.9μmで平滑な表面性状を有してい
た。なお、この酸化被膜層のAl2O3/SiO2モル比
は0.30であつた。
さらに、前記酸化被膜層上にSiO2とAl2O3と
PbOとがモル比で72:10:15に配合された組成物
を主成分とする接合剤組成物をスクリーン印刷法
によつてセラミツクス薄板の接合される面に塗布
し、120℃で30分間乾燥した。
前記炭化珪素質薄板に30×30×1mmの薄板状で
第2図に示した如きチツプ載置用開口部を有する
ムライト薄板を重ね、焼成炉に装入し10℃/min
で昇温し、最高850℃で30分間保持した後室温ま
で徐冷し、第1図に示した如き積層構造を有する
炭化珪素質基板を得た。
得られた炭化珪素質基板の接合層の厚さは約
30μmであり、ピンホール等の欠陥もほとんど観
察されず、前記炭化珪素質薄板とムライト薄板は
極めて強固に密着していた。
前記炭化珪素質基板のムライト薄板が接合され
た箇所における絶縁抵抗は印加電圧が100Vの場
合1014Ω以上、耐電圧は13KV、静電容量は
0.9PFであつた。なお、前記絶縁抵抗はJIS―C
―5012の7.3に耐電圧はJIS―C―2110の8.3に基
づいて測定し、静電容量は第3図に示す如く、銀
ペーストを用いてムライト薄板上に測定用の電極
を印刷し、1MHzの周波数における両電極間の静
電容量を測定した。
実施例 2
実施例1と同様にして表面仕上げおよび脱酸処
理を施した炭化珪素質薄板を実施例1で使用した
管状炉中に装入し、実施例1と同様の条件で酸化
処理した。前記処理によつて炭化珪素質薄板の表
面に厚さ約0.05μmのSiO2被膜よりなる酸化被膜
層を得た。
次いで、実施例1と同様にして炭化珪素薄板に
ムライト薄板を接合した。
得られた炭化珪素質基板の特性は実施例1と同
様の方法で測定し、第1表に示した。
The present invention relates to a method for manufacturing a silicon carbide substrate for electronic circuits used as a substrate for integrated circuits or as a material for IC packages, and in particular, the present invention relates to a method for producing a silicon carbide substrate for electronic circuits, which is used as a material for integrated circuit boards or IC packages. The present invention relates to a method of manufacturing a silicon carbide substrate for use. 2. Description of the Related Art In recent years, with the progress of electronic industrial technology, electronic devices are becoming more densely packed or have higher speed calculation functions. As a result, the amount of heat generated within the integrated circuit increases, resulting in a problem that it becomes difficult to ensure the performance of the integrated circuit and maintain high reliability. Therefore, integrated circuit boards or
Electronic circuit boards used as materials for IC packages are required to have excellent heat dissipation properties in addition to properties such as electrical insulation, airtightness, and mechanical strength. By the way, various types of substrates for electronic circuits have been known and put into practical use, and for applications that require particularly high reliability, alumina sintered substrates (hereinafter simply referred to as alumina sintered substrates) are mainly used. (referred to as an alumina substrate) is used. However, alumina substrates have low thermal conductivity and poor dissipation properties for heat generated within integrated circuits, making them extremely difficult to increase the density of electronic devices and increase the speed of arithmetic functions. Also,
Since the coefficient of thermal expansion of an alumina substrate is significantly different from that of silicon chips normally used for integrated circuits, it is difficult to use the alumina substrate by bonding silicon chips directly onto the substrate. In order to solve the above-mentioned problem in heat dissipation characteristics, substrates using beryllia, enamel, or the like have been considered. However, the former beryllia substrate has the disadvantage that it is difficult and expensive to manufacture and handle due to the toxicity of beryllia, while the latter enamel substrate has a high coefficient of thermal expansion because it is based on a metal plate. In addition, the frit tends to form a dogbone structure, which makes it difficult to cut after printing, and cracks form in the enamel, making laser trimming impossible. In order to solve the above-mentioned drawbacks,
Publication No. 66086 discloses an invention related to "an electrically insulating base made of a sintered body containing silicon carbide as a main component and containing at least one of beryllium oxide and boron nitride." However, since this electrically insulating substrate is sintered by a hot press method, it is difficult to mass produce and is expensive, and furthermore, when it contains beryllium oxide, there are problems due to the toxicity of beryllium. In addition, in order to apply silicon carbide sintered bodies as substrates for electronic circuits, the present inventors have conducted various studies on methods of imparting electrical insulation properties to silicon carbide sintered bodies, and have previously filed Japanese Patent Application No. 56-209991. ``Silicon carbide substrate having an insulating surface film with excellent adhesion, the main component of which is a eutectic oxide of aluminum oxide and silicon dioxide'' and its manufacturing method were published in a patent application filed in 1983.
No. 209992, “SiO 2 on the surface of silicon carbide sintered body
and P 2 O 5 , B 2 O 3 , GeO 2 , As 2 O 3 , Sb 2 O 3 , Bi 2 O 3 ,
V2O3 , ZnO, PbO , Pb3O4 , PbO2 , CdO,
A silicon carbide substrate having an insulating film mainly composed of an oxide formed by eutectic formation with at least one selected from Na 2 O, K 2 O, Li 2 O, CaO, MgO, BaO, and SrO. ” and its manufacturing method, and in Japanese Patent Application No. 57-48958, “The following welding layer (a) is provided on a silicon carbide substrate, and the following welding layer (b) is provided on the welding layer (a). The applied voltage is 25V.
A silicon carbide substrate whose insulation resistance value is 3×10 9 Ω or more. (a) A welding layer whose main components are aluminum oxide and silicon dioxide. (b) Aluminum, silicon,
Phosphorus, boron, germanium, arsenic, antimony, bismuth, vanadium, zinc, cadmium,
A welding layer whose main component is at least two oxides selected from lead, sodium, potassium, lithium, calcium, magnesium, barium, and strontium. ” and a method for producing the same. By the way, in silicon carbide substrates that have been given electrical insulation by forming an oxide insulating film layer, silicon carbide has semiconductor-like properties and is more susceptible to the dielectric constant than an alumina substrate. Since the signal propagation speed becomes slow, it is required to increase the thickness of the oxide insulating film layer to reduce the capacitance. However, if the oxide insulating coating layer is too thick, defects such as cracks are likely to occur due to the difference in coefficient of thermal expansion between the coating layer and silicon carbide, and in some cases it may peel off. It was difficult to form an insulating coating layer. By the way, electronic circuit boards are generally provided with lead pins for connection with other circuit components.
Since a relatively large stress may be applied to the lead pin during handling, it is required to have a bonding strength that does not easily come off. However, since the stress is concentrated near the joint of the lead pin, when the lead pin is joined to the oxide insulating film layer as described above, it often breaks at the joint surface between the film layer and silicon carbide, and the bond strength is high. It was difficult to provide lead pins. An object of the present invention is to provide a method for manufacturing a silicon carbide substrate for electronic circuits that eliminates various drawbacks of conventionally known silicon carbide substrate manufacturing techniques, and includes the following steps: (a) A silicon carbide thin plate is oxidized Means for heating in atmosphere (b) Al, Si, P, B,
Ge, As, Sb, Bi, V, Zn, Cd, Pb, Na,
After applying a composition containing at least one element selected from K, Li, Be, Ca, Mg, Ba, Sr, or Zr as a main component or a compound thereof, the silicon carbide thin plate is placed in an oxidizing atmosphere. An oxide film layer is formed on the surface of the silicon carbide thin plate by any of the means (a) and (b) above, and then Al, Si, P is formed on the oxide film layer or at least on the ceramic thin plate. , B, Ge, As, Sb, Bi,
V, Zn, Cd, Pb, Na, K, Li, Be, Ca, Mg,
After applying a bonding agent composition containing at least one element selected from Ba, Sr, or Zr or a compound thereof, the silicon carbide thin plate and the ceramic thin plate are stacked and heated within a temperature range of 250 to 1200°C. By heating, Al, Si, P, B, Ge,
As, Sb, Bi, V, Zn, Cd, Pb, Na, K, Li,
For electronic circuits with excellent electrical insulation, characterized by forming and bonding a welding layer mainly composed of at least two oxides selected from Be, Ca, Mg, Ba, Sr, or Zr. The above object can be achieved by a method of manufacturing a silicon carbide substrate. Next, the present invention will be explained in detail. The inventors of the present invention have repeatedly conducted various studies on the electrical insulation properties, electrostatic properties, and bondability of lead pins of the silicon carbide substrate, and as a result, we have created a laminated structure as shown in FIG. 1 by bonding a ceramic thin plate to a silicon carbide thin plate. The present invention was completed based on the new finding that the above-mentioned drawbacks can be solved by adopting a new structure. In other words, by creating a laminated structure in which a thin ceramic plate is bonded to a silicon carbide substrate, a silicon carbide substrate with characteristics such as extremely stable electrical insulation, sufficiently low capacitance, and excellent bondability with lead pins is created. We have come up with ideas for what can be done with the substrate, and have obtained a silicon carbide substrate that has extremely excellent properties as a substrate for electronic circuits. The silicon carbide substrate obtained by the manufacturing method of the present invention must have a laminated structure in which a ceramic thin plate having a specific volume resistivity of 10 6 Ωcm or more is bonded to the surface of a silicon carbide thin plate. The reason is that a silicon carbide substrate with a laminated structure in which a ceramic thin plate having a volume resistivity of 10 6 Ωcm or more is bonded to the surface of a silicon carbide thin plate,
It has highly reliable electrical insulation even under high applied voltage conditions, and has low capacitance.
Furthermore, it has excellent bondability with lead pins provided for connection with other circuit components. Further, the reason why the ceramic thin plate needs to have a specific volume resistivity of 10 6 Ωcm or more is that an electric circuit is usually formed on the silicon carbide substrate by means such as printing, baking, or etching. However, if the specific volume resistivity of the ceramic thin plate is lower than 10 6 Ωcm, electrical insulation cannot be maintained and a short circuit will occur in the circuit, causing the circuit function to not work properly.
10 8 in cases where higher reliability is required
Advantageously, it is a ceramic sheet with a specific volume resistivity of Ωcm or more. The silicon carbide thin plates and ceramic thin plates that mainly constitute the substrate are Al, Si, P, B, Ge,
As, Sb, Bi, V, Zn, Cd, Pb, Na, K, Li,
They are firmly bonded by a bonding layer whose main component is at least one oxide selected from Be, Ca, Mg, Ba, Sr, or Zr. The bonding layer includes an oxide film layer and Al, Si, P, B,
Ge, As, Sb, Bi, V, Zn, Cd, Pb, Na, K,
The oxide film layer is formed on the surface of the silicon carbide thin plate, and consists of a welding layer whose main component is at least two oxides selected from Li, Be, Ca, Mg, Ba, Sr, or Zr. Preferably, the welding layer is formed by welding an oxide film layer and a ceramic thin plate. The reason for this is that the oxide film layer is formed by oxidizing the surface of the silicon carbide thin plate, and is extremely strongly bonded to the silicon carbide thin plate through the intricate transition layer. Furthermore, the wettability with the oxide constituting the welding layer is extremely good, and the oxide film layer and the welding layer form a eutectic layer and are integrated, so the silicon carbide thin plate and the ceramic thin plate are bonded together. This is because it is possible to significantly improve the bonding properties. The thermal expansion coefficient of the bonding layer is 2.9×10 -6 ~4.9×
Advantageously, it is in the range 10 -6 /°C. The reason for this is that if the coefficient of thermal expansion is not within the above range, the difference in thermal expansion between the silicon carbide thin plate and the bonding layer will be large, and the bonding layer will be easily destroyed by thermal stress caused by temperature cycles or thermal shock, resulting in carbonization. This is because the bondability between the silicon thin plate and the ceramic thin plate is poor. The softening point of the bonding layer is preferably 400°C or higher. The reason for this is that the working temperature of the Au-Si eutectic alloy method, which has excellent heat dissipation, heat resistance, and ohmic contact properties and is commonly used in the die bonding process in which chips are placed and fixed on a substrate, is around 400℃. In addition, the working temperature of the low melting point glass method, which is widely used in the hermetic sealing process of substrates and has excellent electrical insulation and wettability for metals, glass, ceramics, etc., is 400 to 500 °C. If the softening point of the bonding layer is 400° C. or higher, it is possible to die bond a chip or hermetically seal a substrate without deteriorating the bonding properties between the silicon carbide thin plate and the ceramic thin plate. . Advantageously, the thickness of the oxide layer is in the range of 0.01 to 25 μm. The reason is that the film thickness is
If the thickness is less than 0.01 μm, not only will the formation of an intricate transition layer be insufficient, but also the formation of a eutectic layer between the oxide film layer and the welding layer will be insufficient. This is because bonding properties cannot be significantly improved, while oxide layers thicker than 25 μm take a very long time to form and are not efficient, with optimal results being achieved within the range of 0.1 to 10 μm. can get. When the oxide film layer is required to be relatively thick and dense, it is advantageous to contain aluminum oxide to prevent cristobalite formation when the oxide film layer is formed.
It is effective that the Al 2 O 3 /SiO 2 molar ratio of aluminum oxide and silicon dioxide contained in the oxide film layer is within the range of 0.024 to 1.8. The thickness of the bonding layer consisting of the oxide film layer and the welding layer is preferably within the range of 1 to 500 μm. The reason for this is that if the thickness of the bonding layer is thinner than 1 μm, sufficient bonding strength between the silicon carbide thin plate and the ceramic thin plate cannot be obtained, whereas if it is thicker than 500 μm, the bonding layer and the silicon carbide thin plate or This is because the effect due to the difference in coefficient of thermal expansion between the layer and the ceramic thin plate tends to become noticeable, and the ceramic thin plate and the silicon carbide thin plate tend to peel off. The most favorable results are obtained. The ceramic thin plate has excellent electrical insulation properties,
It is important that the ceramic has a low dielectric constant, such as alumina, mullite, sillimanite, cordierite, zirconia, steatite, spinel, forsterite, magnesia, lithia,
Ceramics containing at least one selected from titania, sialon, silicon nitride, or boron nitride as a main component are preferable, and among them, mullite, sillimanite, cordierite, sialon, silicon nitride, etc. have a coefficient of thermal expansion higher than that of silicon carbide. It is more suitable because it has a coefficient of thermal expansion relatively close to the coefficient of thermal expansion of silicon carbide, so the thermal stress caused by temperature cycles or thermal shock is small, and it has excellent bonding properties with silicon carbide thin plates. The thickness of the ceramic thin plate is preferably 0.05 mm or more. The reason for this is that the thickness of ceramic thin plates is increasing as electronic components become smaller and lighter.
It is preferable to be as thin as possible in order to improve heat dissipation characteristics, but if the thickness is thinner than 0.05 mm, the electrical insulation will decrease when the applied voltage is high, and the capacitance will increase, making it difficult to function as a substrate. This is because the quality deteriorates. Preferably, the ceramic thin plate has an opening for placing a chip on the substrate. The reason for this is that when a thin ceramic plate with a chip mounting opening is bonded to the surface of a thin silicon carbide plate, the chip is bonded directly to the surface of the thin silicon carbide plate without using the thin ceramic plate. The heat generated in the chip is immediately transferred to the silicon carbide thin plate, which exhibits excellent heat dissipation properties, and because the thermal expansion coefficients of the silicon carbide thin plate and the chip are almost the same, temperature cycles or
This is because there is almost no thermal stress caused by thermal shock or the like, so the chip does not peel off or break, and it has the advantage of being able to obtain extremely reliable bonding. In the present invention, the thickness of the silicon carbide thin plate is
Advantageously, it is in the range 0.1 to 30 mm. The reason for this is that the thickness of the silicon carbide thin plate is preferably as thin as possible in order to promote miniaturization of electronic components and improve heat dissipation.
If it is thinner than 30 mm, the strength of the silicon carbide thin plate itself will be weak and it will be difficult to handle, while if it is thicker than 30 mm, it will not only be difficult to miniaturize electronic components, but it will also be uneconomical because the cost of the board will be high. It is. Below, the method for manufacturing a silicon carbide substrate of the present invention will be explained in detail. According to the present invention, (a) means for heating a silicon carbide thin plate in an oxidizing atmosphere; (b) a means for heating a silicon carbide thin plate in an oxidizing atmosphere; ,Zn,
Cd, Pb, Na, K, Li, Be, Ca, Mg, Ba, Sr
Alternatively, means for heating the silicon carbide thin plate in an oxidizing atmosphere after applying a composition containing at least one element selected from Zr or a compound thereof as a main component, as described in (a) and (b) above. An oxide film layer is formed on the surface of the silicon carbide thin plate by any of the following methods, and then Al, Si, P,
B, Ge, As, Sb, Bi, V, Zn, Cd, Pb, Na,
After applying a bonding agent composition containing at least one element selected from K, Li, Be, Ca, Mg, Ba, Sr, or Zr or a compound thereof, the silicon carbide thin plate and the ceramic thin plate are stacked. By heating within the temperature range of 250 to 1200℃, a bond between the silicon carbide thin plate and the ceramic thin plate is formed.
Al, Si, P, B, Ge, As, Sb, Bi, V, Zn,
Cd, Pb, Na, K, Li, Be, Ca, Mg, Ba, Sr
or at least 2 selected from Zr
A silicon carbide substrate for electronic circuits with excellent electrical insulation properties is manufactured by forming and bonding a welding layer containing a seed oxide as a main component. According to the present invention, it is necessary to heat the silicon carbide thin plate in an oxidizing atmosphere to form an oxide film layer. The reason for this is that by heating the silicon carbide thin plate in an oxidizing atmosphere, an oxide film layer with an intricate transition layer is formed on the surface of the silicon carbide thin plate, and the oxide layer forming the weld layer is bonded to the silicon carbide thin plate. This is because wettability can be improved and the oxide layer and welding layer can be integrated by the eutectic layer, resulting in an extremely uniform bonding layer with excellent adhesion. . The mechanism by which the adhesion between the silicon carbide thin plate and the bonding layer is significantly improved by heating the silicon carbide thin plate in an oxidizing atmosphere is that foreign matter adhering to the surface of the silicon carbide thin plate, For example, by removing impurities such as free carbon, or by oxidizing the surface of the silicon carbide thin plate, it becomes microscopically roughened, and the bonding area with the bonding layer can be significantly increased. This is presumed to be due to the fact that the silicon carbide thin plate and the bonding layer are bonded by an intricate transition layer. According to the present invention, as means for forming an oxide film layer on the surface of a silicon carbide thin plate, either of the means (a) or (b) described above can be advantageously applied, but in particular, a uniform and extremely dense oxide film layer can be applied advantageously. If a coating layer is required, it is necessary to use the method (b). The mechanism by which a uniform and extremely dense oxide film layer can be formed by means (b) is that after applying the composition to the surface of a silicon carbide thin plate, the silicon carbide layer is heated in an oxidizing atmosphere. The composition can be present in an oxide state on the surface of the silicon carbide thin plate to oxidize the surface of the silicon carbide thin plate, and prevent SiO 2 generated by oxidation of the silicon carbide thin plate from becoming cristobalite. This is thought to be due to the ability to In addition, in cases where a more uniform and dense oxide film layer is required, it is effective to eutectic aluminum oxide, which has a remarkable effect of preventing the SiO 2 from turning into cristobalite. A composition containing at least one of Al or its compounds capable of supplying aluminum in the form of an oxide in an oxidizing atmosphere during formation is 0.004 to 2.9 mg/cm 2 in terms of Al 2 O 3 It is advantageous to apply at a rate of . Various substances can be used as the Al or its compound, but among them, alumina sol is the most suitable because it can supply extremely fine and highly reactive aluminum oxide. According to the invention, the heating temperature in said oxidizing atmosphere is preferably within the range of 750 to 1650°C, and advantageously heating to a temperature within said range for at least 10 minutes. The reason for this is that if the heating temperature is lower than 750°C, the oxidation rate of the silicon carbide thin plate is slow and it is difficult to efficiently generate an oxide film layer, whereas if the heating temperature is higher than 1650°C, the oxidation rate is extremely high and the oxide film layer is formed. Not only is it difficult to control the thickness of the layer to the desired thickness, but also air bubbles are generated between the oxide film layer and the silicon carbide thin plate due to CO gas generated during the oxidation of silicon carbide, making it difficult for the layer to adhere tightly. This is because the quality deteriorates. The reason why it is advantageous to heat to a temperature within this range for at least 10 minutes is because it is difficult to obtain a sufficiently reliable oxide layer if the heating time is shorter than 10 minutes. Note that the best results can be obtained when the heating temperature is in the range of 900 to 1450°C. According to the present invention, Al, Si, P,
B, Ge, As, Sb, Bi, V, Zn, Cd, Pb, Na,
After applying a bonding agent composition containing at least one element selected from K, Li, Be, Ca, Mg, Ba, Sr, or Zr or a compound thereof, the silicon carbide thin plate and the ceramic thin plate are stacked. By heating within the temperature range of 250 to 1200℃, a bond between the silicon carbide thin plate and the ceramic thin plate is formed.
Al, Si, P, B, Ge, As, Sb, Bi, V, Zn,
Cd, Pb, Na, K, Li, Be, Ca, Mg, Ba, Sr
or at least 2 selected from Zr
By forming and bonding a welding layer containing a seed oxide as a main component, a silicon carbide substrate for electronic circuits with excellent electrical insulation properties can be manufactured. The heating temperature when forming the welding layer was set to 250℃.
The reason for setting it within the range of ~1200℃ is that the temperature is 250℃.
If the temperature is lower than ℃, it is difficult to eutectic the oxide film layer and the welding layer to form a uniform bonding layer.
On the other hand, if the temperature is higher than 1200°C, the viscosity of the oxide produced from the bonding agent composition will be significantly reduced, making it difficult to form a uniform bonding layer. Note that the best results can be obtained when the heating temperature is within the range of 300 to 1100°C. According to the present invention, the ceramic thin plate mainly contains at least one selected from alumina, mullite, sillimanite, zirconia, steatite, spinel, forsterite, magnesia, ricia, titania, sialon, silicon nitride, and boron nitride. Therefore, it is preferable to use ceramics, but especially when using ceramic thin plates whose main ingredients are silicon nitride or boron nitride, it is recommended to oxidize their surfaces in advance to form an oxide film layer before use. is advantageous. According to the present invention, it is preferable that a thin ceramic plate having an opening for chip placement is bonded to the surface of the silicon carbide thin plate so that the chip is placed on the substrate. Ceramic thin plates can be produced, for example, by a method in which a green sheet is subjected to so-called raw processing such as punching and then fired, a method in which a green sheet is formed using a press mold that can form a green body having an opening for placing chips, and then fired. It can be manufactured by processing a thin plate using an ultrasonic processing method or the like. According to the present invention, for the purpose of further increasing the density, it is also possible to have a structure in which two or more ceramic thin plates are laminated on top of the ceramic thin plate with a bonding layer interposed therebetween. Next, the present invention will be explained with reference to examples. Example 1 The silicon carbide thin plate is a pressureless sintered body of silicon carbide containing 1.0% by weight of boron and 2.0% by weight of free carbon, and has a density of 3.1 g/cm 3 , and has a size of 30 x 30 x 2 mm. The thin plate is polished in advance,
Finally, the surface was finished with a #1200 grindstone, and then boiled in acetone to degrease it. The silicon carbide thin plate was immersed in an aqueous solution in which 1.6 g of calcium chloride was dissolved in 100 ml of a 1% by weight alumina sol aqueous solution, and then placed in a dryer and dried at 110° C. for 1 hour. On the surface of the silicon carbide thin plate,
Approximately 0.04 mg/cm 2 of alumina sol in terms of Al 2 O 3
Approximately 0.07 mg/cm 2 of calcium chloride was present in terms of CaO. Next, the silicon carbide thin plate was placed in a tube furnace having an inner diameter of 70 mm and subjected to oxidation treatment. The oxidation treatment was carried out by charging oxygen gas into the tube furnace at a rate of 3 l/min and heating it at 1400° C. for 1 hour. The obtained oxide film layer is transparent glass-like,
The film thickness was about 0.9 μm and the surface was smooth. Note that the Al 2 O 3 /SiO 2 molar ratio of this oxide film layer was 0.30. Furthermore, SiO 2 and Al 2 O 3 are added on the oxide film layer.
A bonding agent composition whose main component is a composition containing PbO in a molar ratio of 72:10:15 is applied to the surfaces of the thin ceramic plates to be bonded by screen printing, and dried at 120°C for 30 minutes. did. A thin mullite plate of 30 x 30 x 1 mm and having an opening for placing chips as shown in Fig. 2 was superimposed on the silicon carbide thin plate and charged into a firing furnace at 10°C/min.
The temperature was raised to 850° C. for 30 minutes, and then slowly cooled to room temperature to obtain a silicon carbide substrate having a laminated structure as shown in FIG. The thickness of the bonding layer of the obtained silicon carbide substrate is approximately
30 μm, almost no defects such as pinholes were observed, and the silicon carbide thin plate and the mullite thin plate were extremely tightly adhered. The insulation resistance at the point where the mullite thin plate of the silicon carbide substrate is bonded is 10 14 Ω or more when the applied voltage is 100 V, the withstand voltage is 13 KV, and the capacitance is
It was 0.9PF. In addition, the above insulation resistance is JIS-C
-5012, 7.3, withstand voltage was measured based on JIS-C-2110, 8.3, and capacitance was measured by printing electrodes for measurement on a thin mullite plate using silver paste, as shown in Figure 3, and measuring 1MHz. The capacitance between both electrodes was measured at the frequency of . Example 2 A silicon carbide thin plate that had been surface-finished and deoxidized in the same manner as in Example 1 was charged into the tubular furnace used in Example 1, and oxidized under the same conditions as in Example 1. By the above treatment, an oxide film layer consisting of a SiO 2 film with a thickness of about 0.05 μm was obtained on the surface of the silicon carbide thin plate. Next, the mullite thin plate was joined to the silicon carbide thin plate in the same manner as in Example 1. The properties of the obtained silicon carbide substrate were measured in the same manner as in Example 1 and are shown in Table 1.
【表】
実施例 3
実施例1とほぼ同様であるが、第1表に示した
セラミツクス薄板を使用し、接合層の厚さを第1
表に示した如く変化させて炭化珪素質基板を得
た。
得られた炭化珪素質基板の特性は実施例1と同
様の方法で測定し、第1表に示した。
実施例 4
実施例1と同様にして酸化被膜層を形成させた
炭化珪素質薄板上にSiO2とB2O3とPbOとAl2O3
とがモル比で52:62:4:6に配合された組成物
を主成分とする接合剤組成物をスクリーン印刷法
によつて塗布し、100℃で2時間乾燥した。
前記接合剤組成物を塗布した炭化珪素質薄板に
シリマナイト薄板を重ね、実施例1と同様である
が、加熱温度を900℃に高めて炭化珪素質基板を
得た。
得られた炭化珪素質基板の特性は実施例1と同
様の方法で測定し、第1表に示した。
実施例 5
実施例4と同様であるが、接合剤組成物として
SiO2とB2O3とAl2O3とがモル比で67:100:1に
配合された組成物を主成分とする接合剤組成物、
セラミツクス薄板としてアルミナ薄板を使用し、
加熱温度を1000℃に高めて炭化珪素質基板を得
た。
得られた炭化珪素質基板の特性は実施例1と同
様の方法で測定し、第1表に示した。
実施例 6
実施例1と同様の方法であるが、セラミツクス
ス薄板として、表面に厚さ0.05μmのSiO2被膜を
形成した窒化珪素薄板を使用し、前記窒化珪素薄
板のSiO2被膜上にSiO2とB2O3とAl2O3とK2Oと
がモル比で33:11:3:2に配合された接合剤組
成物を塗布した後、炭化珪素質薄板と窒化珪素薄
板を重ね、実施例1と同様であるが、加熱温度を
900℃に高めて炭化珪素質基板を得た。
得られた炭化珪素質基板の特性は実施例1と同
様の方法で測定し、第1表に示した。
実施例 7
実施例1とほぼ同様の方法であるが、炭化珪素
質基板に第2表に示す如き物質を含有しているア
ルミナゾル1重量%水溶液を塗布して酸化物被膜
層を形成し、炭化珪素質基板を得た。
乾燥後の炭化珪素質基板の表面に存在する各物
質量の酸化物に換算した値および得られた酸化物
被膜層の厚さを第2表に示した。[Table] Example 3 Almost the same as Example 1, except that the ceramic thin plates shown in Table 1 were used, and the thickness of the bonding layer was
Silicon carbide substrates were obtained by making changes as shown in the table. The properties of the obtained silicon carbide substrate were measured in the same manner as in Example 1 and are shown in Table 1. Example 4 SiO 2 , B 2 O 3 , PbO, and Al 2 O 3 were deposited on a silicon carbide thin plate on which an oxide layer was formed in the same manner as in Example 1.
A bonding agent composition containing as a main component a composition having a molar ratio of 52:62:4:6 was applied by screen printing and dried at 100° C. for 2 hours. A sillimanite thin plate was superimposed on the silicon carbide thin plate coated with the bonding agent composition, and a silicon carbide substrate was obtained in the same manner as in Example 1, except that the heating temperature was increased to 900°C. The properties of the obtained silicon carbide substrate were measured in the same manner as in Example 1 and are shown in Table 1. Example 5 Same as Example 4, but as a binder composition
A bonding agent composition whose main component is a composition in which SiO 2 , B 2 O 3 and Al 2 O 3 are blended in a molar ratio of 67:100:1,
Using alumina thin plate as ceramic thin plate,
The heating temperature was increased to 1000°C to obtain a silicon carbide substrate. The properties of the obtained silicon carbide substrate were measured in the same manner as in Example 1 and are shown in Table 1. Example 6 The method was the same as in Example 1, but a silicon nitride thin plate with a 0.05 μm thick SiO 2 film formed on the surface was used as the ceramic thin plate, and SiO 2 was deposited on the SiO 2 film of the silicon nitride thin plate. After applying a bonding agent composition containing 2 , B 2 O 3 , Al 2 O 3 and K 2 O in a molar ratio of 33:11:3:2, a silicon carbide thin plate and a silicon nitride thin plate were stacked. , the same as in Example 1, but with the heating temperature
The temperature was raised to 900°C to obtain a silicon carbide substrate. The properties of the obtained silicon carbide substrate were measured in the same manner as in Example 1 and are shown in Table 1. Example 7 The method was almost the same as in Example 1, but a 1% by weight alumina sol aqueous solution containing the substances shown in Table 2 was applied to a silicon carbide substrate to form an oxide film layer, and then carbonized. A silicon substrate was obtained. Table 2 shows the amount of each substance present on the surface of the silicon carbide substrate after drying, converted into oxide, and the thickness of the obtained oxide film layer.
【表】
* 上記塗布量は酸化物に換算した重量である。
得られた炭化珪素質基板の電気的特性はいずれ
も絶縁抵抗値が1013Ω以上、耐電圧が12KV以上、
静電容量が1.1pF以下であり、しかも炭化珪素質
薄板とムライト薄板との接合性も極めて良好であ
つた。
実施例 8
実施例1とほぼ同様であるが、セラミツクスス
薄板としてコージエライト、ジルコニア、ステア
タイト、スピネル、フオルステライト、マグネシ
ア、リシア、チタニアおよびサイアロンを使用し
て炭化珪素質基板を得た。
得られた炭化珪素質基板の電気的特性はいずれ
も絶縁抵抗値が1013Ω以上、耐電圧が12KV以上、
静電容量が2.5pF以下であり、しかも炭化珪素質
薄板とセラミツクスス薄板との接合性も良好であ
つた。
以上述べた如く、本発明によれば、熱膨張率が
シリコンチツプとほぼ同じで、前記シリコンチツ
プを直接接合することができ、かつ放熱特性に優
れた炭化珪素質薄板を集積回路用基板あるいは
ICパツケージ用材料として極めて有利に適用で
き、しかも静電容量が著しく小さく極めて高い回
路機能を発揮することのできる炭化珪素質基板を
供給でき、産業上に寄与する効果は極めて大き
い。[Table] *The above coating amount is the weight converted to oxide.
The electrical properties of the silicon carbide substrate obtained are that the insulation resistance value is 10 13 Ω or more, the withstand voltage is 12 KV or more,
The capacitance was 1.1 pF or less, and the bondability between the silicon carbide thin plate and the mullite thin plate was also extremely good. Example 8 A silicon carbide substrate was obtained in substantially the same manner as in Example 1, except that cordierite, zirconia, steatite, spinel, forsterite, magnesia, ricia, titania, and sialon were used as the ceramic thin plates. The electrical properties of the silicon carbide substrate obtained are that the insulation resistance value is 10 13 Ω or more, the withstand voltage is 12 KV or more,
The capacitance was 2.5 pF or less, and the bondability between the silicon carbide thin plate and the ceramic thin plate was also good. As described above, according to the present invention, a silicon carbide thin plate having almost the same coefficient of thermal expansion as a silicon chip, capable of directly bonding the silicon chip, and having excellent heat dissipation properties can be used as an integrated circuit substrate or
It is possible to supply a silicon carbide substrate that can be extremely advantageously applied as a material for IC packages, has extremely low capacitance, and can exhibit extremely high circuit functions, and has an extremely large effect on industrial use.
第1図は、本発明の実施例1で製造した炭化珪
素質基板の積層構造を示す断面図、第2図は、本
発明の実施例1で使用したセラミツクスス薄板の
形状を示す模式図、第3図は、本発明の実施例1
で行なつた静電容量を測定するためにセラミツク
スス薄板上に銀ペーストで施した電極の形状を示
す図である。
1…炭化珪素質薄板、2…酸化被膜層、3…溶
着層、4…セラミツクスス薄板、5…銀ペース
ト。
FIG. 1 is a cross-sectional view showing the laminated structure of the silicon carbide substrate manufactured in Example 1 of the present invention, and FIG. 2 is a schematic diagram showing the shape of the ceramic thin plate used in Example 1 of the present invention. FIG. 3 shows Example 1 of the present invention.
FIG. 2 is a diagram showing the shape of an electrode applied with silver paste on a ceramic thin plate in order to measure capacitance. DESCRIPTION OF SYMBOLS 1... Silicon carbide thin plate, 2... Oxide film layer, 3... Welding layer, 4... Ceramic thin plate, 5... Silver paste.
Claims (1)
する手段 (b) 炭化珪素質薄板の表面にAl、Si、P、B、
Ge、As、Sb、Bi、V、Zn、Cd、Pb、Na、
K、Li、Be、Ca、Mg、Ba、SrあるいはZrよ
り選ばれる元素あるいはそれらの化合物のいず
れか少なくとも1種を主成分とする組成物を塗
布した後、炭化珪素質薄板を酸化性雰囲気中で
加熱する手段 上記(a)、(b)のいずれかの手段により炭化珪素質
薄板の表面に酸化被膜層を形成させ、次いで酸化
被膜層上あるいはセラミツクス薄板の少なくとも
いずれかにAl、Si、P、B、Ge、As、Sb、Bi、
V、Zn、Cd、Pb、Na、K、Li、Be、Ca、Mg、
Ba、SrあるいはZrより選ばれる元素あるいはそ
れらの化合物のいずれか少なくとも1種を含有す
る接合剤組成物を塗布した後、炭化珪素質薄板と
セラミツクス薄板を重ねて250〜1200℃の温度範
囲内に加熱することにより、炭化珪素質薄板とセ
ラミツクス薄板との間にAl、Si、P、B、Ge、
As、Sb、Bi、V、Zn、Cd、Pb、Na、K、Li、
Be、Ca、Mg、Ba、SrあるいはZrより選ばれる
いずれか少なくとも2種の酸化物を主成分とする
溶着層を形成せしめて接合させることを特徴とす
る電気的絶縁性に優れた電子回路用炭化珪素質基
板の製造方法。 2 前記セラミツクス薄板はアルミナ、ムライ
ト、シリマナイト、ジルコニア、ステアタイト、
スピネル、フオルステライト、マグネシア、リシ
ア、チタニア、サイアロン、窒化珪素あるいは窒
化ホウ素より選ばれるいずれか少なくとも1種を
主成分とするとするセラミツクスである特許請求
の範囲第1項記載の製造方法。 3 前記セラミツクス薄板の厚さは少なくとも
0.05mmである特許請求の範囲第1あるいは2項記
載の製造方法。 4 前記(a)および(b)の手段における加熱温度は
750〜1650℃の温度範囲内である特許請求の範囲
第1〜3項のいずれかに記載の製造方法。 5 前記接合剤組成物を塗布した後、炭化珪素質
薄板とセラミツクス薄板を重ねて300〜1100℃温
度範囲内で加熱する特許請求の範囲第1〜4項の
いずれかに記載の製造方法。 6 基板上にチツプが載置されるようチツプ載置
用開口部を有するセラミツクス薄板を炭化珪素質
薄板の表面に接合する特許請求の範囲第1〜5項
のいずれかに記載の製造方法。[Claims] 1 (a) Means for heating a silicon carbide thin plate in an oxidizing atmosphere (b) Al, Si, P, B,
Ge, As, Sb, Bi, V, Zn, Cd, Pb, Na,
After applying a composition containing at least one element selected from K, Li, Be, Ca, Mg, Ba, Sr, or Zr as a main component or a compound thereof, the silicon carbide thin plate is placed in an oxidizing atmosphere. An oxide film layer is formed on the surface of the silicon carbide thin plate by any of the means (a) and (b) above, and then Al, Si, P is formed on the oxide film layer or at least on the ceramic thin plate. , B, Ge, As, Sb, Bi,
V, Zn, Cd, Pb, Na, K, Li, Be, Ca, Mg,
After applying a bonding agent composition containing at least one element selected from Ba, Sr, or Zr or a compound thereof, the silicon carbide thin plate and the ceramic thin plate are stacked and heated within a temperature range of 250 to 1200°C. By heating, Al, Si, P, B, Ge,
As, Sb, Bi, V, Zn, Cd, Pb, Na, K, Li,
For electronic circuits with excellent electrical insulation, characterized by forming and bonding a welding layer mainly composed of at least two oxides selected from Be, Ca, Mg, Ba, Sr, or Zr. A method for manufacturing a silicon carbide substrate. 2 The ceramic thin plate is made of alumina, mullite, sillimanite, zirconia, steatite,
The manufacturing method according to claim 1, which is a ceramic whose main component is at least one selected from spinel, forsterite, magnesia, ricia, titania, sialon, silicon nitride, and boron nitride. 3. The thickness of the ceramic thin plate is at least
The manufacturing method according to claim 1 or 2, wherein the thickness is 0.05 mm. 4 The heating temperature in the means (a) and (b) above is
The manufacturing method according to any one of claims 1 to 3, wherein the temperature range is 750 to 1650°C. 5. The manufacturing method according to any one of claims 1 to 4, wherein after applying the bonding agent composition, the silicon carbide thin plate and the ceramic thin plate are stacked and heated within a temperature range of 300 to 1100°C. 6. The manufacturing method according to any one of claims 1 to 5, wherein a ceramic thin plate having a chip placement opening is bonded to the surface of the silicon carbide thin plate so that the chip is placed on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197765A JPS5988851A (en) | 1982-11-12 | 1982-11-12 | Silicon carbide substrate for electronic circuit and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57197765A JPS5988851A (en) | 1982-11-12 | 1982-11-12 | Silicon carbide substrate for electronic circuit and manufacture thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5988851A JPS5988851A (en) | 1984-05-22 |
JPH0131697B2 true JPH0131697B2 (en) | 1989-06-27 |
Family
ID=16379975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57197765A Granted JPS5988851A (en) | 1982-11-12 | 1982-11-12 | Silicon carbide substrate for electronic circuit and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5988851A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4080030B2 (en) | 1996-06-14 | 2008-04-23 | 住友電気工業株式会社 | Semiconductor substrate material, semiconductor substrate, semiconductor device, and manufacturing method thereof |
JP3920555B2 (en) | 2000-10-27 | 2007-05-30 | 株式会社山武 | Bonding agent and bonding method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5594975A (en) * | 1979-01-16 | 1980-07-18 | Asahi Glass Co Ltd | Low expansion powder composition for bonding use |
JPS5742580A (en) * | 1980-08-27 | 1982-03-10 | Asahi Glass Co Ltd | Ceramic bonding composition and bonding method therefor |
JPS57117261A (en) * | 1981-01-14 | 1982-07-21 | Kyocera Corp | Package for semicondutor device |
-
1982
- 1982-11-12 JP JP57197765A patent/JPS5988851A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5594975A (en) * | 1979-01-16 | 1980-07-18 | Asahi Glass Co Ltd | Low expansion powder composition for bonding use |
JPS5742580A (en) * | 1980-08-27 | 1982-03-10 | Asahi Glass Co Ltd | Ceramic bonding composition and bonding method therefor |
JPS57117261A (en) * | 1981-01-14 | 1982-07-21 | Kyocera Corp | Package for semicondutor device |
Also Published As
Publication number | Publication date |
---|---|
JPS5988851A (en) | 1984-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2952303B2 (en) | Composite circuit device | |
US4821151A (en) | Hermetically sealed package | |
JPH11504159A (en) | Glass bonding layer for ceramic circuit board support substrate | |
JPH08180731A (en) | Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor | |
US4664946A (en) | Silicon carbide substrates and a method of producing the same | |
JPH1075060A (en) | Method for manufacturing multi-layer glass/ceramic substrate | |
JP3754748B2 (en) | Conductor paste for filling through holes, ceramic circuit boards and package boards | |
JPH01252548A (en) | Glass ceramic composition | |
JPH0131697B2 (en) | ||
JPH08315634A (en) | Conductive paste and ceramic electronic component using it | |
JPH0131698B2 (en) | ||
JPS6410100B2 (en) | ||
JP2764990B2 (en) | Composite circuit device and bonding paste | |
JPH07326835A (en) | Low-temperature sintered ceramic circuit board | |
JP2004256346A (en) | Glass-ceramic composition, glass-ceramic sintered compact, its producing method, wiring board using the sintered compact body, and its mounting structure | |
JPS6312371B2 (en) | ||
JP2001284754A (en) | Glass ceramic circuit board | |
JPH0753625B2 (en) | Metallized composition for ceramics | |
JPH0221668B2 (en) | ||
JP2002076609A (en) | Circuit board | |
JP2591206B2 (en) | Thermistor | |
JPH02149464A (en) | Ceramic substrate composition and ceramic substrate | |
JP2000044332A (en) | Glass ceramic composition for wiring board and package for housing semiconductor element | |
JPH0316220Y2 (en) | ||
JPH0219988B2 (en) |