JPH0328825B2 - - Google Patents

Info

Publication number
JPH0328825B2
JPH0328825B2 JP57150239A JP15023982A JPH0328825B2 JP H0328825 B2 JPH0328825 B2 JP H0328825B2 JP 57150239 A JP57150239 A JP 57150239A JP 15023982 A JP15023982 A JP 15023982A JP H0328825 B2 JPH0328825 B2 JP H0328825B2
Authority
JP
Japan
Prior art keywords
copper
aluminum nitride
oxygen
thermally conductive
conductive substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57150239A
Other languages
Japanese (ja)
Other versions
JPS5940404A (en
Inventor
Michasu Komatsu
Masae Nakanishi
Hiroyuki Ishizuka
Nobuyuki Mizunoya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57150239A priority Critical patent/JPS5940404A/en
Publication of JPS5940404A publication Critical patent/JPS5940404A/en
Publication of JPH0328825B2 publication Critical patent/JPH0328825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、窒化アルミニウム系焼結体を基体と
した熱伝導性基板に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thermally conductive substrate having an aluminum nitride-based sintered body as a base.

(従来の技術) 従来より回路基板の構成において、酸化ベリリ
ウム系絶縁板を基板として用いると、その良好な
熱伝導性のために小型ながら高出力の回路基板が
得られることが知られている。これは基板上に設
けられた電子部品の動作発熱が容易に放熱される
ため、電子部品の負荷を大きくとりうることにな
るからである。ところでこの酸化ベリリウム系絶
縁基板は毒性の点で問題があり、この代替えとし
て窒化ホウ素系焼結体や窒化アルミニウム系焼結
体の使用が試みられている。特に、窒化アルミニ
ウム系焼結体は窒化ホウ素系焼結体に比べ安価に
得られること、さらに機械的強度も優れているこ
と等から絶縁基体として注目されている。
(Prior Art) It has been known that when a beryllium oxide-based insulating plate is used as a substrate in the construction of a circuit board, a small but high-output circuit board can be obtained due to its good thermal conductivity. This is because the heat generated by the operation of electronic components provided on the board is easily dissipated, which can place a large load on the electronic components. However, this beryllium oxide-based insulating substrate has a problem in terms of toxicity, and attempts have been made to use boron nitride-based sintered bodies or aluminum nitride-based sintered bodies as an alternative. In particular, aluminum nitride-based sintered bodies are attracting attention as insulating substrates because they can be obtained at lower cost than boron nitride-based sintered bodies and have superior mechanical strength.

(発明が解決しようとする問題点) しかしながら、このような焼結窒化アルミニウ
ム系基体は金属との濡れ性に劣るため、熱伝導性
向上等を目的として、直接接合法によつて金属を
接合しようとしても被着し難いという欠点があつ
た。
(Problem to be solved by the invention) However, since such a sintered aluminum nitride-based substrate has poor wettability with metals, it has been attempted to bond metals using a direct bonding method for the purpose of improving thermal conductivity. However, it had the disadvantage of being difficult to adhere to.

従つて、焼結窒化アルミニウム系基体について
は所要面に金属層が強固に接合された熱伝導性の
良好な回路基板用に適するものは未だ開発されて
いないのが実情である。
Therefore, the reality is that no sintered aluminum nitride-based substrate has yet been developed that has a metal layer firmly bonded to a required surface and is suitable for use in a circuit board with good thermal conductivity.

本発明は、このような問題を解決するためにな
されたもので、毒性がなく熱伝導性および強度に
優れた焼結窒化アルミニウム系基体を用い、所要
面に金属層が強固に直接接合された熱伝導性基板
を提供することを目的とする。
The present invention was made to solve these problems, and uses a sintered aluminum nitride base that is non-toxic and has excellent thermal conductivity and strength, and a metal layer is firmly and directly bonded to the required surface. The purpose is to provide a thermally conductive substrate.

[発明の構成] (問題点を解決するための手段) 本発明者らはこのような問題点を解決するべく
種々検討した結果、焼結窒化アルミニウム系基体
を結合剤で表面処理してから金属と直接接合させ
れば、焼結窒化アルミニウム系基体と被覆金属と
が強固に一体化し、剥離の生じない、長期間にわ
たつて優れた熱伝導性を有する熱伝導性基板が得
られることを見出した。
[Structure of the Invention] (Means for Solving the Problems) As a result of various studies in order to solve these problems, the present inventors found that after surface-treating a sintered aluminum nitride-based substrate with a binder, metal It was discovered that by directly bonding the sintered aluminum nitride-based substrate and the coating metal, a thermally conductive substrate that does not peel off and has excellent thermal conductivity over a long period of time can be obtained. Ta.

すなわち本発明の熱伝導性基板は、表面を酸素
で処理した焼結窒化アルミニウム系基体に、銅部
材を銅の融点以下でかつ銅と銅酸化物との共晶温
度以上の温度での加熱により直接接合してなるこ
とを特徴としている。
That is, the thermally conductive substrate of the present invention is produced by heating a copper member on a sintered aluminum nitride base whose surface has been treated with oxygen at a temperature below the melting point of copper and above the eutectic temperature of copper and copper oxide. It is characterized by being directly joined.

本発明における焼結窒化アルミニウム系基体と
しては、窒化アルミニウム粉未もしくは窒化アル
ミニウム焼結助剤としてイツトリウム、アルミニ
ウム、カルシウム、ストロンチウム、バリウム等
の酸化物、炭酸塩、または他の塩類あるいは炭化
ケイ素等を少なくとも1種微量添加した粉末を所
定の形状に成形し焼結したものを、結合剤すなわ
ち酸素で、基体表面に酸素を有する層が形成され
るよう表面を処理したものを使用する。
The sintered aluminum nitride-based substrate in the present invention may contain aluminum nitride powder or oxides such as yttrium, aluminum, calcium, strontium, barium, etc., carbonates, other salts, or silicon carbide as an aluminum nitride sintering aid. A powder containing a small amount of at least one kind is molded into a predetermined shape and sintered, and the surface is treated with a binder, that is, oxygen, so that an oxygen-containing layer is formed on the surface of the substrate.

この結合剤による表面処理の方法としては、例
えば窒化アルミニウム系焼結体を空気中で1000℃
〜1400℃に加熱するか、あるいはウエツトフオー
ミングガス(H2+N2)中で1250℃〜1500℃に加
熱して酸化処理を行なう方法が挙げられる。この
温度より低いと接合に必要な結合剤層すなわち酸
化物層が形成されず、この温度より高いと結合剤
層が分離して剥離してしまう。また、形成する結
合剤層の厚さとしては、実用的には20μm程度ま
で、好ましくは10μm以下がよい。この結合剤層
すなわち酸化物層の厚さがあまり薄いと金属との
接合に必要な結合剤の量が不十分となり、あまり
厚いと形成した結合剤層と窒化アルミニウム焼結
体との熱膨脹差から剥離しやすくなる。
As a method of surface treatment using this binder, for example, aluminum nitride-based sintered bodies are heated to 1000℃ in air.
The oxidation treatment can be carried out by heating to 1250 to 1500°C or in wet forming gas (H 2 +N 2 ). If the temperature is lower than this, the binder layer or oxide layer necessary for bonding will not be formed, and if the temperature is higher than this temperature, the binder layer will separate and peel off. Further, the thickness of the binder layer to be formed is practically up to about 20 μm, preferably 10 μm or less. If the thickness of this binder layer, that is, the oxide layer, is too thin, the amount of binder required for bonding with the metal will be insufficient, and if it is too thick, there will be a difference in thermal expansion between the formed binder layer and the aluminum nitride sintered body. It becomes easier to peel off.

なお、空気中で加熱する場合は低温で結合剤層
を形成することができるという利点があり、ウエ
ツトフオーミングガス中で加熱する場合は緻密な
結合剤層が形成されるという利点がある。
Note that heating in air has the advantage that a binder layer can be formed at a low temperature, and heating in wet forming gas has an advantage that a dense binder layer can be formed.

本発明に適用される金属としては、銅の単体、
合金あるいは混合物が挙げられ、その形状は板状
等の有形状のもののほか、箔状、粒状であつても
よい。また、使用する銅部材としては、酸素を
100〜2000ppm含有しているものが好ましく、そ
の理由は接合がより容易になることによる。この
ような銅部材として、タフピツチ電解銅を使用す
ることが好ましい。あるいは銅部材をあらかじめ
酸素で表面処理し、表面に200〜5000Åの酸素を
含む層を形成したものを使用すれば同様に接合が
容易になる。
Metals applicable to the present invention include simple copper,
An alloy or a mixture may be mentioned, and the shape thereof may be a plate-like or other tangible shape, a foil-like shape, or a granular shape. In addition, the copper parts used are oxygen-free.
A content of 100 to 2000 ppm is preferable because bonding becomes easier. It is preferable to use tough pitch electrolytic copper as such a copper member. Alternatively, if a copper member is surface-treated with oxygen in advance and a layer containing oxygen of 200 to 5000 Å is used on the surface, bonding will be similarly facilitated.

本発明の熱伝導性基板は、結合剤として酸素で
表面を処理した焼結窒化アルミニウム系基体の結
合剤層上に銅部材を接触配置させ、これを銅の融
点(1083℃)以下でかつ銅と銅酸化物の共晶の共
晶温度、換言すれば銅ー酸化銅の共晶温度(1065
℃)以上の温度で加熱することによつて得られ
る。
In the thermally conductive substrate of the present invention, a copper member is placed in contact with a binder layer of a sintered aluminum nitride base whose surface has been treated with oxygen as a binder, and the copper member is heated below the melting point of copper (1083°C) and In other words, the eutectic temperature of copper-copper oxide (1065
℃) or higher.

銅部材は基体全体に設けてもよく、あるいは島
状または格子状に選択的に設けてもよい。また、
加熱に際して銅部材として酸素を含有するもの、
あるいは酸素で表面処理したものを使用する場合
は、銅、酸素、窒化アルミニウムに対して不活性
なガス雰囲気、例えば窒素ガス雰囲気中で加熱す
ることが好ましく、酸素を含有しない銅部材を使
用する場合は、酸素を0.03〜0.1体積%含有する
反応性のガス雰囲気中で加熱することが接合のし
やすさの点で好ましい。
The copper member may be provided over the entire base, or may be provided selectively in the form of islands or grids. Also,
Those containing oxygen as a copper member during heating,
Alternatively, when using a surface treated with oxygen, it is preferable to heat it in a gas atmosphere that is inert to copper, oxygen, and aluminum nitride, such as a nitrogen gas atmosphere, and when using a copper member that does not contain oxygen. is preferably heated in a reactive gas atmosphere containing 0.03 to 0.1% by volume of oxygen in terms of ease of bonding.

(作用) 本発明の熱伝導性基板において、基体の母材と
なる窒化アルミニウムは、熱伝導率が高く放熱性
に優れ、高電気絶縁性、低誘電率を示し、さらに
熱膨脹率も小さく、熱伝導性基板に必要とされる
種々の性質を有している。また、窒化アルミニウ
ム系焼結体上に一体に形成されている結合剤層上
に銅部材を直接接触配置させ、これをコントロー
ルされた雰囲気中で加熱することによつて、接触
界面に金属−結合剤共晶液層を生成させ、この液
層が窒化アルミニウム系焼結体表面の結合剤層を
濡らし、次いで冷却することにより銅と焼結窒化
アルミニウム系基体とが直接接合されているの
で、接合力も強固である。
(Function) In the thermally conductive substrate of the present invention, aluminum nitride, which is the base material of the base material, has high thermal conductivity, excellent heat dissipation, high electrical insulation, and low dielectric constant, and also has a small coefficient of thermal expansion. It has various properties required for conductive substrates. In addition, by placing a copper member in direct contact with the binder layer that is integrally formed on the aluminum nitride-based sintered body and heating it in a controlled atmosphere, metal-bonding can be achieved at the contact interface. The copper and the sintered aluminum nitride base are directly bonded by forming a eutectic liquid layer, which wets the binder layer on the surface of the aluminum nitride sintered body, and then cooling it. The power is also strong.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例 まず、厚さ2mmの板状の窒化アルミニウム焼結
体を用意し、これを空気中で1200℃で1時間加熱
して表面に酸化層を形成させた。
Example First, a plate-shaped aluminum nitride sintered body having a thickness of 2 mm was prepared and heated in air at 1200° C. for 1 hour to form an oxide layer on the surface.

次いで、この窒化アルミニウム焼結体表面に形
成された酸化層上に酸素含有量約400ppmのタフ
ピツチ電解銅からなる厚さ0.3mmの板状銅部材を
直接接触させて、窒素ガス雰囲気中で1075℃で10
分間加熱して接合させた。次に、ほぼ室温まで冷
却してから、接合部のピール強度を測定したとこ
ろ、8〜12Kg/mm2と良好な値を示した。
Next, a 0.3 mm thick plate-shaped copper member made of Toughpitch electrolytic copper with an oxygen content of about 400 ppm was brought into direct contact with the oxide layer formed on the surface of the aluminum nitride sintered body, and heated at 1075°C in a nitrogen gas atmosphere. in 10
They were bonded by heating for a minute. Next, after cooling to approximately room temperature, the peel strength of the joint was measured and showed a good value of 8 to 12 Kg/mm 2 .

[発明の効果] 本発明の熱伝導性基板は、焼結窒化アルミニウ
ム系基体の表面に金属層すなわち銅層が強固に密
着して形成されているので、熱抵抗が小さく、ま
た耐電圧が高く大電流を流すことができ、さらに
小型化が可能である。また、半田付けも容易であ
り、さらに切断加工しても金属の剥離が生じず、
生産性が大きいという利点がある。
[Effects of the Invention] The thermally conductive substrate of the present invention has a metal layer, that is, a copper layer, tightly adhered to the surface of a sintered aluminum nitride base, so it has low thermal resistance and high withstand voltage. A large current can flow, and further miniaturization is possible. In addition, it is easy to solder, and even when cutting, the metal does not peel off.
It has the advantage of high productivity.

Claims (1)

【特許請求の範囲】 1 表面を酸素で処理した焼結窒化アルミニウム
系基体に、銅部材を銅の融点以下でかつ銅と銅酸
化物との共晶温度以上の温度での加熱により直接
接合してなる熱伝導性基板。 2 銅部材は酸素を含有する特許請求の範囲第1
項記載の熱伝導性基板。 3 銅部材は酸素で処理されている特許請求の範
囲第1項記載の熱伝導性基板。 4 加熱は不活性ガス雰囲気中で行なわれる特許
請求の範囲第1項ないし第3項のいずれか1項記
載の熱伝導性基板。
[Claims] 1. A copper member is directly bonded to a sintered aluminum nitride base whose surface has been treated with oxygen by heating at a temperature below the melting point of copper and above the eutectic temperature of copper and copper oxide. A thermally conductive substrate. 2.Claim 1 that the copper member contains oxygen
The thermally conductive substrate described in . 3. The thermally conductive substrate according to claim 1, wherein the copper member is treated with oxygen. 4. The thermally conductive substrate according to any one of claims 1 to 3, wherein the heating is performed in an inert gas atmosphere.
JP57150239A 1982-08-30 1982-08-30 Thermal conductive substrate Granted JPS5940404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150239A JPS5940404A (en) 1982-08-30 1982-08-30 Thermal conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150239A JPS5940404A (en) 1982-08-30 1982-08-30 Thermal conductive substrate

Publications (2)

Publication Number Publication Date
JPS5940404A JPS5940404A (en) 1984-03-06
JPH0328825B2 true JPH0328825B2 (en) 1991-04-22

Family

ID=15492597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150239A Granted JPS5940404A (en) 1982-08-30 1982-08-30 Thermal conductive substrate

Country Status (1)

Country Link
JP (1) JPS5940404A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674194B2 (en) * 1986-02-03 1994-09-21 住友電気工業株式会社 Surface-modified A-N sintered body
JPS62270478A (en) * 1986-05-16 1987-11-24 宇部興産株式会社 Surface treatment for silicon nitride sintered body
JP3529055B2 (en) * 1994-05-18 2004-05-24 電気化学工業株式会社 Insulating heat sink
JP3845925B2 (en) * 1996-02-05 2006-11-15 住友電気工業株式会社 Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
KR100371974B1 (en) 1997-05-26 2003-02-17 스미토모덴키고교가부시키가이샤 Copper circuit junction substrate and method of producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075208A (en) * 1973-11-07 1975-06-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075208A (en) * 1973-11-07 1975-06-20

Also Published As

Publication number Publication date
JPS5940404A (en) 1984-03-06

Similar Documents

Publication Publication Date Title
JP5757359B2 (en) Cu / ceramic bonded body, Cu / ceramic bonded body manufacturing method, and power module substrate
US4961987A (en) Aluminum nitride sintered body with high thermal conductivity and process for producing same
JPS5811390B2 (en) Method of manufacturing thermally conductive substrate
JPH0328825B2 (en)
JPH022836B2 (en)
JPS61119094A (en) High thermoconductive circuit board
JPH0359036B2 (en)
JPH0570954B2 (en)
JP2503778B2 (en) Substrate for semiconductor device
JPH0458187B2 (en)
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JP2001097779A (en) Aluminum nitride board and circuit board using the same
JP2503775B2 (en) Substrate for semiconductor device
JP2554210B2 (en) Metal bonded circuit board and electronic device using the same
JP2751473B2 (en) High thermal conductive insulating substrate and method of manufacturing the same
JP2503779B2 (en) Substrate for semiconductor device
EP0200950A1 (en) Paste containing a eutectic composition, method of forming such a paste and its application
JP2506270B2 (en) High thermal conductivity circuit board and high thermal conductivity envelope
JPH0337310B2 (en)
JP2001160676A (en) Ceramic circuit board
JP2904621B2 (en) Metal base circuit board
JP4286992B2 (en) Brazing material for Al circuit board and ceramic circuit board using the same
JPS61281074A (en) High heat conductivity aluminum nitride sintered body
JPS61227035A (en) Ceramics circuit substrate
JP2616951B2 (en) Aluminum nitride sintered body having metallized surface and method for producing the same