JPS6410100B2 - - Google Patents

Info

Publication number
JPS6410100B2
JPS6410100B2 JP56209992A JP20999281A JPS6410100B2 JP S6410100 B2 JPS6410100 B2 JP S6410100B2 JP 56209992 A JP56209992 A JP 56209992A JP 20999281 A JP20999281 A JP 20999281A JP S6410100 B2 JPS6410100 B2 JP S6410100B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
film
sio
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209992A
Other languages
Japanese (ja)
Other versions
JPS58130547A (en
Inventor
Akira Enomoto
Hidetoshi Yamauchi
Shoji Tanigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP56209992A priority Critical patent/JPS58130547A/en
Priority to US06/451,940 priority patent/US4499147A/en
Publication of JPS58130547A publication Critical patent/JPS58130547A/en
Priority to US06/858,834 priority patent/US4664946A/en
Publication of JPS6410100B2 publication Critical patent/JPS6410100B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/4807Ceramic parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、集積回路用基板あるいはICパツケ
ージ用基板としての炭化珪素基板の製造方法に係
り、特に、電気伝導性を有する炭化珪素基板の表
面に極めて安定した絶縁抵抗性を有する電気絶縁
皮膜を形成する方法について提案する。 最近、電子工業技術の発達に伴つて、半導体等
の電子部品材料は小型化あるいは高集積化が進め
られている。そのため、電子部品の高集積化に伴
つて集積回路内における発熱量が増加し、基板の
放熱性が重要な問題となつている。ところで、従
来電子工業用の基板としては種々のものが知ら
れ、実用化されており、特に高い信頼性を要求さ
れる用途に対しては、アルミナ焼結体あるいはガ
ラス等が使用されている。しかしながら、前述の
如き従来使用されている基板は熱伝導率が低く放
熱性に劣るために蓄熱による問題を解決すること
が困難であり、電子部品の高集積化を進める上で
極めて大きな障害となつている。 前記問題を解決する材料としては従来よりベリ
リアあるいはホーロー等の材料が検討されてい
る。しかしながら、前者のベリリアはそのベリリ
アの有する毒性のために製造および取扱いが困難
であり、一方後者のホーローは金属板を基材とす
るため熱膨張率が大きく、またフリツトがドグボ
ーン構造になり易く、さらに印刷してからの切断
が困難であるばかりでなく、ホーローにクラツク
がはいるのでレーザートリミングができない欠点
があつた。 上述の如く、従来知られた基板はいずれも種々
の欠点を有していた。 本発明は前記諸欠点を解決することのできる基
板、すなわち高い熱伝導率を有し、高集積回路用
基板あるいはICパツケージ用材料として極めて
優れた特性を有する炭化珪素質基板を得るのに必
要な新規な電気絶縁皮膜形成の技術の確立を目的
とするものである。 この目的は、次の事項を要旨構成とする方法、
すなわち、 炭化珪素質基板上に電気絶縁層を形成するに当
り、電気伝導性を有する炭化珪素焼結体の表面
を、まず酸化処理してSiO2被膜を形成し、次い
でSiO2被膜が形成された炭化珪素焼結体の表面
に珪素、リン、ホウ素、ゲルマニウム、ヒ素、ア
ンチモン、ビスマス、バナジウム、亜鉛、カドミ
ウム、鉛、ナトリウム、カリウム、リチウム、カ
ルシウム、マグネシウム、バリウムあるいはスト
ロンチウムより選ばれるいずれか少なくとも一種
を含有するコーテイング剤組成物を塗布し、乾燥
し、その後加熱することにより、コーテイング剤
組成物より生ずる酸化物と前記SiO2被膜との共
融物にかかる電気絶縁皮膜を生成融着させ、この
電気絶縁皮膜で上記電気伝導性を有する炭化珪素
焼結体の表面を被覆することを特徴とする電気伝
導性を有する炭化珪素基板への絶縁皮膜形成方
法。 によつて、実現できる。 次に本発明を詳細に説明する。 従来、基板として広く使用されているアルミナ
焼結体基板(以下アルミナ焼結体基板を単にアル
ミナ基板と称す)と比較すると炭化珪素焼結体は
高い熱伝導率、高い耐熱衝撃性および常温と熱間
のいずれにおいても高い強度を有し、しかもアル
ミナ基板は熱膨張率が通常集積回路として使用さ
れるシリコンチツプの熱膨張率と大きく異なるた
め直接アルミナ基板上にシリコンチツプを接着し
て使用することが困難であるのに対し、炭化珪素
焼結体の熱膨張率は前記シリコンチツプとほぼ同
じであり、直接炭化珪素焼結体表面にシリコンチ
ツプを接着できる有利さを有している。しかしな
がら、炭化珪素焼結体は半導体的な特性を有し、
電気絶縁性をもたないことから基板として使用さ
れるに至らなかつた。 上述の如き観点に基づき、本発明者らは炭化珪
素焼結体を基板として適用すべく、炭化珪素焼結
体に電気絶縁層を付与する方法を種々研究した。 ところで、本発明者らは前記炭化珪素焼結体に
電気絶縁性を付与するために、炭化珪素焼結体の
表面に電気絶縁性物質、例えば酸化物よりなるガ
ラス質物質等を塗布し、融着することによつて電
気絶縁性被膜を形成する手段を試みた。しかしな
がら、炭化珪素焼結体は酸化物との濡れ性が極め
て悪く、また酸化物被膜は密着性に劣り、剥離し
易く、しかもピンホール等の欠陥が生じ易く極め
て信頼性が低かつた。 よつて本発明者らは、前記諸欠点を解決するこ
とのできる安定した電気絶縁性を有する被膜の形
成方法についてさらに研究を種々行なつた結果、
炭化珪素焼結体の表面を酸化処理してSiO2被膜
を形成し、次いで前記SiO2被膜とコーテイング
剤組成物より生ずる酸化物との共融物を炭化珪素
焼結体の表面に融着せしめることによつて、前記
欠点を解決することのできることを新規に知見
し、本発明を完成した。 本発明によれば、炭化珪素焼結体の表面に酸化
物よりなる絶縁性被膜を融着せしめる前に炭化珪
素焼結体の表面を酸化処理してSiO2被膜を形成
することが必要である。その理由は、炭化珪素焼
結体を酸化処理してSiO2被膜を形成することに
よつて前記コーテイング剤組成物より生ずる酸化
物との濡れ性が著しく改善され、ピンホール等の
欠陥のない極めて均一な絶縁性被膜を得ることが
できるからであり、しかも前記SiO2被膜は炭化
珪素焼結体と入り組んだ遷移層を有し、さらにこ
のSiO2被膜とコーテイング剤組成物より生ずる
酸化物とが共融層を形成し、一体化するため、炭
化珪素焼結体との密着性が極めて良好な絶縁性酸
化物被膜を形成することができるからである。 前記炭化珪素焼結体を酸化処理しSiO2被膜を
形成することによつて、炭化珪素焼結体と絶縁性
被膜との密着性が極めて良好となる機構は、前記
酸化処理によつて炭化珪素焼結体表面に付着して
いる不純物例えば遊離炭素が除去されて炭化珪素
焼結体と絶縁性被膜との間に異物層がなくなるこ
とおよび前記酸化処理によつて炭化珪素焼結体表
面がミクロ的に粗化された状態となり、絶縁性被
膜との接合面積が著しく増大し、絶縁性被膜が炭
化珪素焼結体と入り組んだ遷移層によつて接合さ
れることによるものと推察される。 本発明によれば、前記絶縁性酸化物は、炭化珪
素焼結体の表面を酸化処理してSiO2被膜を形成
し、次いでSiO2被膜を有する炭化珪素焼結体の
表面にコーテイング剤組成物を塗布した後、加熱
することにより、前記SiO2被膜とコーテイング
剤組成物より生ずる酸化物との共融物を炭化珪素
焼結体の表面に融着させることができる。 本発明によれば、炭化珪素焼結体を750〜1650
℃の範囲内で少なくとも10分間酸化せしめること
が好ましい。その理由は、酸化温度750℃より低
いとき酸化速度が遅くSiO2被膜を効率的に生成
させることが困難であり、一方1650℃より高いと
酸化速度が著しく速く目的とする膜厚に制御する
ことが困難で均一なSiO2被膜を得ることが困難
であるからであり、また酸化せしめる時間が10分
間より短いと絶縁性被膜を強固に融着し得るに充
分な厚さのSiO2被膜を形成することが困難であ
るからである。900〜1450℃の範囲内で最もよい
結果を得ることができる。 本発明によれば、炭化珪素焼結体を酸化せしめ
るに際し、雰囲気中に水蒸気を含有させることが
有利である。その理由は前記雰囲気中に水蒸気を
含有させることによつて炭化珪素焼結体表面にお
けるSiO2被膜の生成を促進させることができ、
比較的低温域で効率的にSiO2被膜を生成させる
ことができるからである。 本発明によれば、前記炭化珪素焼結体を酸化せ
しめる方法としては、前述の如き方法の他に硝酸
水溶液中に浸漬しながら加熱する方法を使用する
ことができる。 本発明によれば、前記SiO2被膜の厚さは3μm
以下とすることが好ましい。その理由は3μmより
も厚い被膜を生成させるとコーテイング剤組成物
との境界付近の融点が上昇し均一な共融体よりな
る被膜を形成するのに長時間を要するという不利
があり、0.01〜1μmの範囲内で最適な結果が得ら
れる。 本発明によれば、前述の如き方法で形成された
SiO2被膜とコーテイング剤組成物より生ずる酸
化物との共融物を炭化珪素焼結体の表面に融着せ
しめることにより密着性に優れた絶縁性酸化物被
膜が形成される。 本発明において、使用されるコーテイング剤組
成物は珪素、リン、ホウ素、ゲルマニウム、ヒ
素、アンチモン、ビスマス、バナジウム、亜鉛、
カドミウム、鉛、ナトリウム、カリウム、リチウ
ム、カルシウム、マグネシウム、バリウム、スト
ロンチウムより選ばれるいずれか少なくとも1種
を含有する元素あるいはそれらの化合物であり、
炭化珪素焼結体の表面に融着される際にSiO2
共融して共融生成酸化物となる。 本発明によれば、SiO2被膜とコーテイング剤
組成物とを融着せしめた絶縁性被膜の厚さを10〜
100μmの範囲内とすることが好ましい。その理由
は前記絶縁性被膜の厚さが10μmより薄いと安定
した絶縁性を得ることが困難で信頼性に乏しいか
らであり、一方100μmより厚くすると絶縁性被膜
と炭化珪素焼結体との熱膨張率の差による影響が
顕著になり、絶縁性被膜が剥離し易くなるばかり
でなく、熱伝導率が著しく劣化するため本発明の
目的とする高い熱伝導率を有する基板となすこと
が困難になるからであり、前記絶縁性被膜の厚さ
は20〜60μmの範囲内とすることが最適である。 本発明によれば、前記コーテイング剤組成物の
塗布方法としては、例えばスクリーン印刷法、浸
漬法、噴霧法、ハケ塗り法等の種々の方法を適用
することができる。 本発明によれば、前述の如き方法でコーテイン
グ剤組成物を塗布し十分に乾燥した後加熱するこ
とによつて絶縁性被膜が融着される。前記融着時
の雰囲気としては融着時に炭化珪素焼結体が酸化
され生成したCOガスによつて被膜中に気泡が生
成することを防止するため非酸化性雰囲気とする
ことが有利であり、また融着温度300〜1200℃の
範囲内とすることが好ましい。前記融着時の温度
を300〜1200℃の範囲内とする理由は300℃より低
い温度では炭化珪素焼結体表面に生成させた
SiO2被膜とコーテイング剤組成物とが相互に共
融した均一層を生成することが困難であるからで
あり、一方1200℃より高いとコーテイング剤組成
物によつて炭化珪素焼結体が酸化され発生する
COガスによつて被膜中に気泡が生成するからで
ある。 本発明によれば、前記基板の厚さは0.1〜30mm
の範囲内であることが好ましい。その理由は基板
の厚さは電子部品の小型化を進めたり、放熱性を
向上せしめる上でなるべく薄いことが好ましい
が、その厚さが0.1mmより薄いと、基板自体の強
度が弱くなり基板として使用することが困難であ
り、また30mmより厚いと電子部品の小型化が困難
であるばかりでなく、基板に要する費用が高くな
るため不経済であるからである。 次に本発明の形成方法の実施によつて得られる
絶縁性被膜を有する炭化珪素基板の電気的特性に
ついて説明する。 通常、日本工業規格(JIS−C−5012−7.3)に
基づいて測定される炭化珪素焼結体の電気抵抗値
は印加電圧が25Vの場合で約105Ω以下と低く、基
板として適用し難いが、本発明の絶縁性被膜を有
する炭化珪素基板の絶縁抵抗値は印加電圧が25V
の場合で1×109Ω以上、印加電圧が100Vの場合
で1×108Ω以上であり、さらに日本工業規格
(JIS−C−2110−8.3)に基づいて測定される耐
電圧は約0.17KV以上と基板として適用するに極
めて適した特性を有するものである。 次に本発明を実施例について説明する。 実施例 1 炭化珪素焼結体はホウ素を1.0重量%、遊離炭
素を2.0重量%含有し、3.1g/cm3の密度を有する
無加圧焼結体であつて、50×20×2mmの薄板状の
ものをあらかじめポリツシング加工し、最終的に
#200砥石で表面仕上げをし、次いでアセトン中
で煮沸して脱脂処理したものを使用した。 前記炭化珪素焼結体を内径が40mmの管状炉中に
装入し、酸素ガスを1/minの割合で前記管状
炉中へ装入し、1100℃で3時間保持することによ
り酸化処理した。前記処理によつて炭化珪素焼結
体の表面に厚さ約0.05μmのSiO2被膜を得た。 次いで、前記SiO2被膜を有する焼結体表面に
SiO2とB2O3とZnOとを主成分とするコーテイン
グ剤組成物をスクリーン印刷法によつて塗布し、
110℃で1.5時間乾繰する処理を2回繰返した。 前記コーテイング剤組成物を塗布した焼結体を
焼成炉に装入し10℃/minで昇温し、最高温度
650℃で60分間保持した後冷却した。前記焼成は、
300℃までは空気中で行ない、その後はアルゴン
ガス雰囲気中で行なつた。 得られた絶縁性被膜の膜厚は30μmであり、ピ
ンホール、マイクロクラツク等の欠陥は殆んど観
察されず、極めて平滑な表面性状を有していた。 前記絶縁性被膜を有する炭化珪素焼結体の絶縁
抵抗は印加電圧100Vで3×1012Ωであり、また耐
電圧は0.8KVであつた。前記絶縁抵抗はJIS−C
−5012−7.3に、耐電圧はJIS−C−2110−8.3に
基づいて測定した。 なお、この絶縁性被膜は耐熱衝撃性にも極めて
優れていた。 実施例 2 実施例1と同様の方法であるが、酸化処理時の
酸化性ガスとして水蒸気と酸素とをほぼ1:1の
比率で混合させたガスを使用して厚さが0.09μm
のSiO2被膜を形成した。前記SiO2被膜を形成さ
せた焼結体表面に実施例1と同様にして絶縁性被
膜を形成した。 得られた絶縁性被膜の膜厚は30μmであり、実
施例1で得たものと同様に欠陥の殆どない極めて
平滑な表面性状を有していた。なお、絶縁性被膜
の特性は実施例1と同様の方法で測定し、第1表
に示した。 実施例 3 実施例1とほぼ同様の方法であるが、酸化処理
時の温度および時間を変化させてSiO2被膜を形
成した。得られたSiO2被膜の厚さは第1表に示
した。 次いで、前記SiO2被膜を形成させた焼結体表
面に実施例1と同様にして絶縁性被膜を形成し
た。 得られた絶縁性被膜の特性は実施例1と同様の
方法で測定し、第1表に示した。 実施例 4 実施例1と同様であるが、コーテイング剤組成
物を塗布し、乾燥する処理を4回繰返して絶縁性
被膜を形成した。 得られた絶縁性被膜の特性は第1表に示した。
The present invention relates to a method of manufacturing a silicon carbide substrate as an integrated circuit substrate or an IC package substrate, and in particular, forms an electrically insulating film having extremely stable insulation resistance on the surface of an electrically conductive silicon carbide substrate. Suggest ways to do so. Recently, with the development of electronic industry technology, electronic component materials such as semiconductors are becoming smaller or more highly integrated. Therefore, as electronic components become more highly integrated, the amount of heat generated within integrated circuits increases, and the heat dissipation of the substrate has become an important issue. By the way, various substrates for the electronic industry have been known and put into practical use, and alumina sintered bodies, glass, etc. have been used for applications that require particularly high reliability. However, the conventionally used substrates as mentioned above have low thermal conductivity and poor heat dissipation, making it difficult to solve the problem of heat accumulation, which is an extremely large obstacle in promoting higher integration of electronic components. ing. Materials such as beryllia or enamel have been considered as materials to solve the above problem. However, the former beryllia is difficult to manufacture and handle due to its toxicity, while the latter enamel has a high coefficient of thermal expansion because it is based on a metal plate, and the frit tends to have a dogbone structure. Furthermore, not only was it difficult to cut after printing, but the enamel would have cracks, making laser trimming impossible. As mentioned above, all conventionally known substrates have various drawbacks. The present invention provides a substrate that can solve the above-mentioned drawbacks, that is, a silicon carbide substrate that has high thermal conductivity and has extremely excellent properties as a substrate for highly integrated circuits or as a material for IC packages. The aim is to establish a new technology for forming electrical insulation films. The purpose of this is to create a summary structure that includes the following:
That is, when forming an electrically insulating layer on a silicon carbide substrate, the surface of a silicon carbide sintered body having electrical conductivity is first oxidized to form a SiO 2 film, and then the SiO 2 film is formed. At least one selected from silicon, phosphorus, boron, germanium, arsenic, antimony, bismuth, vanadium, zinc, cadmium, lead, sodium, potassium, lithium, calcium, magnesium, barium, or strontium is applied to the surface of the silicon carbide sintered body. By applying a coating agent composition containing one type of SiO 2 coating, drying, and then heating, an electrically insulating film is formed and fused on the eutectic of the oxide produced from the coating agent composition and the SiO 2 coating, A method for forming an insulating film on an electrically conductive silicon carbide substrate, the method comprising coating the surface of the electrically conductive silicon carbide sintered body with the electrically insulating film. This can be achieved by Next, the present invention will be explained in detail. Compared to alumina sintered substrates (hereinafter alumina sintered substrates are simply referred to as alumina substrates), which have been widely used as substrates in the past, silicon carbide sintered substrates have high thermal conductivity, high thermal shock resistance, and excellent thermal conductivity at room temperature and heat. In addition, the coefficient of thermal expansion of alumina substrates is significantly different from that of silicon chips normally used for integrated circuits, so it is difficult to use silicon chips directly bonded to alumina substrates. However, the coefficient of thermal expansion of the silicon carbide sintered body is almost the same as that of the silicon chip, and it has the advantage that the silicon chip can be bonded directly to the surface of the silicon carbide sintered body. However, silicon carbide sintered body has semiconductor-like characteristics,
Because it does not have electrical insulation properties, it has not been used as a substrate. Based on the above-mentioned viewpoints, the present inventors have conducted various studies on methods of providing an electrically insulating layer to a silicon carbide sintered body in order to apply the silicon carbide sintered body as a substrate. By the way, in order to impart electrical insulation to the silicon carbide sintered body, the present inventors coated the surface of the silicon carbide sintered body with an electrically insulating substance, such as a glassy substance made of an oxide, and melted the silicon carbide sintered body. An attempt was made to form an electrically insulating film by depositing the same. However, the silicon carbide sintered body has extremely poor wettability with oxides, and the oxide film has poor adhesion and is easily peeled off, and defects such as pinholes are likely to occur, resulting in extremely low reliability. Therefore, the present inventors have further conducted various studies on a method for forming a film having stable electrical insulation properties that can solve the above-mentioned drawbacks.
The surface of the silicon carbide sintered body is oxidized to form a SiO 2 film, and then the eutectic of the SiO 2 film and the oxide generated from the coating agent composition is fused to the surface of the silicon carbide sintered body. In particular, the inventors have newly discovered that the above-mentioned drawbacks can be solved, and have completed the present invention. According to the present invention, it is necessary to oxidize the surface of the silicon carbide sintered body to form a SiO 2 film before fusing the insulating film made of oxide to the surface of the silicon carbide sintered body. . The reason for this is that by oxidizing the silicon carbide sintered body to form a SiO 2 film, the wettability with the oxide produced from the coating agent composition is significantly improved. This is because a uniform insulating film can be obtained, and the SiO 2 film has an intricate transition layer with the silicon carbide sintered body, and furthermore, the SiO 2 film and the oxide generated from the coating agent composition are bonded together. This is because since the eutectic layer is formed and integrated, an insulating oxide film having extremely good adhesion to the silicon carbide sintered body can be formed. The mechanism by which the adhesion between the silicon carbide sintered body and the insulating film becomes extremely good by oxidizing the silicon carbide sintered body to form a SiO 2 film is that the oxidation treatment Impurities adhering to the surface of the sintered body, such as free carbon, are removed so that there is no foreign material layer between the silicon carbide sintered body and the insulating coating, and the oxidation treatment causes the surface of the silicon carbide sintered body to become microscopic. It is presumed that this is because the bonding area with the insulating coating increases significantly, and the insulating coating is bonded to the silicon carbide sintered body through an intricate transition layer. According to the present invention, the insulating oxide is obtained by oxidizing the surface of a silicon carbide sintered body to form a SiO 2 film, and then applying a coating agent composition to the surface of the silicon carbide sintered body having the SiO 2 film. By applying and heating, the eutectic of the SiO 2 film and the oxide produced from the coating agent composition can be fused to the surface of the silicon carbide sintered body. According to the present invention, the silicon carbide sintered body has a temperature of 750 to 1650
Preferably, the oxidation is carried out for at least 10 minutes in the range of .degree. The reason for this is that when the oxidation temperature is lower than 750°C, the oxidation rate is slow and it is difficult to efficiently generate a SiO 2 film, whereas when the oxidation temperature is higher than 1650°C, the oxidation rate is extremely fast and it is difficult to control the desired film thickness. This is because it is difficult to obtain a uniform SiO 2 film, and if the oxidation time is shorter than 10 minutes, the SiO 2 film will be thick enough to firmly fuse the insulating film. This is because it is difficult to do so. Best results can be obtained within the range of 900-1450°C. According to the present invention, when oxidizing the silicon carbide sintered body, it is advantageous to include water vapor in the atmosphere. The reason is that by containing water vapor in the atmosphere, the formation of a SiO 2 film on the surface of the silicon carbide sintered body can be promoted,
This is because the SiO 2 film can be efficiently generated in a relatively low temperature range. According to the present invention, as a method for oxidizing the silicon carbide sintered body, in addition to the method described above, a method of heating while immersing it in an aqueous nitric acid solution can be used. According to the invention, the thickness of the SiO 2 coating is 3 μm
The following is preferable. The reason for this is that if a film thicker than 3 μm is formed, the melting point near the boundary with the coating agent composition will rise, and it will take a long time to form a uniform eutectic film, which is disadvantageous. Optimal results can be obtained within this range. According to the present invention, the
An insulating oxide film with excellent adhesion is formed by fusing a eutectic mixture of the SiO 2 film and the oxide produced from the coating agent composition to the surface of the silicon carbide sintered body. In the present invention, the coating agent composition used includes silicon, phosphorus, boron, germanium, arsenic, antimony, bismuth, vanadium, zinc,
An element or a compound thereof containing at least one selected from cadmium, lead, sodium, potassium, lithium, calcium, magnesium, barium, and strontium,
When it is fused to the surface of the silicon carbide sintered body, it eutectically fuses with SiO 2 to form a eutectic oxide. According to the present invention, the thickness of the insulating film in which the SiO 2 film and the coating agent composition are fused is 10 to 10%.
It is preferable to set it within the range of 100 μm. The reason for this is that if the thickness of the insulating film is thinner than 10 μm, it is difficult to obtain stable insulation and reliability is poor, whereas if it is thicker than 100 μm, the heat between the insulating film and the silicon carbide sintered body is The influence of the difference in expansion coefficient becomes noticeable, and not only does the insulating film easily peel off, but also the thermal conductivity deteriorates significantly, making it difficult to create a substrate with high thermal conductivity, which is the objective of the present invention. This is because the thickness of the insulating film is optimally within the range of 20 to 60 μm. According to the present invention, various methods such as a screen printing method, a dipping method, a spraying method, and a brushing method can be applied as a method for applying the coating agent composition. According to the present invention, the insulating film is fused by applying the coating composition as described above, sufficiently drying it, and then heating it. It is advantageous for the atmosphere during the fusion to be a non-oxidizing atmosphere in order to prevent the formation of bubbles in the coating due to the CO gas generated by oxidation of the silicon carbide sintered body during fusion, Further, it is preferable that the fusion temperature is within the range of 300 to 1200°C. The reason why the temperature at the time of fusion is set within the range of 300 to 1200°C is that at temperatures lower than 300°C, silicon carbide is formed on the surface of the sintered body.
This is because it is difficult to generate a uniform layer in which the SiO 2 film and the coating agent composition are mutually eutectic, and on the other hand, if the temperature is higher than 1200°C, the silicon carbide sintered body is oxidized by the coating agent composition. Occur
This is because bubbles are generated in the coating due to the CO gas. According to the invention, the thickness of the substrate is 0.1~30mm
It is preferable that it is within the range of . The reason for this is that it is preferable for the board to be as thin as possible in order to promote miniaturization of electronic components and improve heat dissipation, but if the thickness is thinner than 0.1 mm, the strength of the board itself will be weakened, making it difficult to use as a board. This is because it is difficult to use, and if it is thicker than 30 mm, it is not only difficult to miniaturize electronic components but also uneconomical because the cost required for the board increases. Next, the electrical characteristics of a silicon carbide substrate having an insulating film obtained by carrying out the formation method of the present invention will be explained. Normally, the electrical resistance value of silicon carbide sintered bodies measured based on the Japanese Industrial Standards (JIS-C-5012-7.3) is as low as approximately 10 5 Ω or less when the applied voltage is 25 V, making it difficult to apply as a substrate. However, the insulation resistance value of the silicon carbide substrate having the insulating film of the present invention is determined when the applied voltage is 25V.
When the applied voltage is 1 x 10 9 Ω or more, when the applied voltage is 100 V it is 1 x 10 8 Ω or more, and the withstand voltage measured based on the Japanese Industrial Standard (JIS-C-2110-8.3) is approximately 0.17 It has characteristics that are extremely suitable for use as a substrate, such as KV or higher. Next, the present invention will be explained with reference to examples. Example 1 The silicon carbide sintered body is a pressureless sintered body containing 1.0% by weight of boron and 2.0% by weight of free carbon, and has a density of 3.1 g/cm 3 , and is a thin plate of 50 x 20 x 2 mm. The material was polished in advance, the surface was finished with a #200 grindstone, and then the material was degreased by boiling in acetone. The silicon carbide sintered body was charged into a tubular furnace having an inner diameter of 40 mm, oxygen gas was charged into the tubular furnace at a rate of 1/min, and oxidation treatment was carried out by holding at 1100° C. for 3 hours. By the above treatment, a SiO 2 coating with a thickness of about 0.05 μm was obtained on the surface of the silicon carbide sintered body. Next, on the surface of the sintered body having the SiO 2 coating,
Applying a coating agent composition containing SiO 2 , B 2 O 3 and ZnO as main components by screen printing method,
The process of drying at 110°C for 1.5 hours was repeated twice. The sintered body coated with the coating agent composition was charged into a firing furnace and heated at a rate of 10°C/min until the maximum temperature was reached.
It was held at 650°C for 60 minutes and then cooled. The firing is
The test was conducted in air up to 300°C, and thereafter in an argon gas atmosphere. The thickness of the obtained insulating film was 30 μm, almost no defects such as pinholes or microcracks were observed, and the surface was extremely smooth. The insulation resistance of the silicon carbide sintered body having the insulating film was 3×10 12 Ω at an applied voltage of 100 V, and the withstand voltage was 0.8 KV. The insulation resistance is JIS-C
-5012-7.3, and the withstand voltage was measured based on JIS-C-2110-8.3. Note that this insulating film also had extremely excellent thermal shock resistance. Example 2 A method similar to Example 1, except that a gas containing water vapor and oxygen mixed at a ratio of approximately 1:1 was used as the oxidizing gas during the oxidation treatment, and the thickness was 0.09 μm.
A SiO 2 film was formed. An insulating film was formed in the same manner as in Example 1 on the surface of the sintered body on which the SiO 2 film had been formed. The thickness of the obtained insulating film was 30 μm, and like the one obtained in Example 1, it had an extremely smooth surface with almost no defects. The properties of the insulating film were measured in the same manner as in Example 1 and are shown in Table 1. Example 3 A SiO 2 film was formed using substantially the same method as in Example 1, but changing the temperature and time during the oxidation treatment. The thickness of the SiO 2 coating obtained is shown in Table 1. Next, an insulating film was formed in the same manner as in Example 1 on the surface of the sintered body on which the SiO 2 film had been formed. The properties of the obtained insulating film were measured in the same manner as in Example 1 and are shown in Table 1. Example 4 The same procedure as in Example 1 was repeated, except that the coating agent composition was applied and dried four times to form an insulating film. The properties of the obtained insulating film are shown in Table 1.

【表】 実施例 5 実施例1と同様にしてSiO2被膜を形成させた
炭化珪素焼結体表面にSiO2とBaOとPbOとを主
成分とするコーテイング剤組成物をスクリーン印
刷法によつて塗布し、100℃で2時間乾燥した。 前記コーテイング剤組成物を塗布した焼結体を
実施例1と同様であるが、焼成温度を900℃に高
めて絶縁性被膜を形成した。 得られた絶縁性被膜の特性は第1表に示した。 実施例 6 実施例1と同様であるがコーテイング剤組成物
としてSiO2とBaOとCaOとを主成分とするコー
テイング剤組成物を使用し、温度を1100℃に高め
て絶縁性被膜を形成した。 得られた絶縁性被膜の特性は第1表に示した。 実施例 7 実施例1と同様にして表面仕上げおよび脱脂処
理を施した炭化珪素焼結体を、40%硝酸水溶液中
に浸漬し、20時間煮沸することによつて炭化珪素
焼結体表面の酸化処理を行なつた。得られた
SiO2被膜の厚さは約0.01μmであつた。前記SiO2
被膜を形成させた焼結体表面に実施例1と同様に
して絶縁性被膜を形成した。 得られた絶縁性被膜の特性は第1表に示した。 比較例 1 実施例1と同様にして表面仕上げおよび脱脂処
理を施した炭化珪素焼結体を使用し、酸化処理を
施すことなくコーテイング剤組成物を塗布し、融
着させた。前記コーテイング剤組成物は実施例1
で使用したものと同じ組成物を使用し、塗布方法
および融着方法は実施例1と同じ方法で行なつ
た。 得られた絶縁性被膜は炭化珪素焼結体表面への
密着性が悪く、凸状にふくれた部分が多数存在
し、極めて剥離し易いものであつた。 以上述べた如く、本発明方法によれば、高い熱
伝導率を有し、しかも熱膨張率が通常集積回路と
して使用されるシリコンチツプとほぼ同じである
ところの高集積回路用基板あるいはICパツケー
ジ用材料として極めて優れた基板を供給でき、産
業上に寄与する効果は極めて大きい。
[Table] Example 5 A coating agent composition containing SiO 2 , BaO, and PbO as main components was applied to the surface of a silicon carbide sintered body on which a SiO 2 film was formed in the same manner as in Example 1 by screen printing. It was applied and dried at 100°C for 2 hours. The sintered body coated with the coating agent composition was fired in the same manner as in Example 1, but the firing temperature was increased to 900°C to form an insulating film. The properties of the obtained insulating film are shown in Table 1. Example 6 The same as Example 1 was used, except that a coating agent composition containing SiO 2 , BaO, and CaO as main components was used, and the temperature was raised to 1100° C. to form an insulating film. The properties of the obtained insulating film are shown in Table 1. Example 7 A silicon carbide sintered body that had been surface-finished and degreased in the same manner as in Example 1 was immersed in a 40% nitric acid aqueous solution and boiled for 20 hours to oxidize the surface of the silicon carbide sintered body. I processed it. obtained
The thickness of the SiO 2 coating was approximately 0.01 μm. The SiO2
An insulating film was formed in the same manner as in Example 1 on the surface of the sintered body on which the film had been formed. The properties of the obtained insulating film are shown in Table 1. Comparative Example 1 Using a silicon carbide sintered body that had been subjected to surface finishing and degreasing treatment in the same manner as in Example 1, a coating agent composition was applied and fused without performing oxidation treatment. The coating agent composition is as shown in Example 1.
The same composition as that used in Example 1 was used, and the coating and fusing methods were the same as in Example 1. The resulting insulating coating had poor adhesion to the surface of the silicon carbide sintered body, had many convex bulges, and was extremely easy to peel off. As described above, according to the method of the present invention, a substrate for highly integrated circuits or an IC package which has high thermal conductivity and has a coefficient of thermal expansion almost the same as that of silicon chips normally used as integrated circuits. It is possible to supply a substrate of extremely high quality as a material, and the effect of contributing to industry is extremely large.

Claims (1)

【特許請求の範囲】 1 炭化珪素質基板上に電気絶縁層を形成するに
当り、 電気伝導性を有する炭化珪素焼結体の表面を、
まず酸化処理してSiO2被膜を形成し、次いで
SiO2被膜が形成された炭化珪素焼結体の表面に
珪素、リン、ホウ素、ゲルマニウム、ヒ素、アン
チモン、ビスマス、バナジウム、亜鉛、カドミウ
ム、鉛、ナトリウム、カリウム、リチウム、カル
シウム、マグネシウム、バリウムあるいはストロ
ンチウムより選ばれるいずれか少なくとも一種を
含有するコーテイング剤組成物を塗布し、乾燥
し、その後加熱することにより、コーテイング剤
組成物より生ずる酸化物と前記SiO2被膜との共
融物にかかる電気絶縁皮膜を生成融着させ、この
電気絶縁皮膜で上記電気伝導性を有する炭化珪素
焼結体の表面を被覆することを特徴とする電気伝
導性を有する炭化珪素基板への絶縁皮膜形成方
法。 2 前記酸化処理は、炭化珪素焼結体を750〜
1650℃の温度範囲内の酸化性雰囲気中に少なくと
も10分間保持し、表面に3μm以下の厚さを有する
SiO2被膜を形成することにより行う特許請求の
範囲第1項に記載の方法。 3 前記電気絶縁皮膜は、その厚さを10〜100μm
の範囲内とする特許請求の範囲第1または2項に
記載の方法。 4 前記炭化珪素焼結体の表面に塗布したコーテ
イング剤組成物の乾繰後に行う融着加熱は、300
〜1200℃の温度範囲内で行う特許請求の範囲第1
〜3項のいずれか1つに記載の方法。
[Claims] 1. In forming an electrically insulating layer on a silicon carbide substrate, the surface of a silicon carbide sintered body having electrical conductivity is
First, oxidation treatment is performed to form a SiO 2 film, and then
Silicon, phosphorus , boron, germanium, arsenic, antimony, bismuth, vanadium, zinc, cadmium, lead, sodium, potassium, lithium, calcium, magnesium, barium, or strontium are added to the surface of the silicon carbide sintered body on which the SiO 2 film is formed. By applying a coating agent composition containing at least one selected from the following, drying, and then heating, an electrically insulating film is formed on the eutectic of the oxide produced from the coating agent composition and the SiO 2 film. 1. A method for forming an insulating film on an electrically conductive silicon carbide substrate, comprising forming and fusing the electrically conductive silicon carbide sintered body with the electrically insulating film. 2 The oxidation treatment is performed on the silicon carbide sintered body at a temperature of 750~
Hold in an oxidizing atmosphere within the temperature range of 1650℃ for at least 10 minutes and have a thickness of not more than 3μm on the surface
The method according to claim 1, which is carried out by forming a SiO 2 film. 3 The electrical insulation film has a thickness of 10 to 100 μm.
The method according to claim 1 or 2, which is within the scope of. 4 The fusion heating performed after drying the coating agent composition applied to the surface of the silicon carbide sintered body is
Claim 1 conducted within a temperature range of ~1200°C
The method according to any one of items 1 to 3.
JP56209992A 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof Granted JPS58130547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56209992A JPS58130547A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof
US06/451,940 US4499147A (en) 1981-12-28 1982-12-21 Silicon carbide substrates and a method of producing the same
US06/858,834 US4664946A (en) 1981-12-28 1986-04-29 Silicon carbide substrates and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209992A JPS58130547A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58130547A JPS58130547A (en) 1983-08-04
JPS6410100B2 true JPS6410100B2 (en) 1989-02-21

Family

ID=16582058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209992A Granted JPS58130547A (en) 1981-12-28 1981-12-28 Silicon carbide substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58130547A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330386A (en) * 1986-07-23 1988-02-09 日本特殊陶業株式会社 Manufacture of reaction-sintered silicon carbide heat-resistant parts
JP2002231424A (en) * 2001-01-31 2002-08-16 Kyocera Corp Ceramic heater and method of its manufacture and wafer heating system using this ceramic heater
FR2942517B1 (en) 2009-02-24 2015-07-03 Saint Gobain Ct Recherches COMPLIANT MATERIAL.
FR2942516B1 (en) 2009-02-24 2015-07-03 Saint Gobain Ct Recherches FLUSH ASSEMBLY.
FR2942515B1 (en) 2009-02-24 2015-07-03 Saint Gobain Ct Recherches ASSEMBLY DEVICE.
FR2942471A1 (en) 2009-02-24 2010-08-27 Saint Gobain Ct Recherches COATED CERAMIC PIECE.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101442A (en) * 1981-12-11 1983-06-16 Hitachi Ltd Substrate for electric device

Also Published As

Publication number Publication date
JPS58130547A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
US4499147A (en) Silicon carbide substrates and a method of producing the same
US2993815A (en) Metallizing refractory substrates
US4002799A (en) Glass sealed products
KR970008549B1 (en) Silver-rich conductor compositions for high thermal cycled and aged adhesion
US3414465A (en) Sealed glass article of manufacture
JPS6230159B2 (en)
JP2006298755A (en) Glaze coating structure of chip element and method of forming the same
US4273822A (en) Glazing paste for bonding a metal layer to a ceramic substrate
US20190002359A1 (en) Thick-film paste mediated ceramics bonded with metal or metal hybrid foils
JPS6410100B2 (en)
JPH03187947A (en) Dielectric composition of opaque glass containing lead oxide and iron oxide in small amount
JPS6310887B2 (en)
JPS6349903B2 (en)
US3619233A (en) Method of metallizing a ceramic member
JPH08315634A (en) Conductive paste and ceramic electronic component using it
US5763339A (en) Insulating glass composition
CN111484254B (en) High-temperature sealing glass and preparation method and application thereof
JPS58176187A (en) Silicon carbide substrate and manufacture
JPH0465011A (en) Copper conductive paste
JP2001052526A (en) Electric insulating member and manufacture thereof
JPH0131698B2 (en)
US3849142A (en) Barium- or strontium-containing glass frits for silver metallizing compositions
JP7360085B2 (en) Powder material and powder material paste
JPH0131697B2 (en)
JP2730794B2 (en) Conductor paste for aluminum nitride substrate