JPH03112874A - Junction between ceramic base and copper - Google Patents

Junction between ceramic base and copper

Info

Publication number
JPH03112874A
JPH03112874A JP25119789A JP25119789A JPH03112874A JP H03112874 A JPH03112874 A JP H03112874A JP 25119789 A JP25119789 A JP 25119789A JP 25119789 A JP25119789 A JP 25119789A JP H03112874 A JPH03112874 A JP H03112874A
Authority
JP
Japan
Prior art keywords
copper
ceramic substrate
substrate
ceramic base
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25119789A
Other languages
Japanese (ja)
Inventor
Satoru Ogawa
悟 小川
Noboru Yamaguchi
昇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP25119789A priority Critical patent/JPH03112874A/en
Publication of JPH03112874A publication Critical patent/JPH03112874A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the wetability of the surface of a ceramic base and enable a strong junction between copper by forming a zygote containing specified elements on the surface of the ceramic base before heat junction between the ceramic base and copper. CONSTITUTION:In forming a conductive circuit composed of a copper metal layer on a circuit base such as an alumina base, etc., a zygote (e.g. SiO2 layer prepared by oxidative destruction by heat treatment of silane coupling agent) containing one or more elements of Be, Mg, Ca, Sr, Ba, B, Al, Y, Si, Ti, Zr and Cu is formed after preferably chemical or physical roughening of the surface of the ceramic base and heat junction between the ceramic base and copper is subsequently carried out. The condition of the heat junction is preferably about 1-10min. at < eutectic point of copper and copper oxide in an inert atmosphere containing <=1000ppm oxygen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、セラミック基体と銅の接合方法に関し、詳
しくは、セラミック回路基板の表面に導体回路となる銅
金属層を形成する場合等、電子回路部品その他の製造分
野において、非金属材であるセラミック基体と金属材で
ある銅とを接合するための方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for bonding a ceramic substrate and copper, and more specifically, when forming a copper metal layer to serve as a conductor circuit on the surface of a ceramic circuit board, etc. The present invention relates to a method for joining a ceramic substrate, which is a non-metallic material, and copper, which is a metallic material, in the field of manufacturing circuit components and other products.

〔従来の技術〕[Conventional technology]

従来、半導体や配線回路板の製造分野において、セラミ
ック基板上に、銅箔を接着したり、化学メツキやスパッ
タリング等で銅導体層を形成することが行われている。
Conventionally, in the field of manufacturing semiconductors and printed circuit boards, a copper conductor layer has been formed on a ceramic substrate by bonding copper foil, chemical plating, sputtering, or the like.

このような場合、銅層はミクロン単位の非常に薄いもの
であるとともに、高密度な電気信号を正確に伝達する必
要があり、断線等の導通不良を起こしてはならないため
、セラミック基体に対して銅を確実強固に密着させて接
合しておく必要がある。
In such cases, the copper layer must be extremely thin, on the order of microns, and must accurately transmit high-density electrical signals, and must not cause conduction defects such as disconnections, so it is It is necessary to bond the copper firmly and tightly.

そのため、セラミック基板と銅の密着力を向上させる方
法が種々提案されている。
Therefore, various methods have been proposed to improve the adhesion between the ceramic substrate and copper.

例えば、特開昭57−36892号公報等には、セラミ
ック基板上に、化学メツキまたはスパッタリング方で銅
導体層を形成した後、熱処理を行ってセラミック基板と
銅の密着力を向上させる方法が開示されている。
For example, Japanese Unexamined Patent Publication No. 57-36892 discloses a method of forming a copper conductor layer on a ceramic substrate by chemical plating or sputtering, and then performing heat treatment to improve the adhesion between the ceramic substrate and the copper. has been done.

また、特公昭57−13515号公報には、セラミック
基体の上に銅の薄板を重ねた状態で、反応性ガス雰囲気
下で加熱して、銅と酸化銅の共晶を形成させることによ
って、セラミック基体と銅の密着力を向上させる方法が
開示されている。
In addition, Japanese Patent Publication No. 57-13515 discloses that a thin copper plate is stacked on a ceramic substrate and heated in a reactive gas atmosphere to form a eutectic of copper and copper oxide. A method for improving the adhesion between a substrate and copper is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記した各先行技術の方法でも、セラミック
基体と銅の密着力が充分でなく、さらに改良が要望され
ている。
However, even with the above-mentioned prior art methods, the adhesion between the ceramic substrate and copper is insufficient, and further improvements are desired.

例えば、前記した、銅と酸化銅の共晶によって密着力の
向上を図る方法では、15μ麿程度以下の薄い銅板もし
くは銅膜をセラミック基体に接合しようとした場合、共
晶温度以上に加熱することによって薄い銅層が溶けてし
まうという問題があり、銅層が溶けない程度でかつ充分
な共晶を生成させるには、技術的に極めて困難な操作が
必要であった。また、加熱による接合方法では、フクレ
が発生し易いという問題もあった。
For example, in the above-mentioned method of improving adhesion using the eutectic of copper and copper oxide, when attempting to bond a thin copper plate or copper film of approximately 15 μm or less to a ceramic substrate, it is necessary to heat it above the eutectic temperature. There is a problem in that the thin copper layer melts due to the process, and in order to generate enough eutectic without melting the copper layer, technically extremely difficult operations are required. Furthermore, the bonding method using heating has a problem in that blisters are likely to occur.

一方、セラミック基体の使用目的等によって、表面を粗
面化した状態で使用する場合があるが、このような粗面
化されたセラミック基体の表面に銅を接合しようとする
と、充分な密着力が得られないとう問題があった。これ
は、セラミック基体の表面を粗面化することによって、
基体表面のフラックス分が除去されるので、前記方法で
密着力の向上に寄与する共晶融液が、セラミック基体の
表面を充分に濡らすことができないためであると考えら
れている。その理由について、以下により詳しく説明す
る。
On the other hand, depending on the intended use of the ceramic substrate, it may be used with a roughened surface, but when attempting to bond copper to the surface of such a roughened ceramic substrate, sufficient adhesion may not be achieved. The problem was that I couldn't get it. This is achieved by roughening the surface of the ceramic substrate.
It is thought that this is because the eutectic melt, which contributes to improving adhesion in the above method, cannot sufficiently wet the surface of the ceramic substrate because the flux on the surface of the substrate is removed. The reason for this will be explained in more detail below.

下記第1表は、セラミック基体として一般的な96%ア
ルミナ基板および99%アルミナ基板について、表面か
ら10〜15人程度の深さの層を、オージェ分析(AE
S)によって組成分析した結果を示す、公知データであ
る。CP、F、Becher &J、S、Murday
 : Proc、IStlM Int、Microel
ectronicSymp、(1976)より引用〕。
Table 1 below shows the results of an Auger analysis (AE
This is publicly known data showing the results of compositional analysis by S). C.P., F., Becher & J., S., Murday.
: Proc, IStlM Int, Microel
Quoted from electronicSymp, (1976)].

上記表をみると、未処理のアルミナ基板表面には、アル
ミナ基板のフラックス分、例えば5iOt 、MgO,
CaO等が偏析していることがわかる。このようなアル
ミナ基板を、HFで表面処理して粗面化させると、偏析
していたフラックス分、特に5iO=が除去されてA1
□0.リッチな組成になっていることがわかる。そのた
めに、アルミナ基板の表面に前記した共晶を作用させて
も、共晶融液がセラミック基板を充分に濡らすことが出
来ないのである。言い換えれば、フラックス分の存在に
よって、アルミナ基板表面に対する共晶の濡れ性を良好
にし、共晶がA1.O,だけでなく、フラックス分とも
結合して、強固な接合が得られるという、極めて重要な
作用を発揮していることになり、粗面化されたセラミッ
ク基体と銅の密着性が悪い理由もそこにある。
Looking at the above table, it can be seen that the surface of the untreated alumina substrate contains the flux of the alumina substrate, for example, 5iOt, MgO,
It can be seen that CaO etc. are segregated. When such an alumina substrate is surface-treated with HF to make the surface rough, the segregated flux, especially 5iO=, is removed and the A1
□0. It can be seen that it has a rich composition. Therefore, even if the eutectic described above is applied to the surface of the alumina substrate, the eutectic melt cannot sufficiently wet the ceramic substrate. In other words, the presence of the flux component improves the wettability of the eutectic to the alumina substrate surface, and the eutectic becomes A1. This means that it combines not only with O, but also with the flux to obtain a strong bond, which is an extremely important function, and is also the reason why the adhesion between the roughened ceramic substrate and copper is poor. is there.

さらに、SiC,AIN等の非酸化物系セラミック基板
の場合、従来は、大気中で熱処理することによって、表
面に酸化物層を形成させて、この酸化物層によって銅と
の密着性を改善することが行われていたが、眉間での割
れが発生するという欠点があった。
Furthermore, in the case of non-oxide ceramic substrates such as SiC and AIN, conventionally, an oxide layer is formed on the surface by heat treatment in the atmosphere, and this oxide layer improves the adhesion with copper. However, it had the disadvantage of causing a crack between the eyebrows.

そこで、この発明の課題は、前記したようなセラミック
基体と銅の接合方法において、薄層の銅であっても溶け
たり変形したりすることなく確実強固にセラミック基体
に接合することができ、接合工程でフクレや割れが発生
することもなく、特に、表面が粗面化されているセラミ
ック基体へも銅を強固に接合することのできる方法を提
供することにある。
Therefore, an object of the present invention is to provide a method for bonding a ceramic substrate and copper as described above, in which even a thin layer of copper can be reliably and firmly bonded to a ceramic substrate without melting or deforming. The object of the present invention is to provide a method that can firmly bond copper even to a ceramic substrate having a roughened surface without causing blisters or cracks during the process.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する、この発明のセラミック基体と銅の
接合方法は、セラミック基体の表面に、Be、Mg、C
a、Sr、Ba、B、A1.Y。
A method for bonding a ceramic substrate and copper according to the present invention that solves the above-mentioned problems has a method of bonding Be, Mg, C, etc.
a, Sr, Ba, B, A1. Y.

Si、Ti、Zr、Cuのうちの少なくとも1種の元素
を含む接合体を形成した後、この接合体を介してセラミ
ック基体と銅を加熱接合するようにしている。
After forming a bonded body containing at least one element among Si, Ti, Zr, and Cu, the ceramic substrate and copper are bonded by heating through this bonded body.

セラミック基体としては、酸化物系、非酸化物系等、通
常の各種セラミック材料からなるものが使用できる。セ
ラミック基体は、使用目的によって、板状あるいはブロ
ック状等任意の形状で実施できる。
As the ceramic substrate, those made of various ordinary ceramic materials such as oxide-based and non-oxide-based ceramic materials can be used. The ceramic substrate can be in any shape, such as a plate or a block, depending on the purpose of use.

セラミック基体に接合する銅としては、図示した実施例
のように、銅板や銅箔等、予め製造された銅材料を用い
てもよいし、化学メツキやスパッタリング等で、セラミ
ック基体の表面に直接膜形成されるものであってもよい
。銅層の厚みは、特に限定されないが、好ましくは5n
以上で実施する。銅層は、セラミック基体の表面全体を
覆うもののほか、銅箔を打ち抜き加工したものを用いた
り、エツチング加工したりして、所定の形状に加工され
た銅層で実施することもできる。
As the copper to be bonded to the ceramic substrate, a pre-manufactured copper material such as a copper plate or copper foil may be used as in the illustrated example, or a film may be directly applied to the surface of the ceramic substrate by chemical plating or sputtering. It may be formed. The thickness of the copper layer is not particularly limited, but is preferably 5n.
Execute the above steps. In addition to covering the entire surface of the ceramic substrate, the copper layer may be formed by punching or etching copper foil into a predetermined shape.

なお、化学メツキやスパッタリング等で、セラミック基
体の表面に銅膜を形成する場合には、セラミック基板の
表面を、化学的もしくは物理的に粗面化しておくことに
よって、銅との初期密着力が向上し、加熱接合工程での
昇温時に、フクレやハガレが生じ難くなり、好ましい方
法である。
When forming a copper film on the surface of a ceramic substrate by chemical plating or sputtering, the initial adhesion to the copper can be improved by chemically or physically roughening the surface of the ceramic substrate. This is a preferable method because it reduces the possibility of blistering or peeling when the temperature is raised in the heat bonding process.

セラミック基体の表面に形成する接合体は、Be、Mg
、  Ca、  Sr、Ba、  B、Al、Y、  
Si、’rt、Zr、Cuのうちの少なくとも1種の元
素を含むものが使用される。そのうち、MgCa、AI
、Si、Ti、7.rを含むものが特に好ましい。これ
らの元素は、セラミック基板の表面におけるフラックス
成分として有効なものである。接合体は、前記のような
銅箔や銅膜等の銅層をセラミック基体の表面に接合する
前に、セラミック基体の表面に形成してお(。
The bonded body formed on the surface of the ceramic base is made of Be, Mg
, Ca, Sr, Ba, B, Al, Y,
A material containing at least one element selected from Si, 'rt, Zr, and Cu is used. Among them, MgCa, AI
, Si, Ti, 7. Particularly preferred are those containing r. These elements are effective as flux components on the surface of the ceramic substrate. The bonded body is formed on the surface of the ceramic substrate before bonding the copper layer such as copper foil or copper film as described above to the surface of the ceramic substrate.

セラミック基体の表面に接合体を形成するには、前記の
ような元素を含む化合物の形で、セラミック基体の表面
に処理する。
In order to form a bonded body on the surface of a ceramic substrate, the surface of the ceramic substrate is treated with a compound containing the above-mentioned elements.

化合物としては、上記元素の単体であってもよいし、酸
化物、有機金属化合物、硝酸塩、ハロゲン化物等でもよ
く、大気中での熱処理等によって容易に酸化物になるも
のが好ましい。
The compound may be a simple substance of the above-mentioned element, or may be an oxide, an organometallic compound, a nitrate, a halide, etc., and preferably one that easily becomes an oxide by heat treatment in the atmosphere.

化合物をセラミック基体の表面に処理して結合体を形成
させる処理方法としては、化合物が単体もしくは酸化物
の場合には、蒸着、スパッタリング等によって、基体表
面に付着させる。特に、単体の場合は、大気中で熱処理
して酸化物に変えて基体表面に付着させる。酸化物の場
合には、そのまま付着させるだけでもよいが、基体表面
とのなじみを良くするために、大気中で熱処理するのが
好ましい。
As a treatment method for forming a bond by treating the surface of a ceramic substrate with a compound, when the compound is a simple substance or an oxide, it is attached to the surface of the substrate by vapor deposition, sputtering, or the like. In particular, in the case of a single substance, it is heat-treated in the atmosphere to convert it into an oxide and adhere to the surface of the substrate. In the case of oxides, they may be simply deposited as is, but in order to improve their compatibility with the substrate surface, it is preferable to heat-treat them in the atmosphere.

また、水または有機溶剤に可溶な化合物、例えば、硝酸
塩、ハロゲン化物、有機金属化合物等の場合には、溶液
にしたものを基体表面に塗布した後、大気中で、その化
合物の分解温度以上に加熱する方法が採用できる。この
ような処理を行うことによって、化合物が分解されて酸
化物となり、基体表面に付着する。
In addition, in the case of compounds that are soluble in water or organic solvents, such as nitrates, halides, organometallic compounds, etc., after applying the solution to the substrate surface, it can be exposed to temperatures above the decomposition temperature of the compound in the atmosphere. A heating method can be used. By performing such a treatment, the compound is decomposed into an oxide, which adheres to the surface of the substrate.

上記のような方法のうち、金属アルコキシド、カップリ
ング剤等の有機金属化合物を基体表面に塗布した後、熱
処理する方法が最も好ましい方法である。
Among the above methods, the most preferred method is to apply an organometallic compound such as a metal alkoxide or a coupling agent to the surface of the substrate and then heat treat it.

セラミック基体の表面に形成する接合体の量は、フラッ
クス成分として有効な程度のわずかな量で充分であり、
具体的には、多くても膜厚がlfm程度以下になるよう
に形成するのが好ましい。
It is sufficient that the amount of bonded material formed on the surface of the ceramic substrate is small enough to be effective as a flux component.
Specifically, it is preferable to form the film so that the film thickness is approximately lfm or less at most.

セラミック基体の表面に接合体を介して銅箔や銅膜を形
成した後、セラミック基体と銅を加熱接合させる。加熱
接合条件としては、銅の融点未満の加熱温度で、酸素濃
度11000pp以下の不活性雰囲気下で1〜20分間
保持する。さらに、好ましくは、銅と酸化銅の共晶温度
未満の加熱温度で、酸素濃度100ppn+以下の不活
性雰囲気下で1〜10分間保持しておく。セラミック基
体は、接合体の形成によって濡れ性が向上しているので
、共晶温度未満の加熱温度であっても、充分強固に接合
することができる。また、低い温度で実施するほうが、
フクレの防止にも有効である。特に、銅の厚みが25.
w程度以下の薄い銅層の場合は、酸化銅−銅の共晶融液
によって溶は易いため、−旦接合温度未満の温度で酸化
銅層を形成させた後、引き続いて、接合温度まで昇温さ
せて、不活性雰囲気下で接合させる方法が好ましい。
After forming a copper foil or a copper film on the surface of a ceramic substrate via a bonded body, the ceramic substrate and copper are bonded together by heating. The heat bonding conditions include heating at a temperature below the melting point of copper and holding for 1 to 20 minutes in an inert atmosphere with an oxygen concentration of 11,000 pp or less. Further, preferably, the heating temperature is lower than the eutectic temperature of copper and copper oxide, and the heating temperature is maintained for 1 to 10 minutes in an inert atmosphere with an oxygen concentration of 100 ppn+ or less. Since the ceramic substrate has improved wettability due to the formation of the bonded body, it can be bonded sufficiently firmly even at a heating temperature below the eutectic temperature. Also, it is better to carry out at a lower temperature.
It is also effective in preventing blisters. In particular, the thickness of the copper is 25.
In the case of a thin copper layer with a thickness of about 50% or less, it is easily melted by a copper oxide-copper eutectic melt. A method of heating and bonding under an inert atmosphere is preferred.

〔作  用〕[For production]

セラミック基体の表面に、前記した元素を含む接合体を
形成しておくと、接合体が、1種のフラックス成分と同
様の作用を果たして、基体表面の濡れ性が向上する。そ
の結果、銅とセラミック基体が接合体を介して強固に接
合される。接合体の介在によって、銅とセラミック基体
との接合性が良くなるので、加熱接合工程で高い温度ま
で加熱する必要がなくなり、比較的低い温度でも強固な
接合力が発揮できる。その結果、加熱接合工程でフクレ
や割れを起こす心配もなく、薄い銅層であっても溶ける
心配がない。
When a bonded body containing the above-mentioned elements is formed on the surface of a ceramic substrate, the bonded body performs the same function as a type of flux component, and the wettability of the surface of the substrate is improved. As a result, the copper and ceramic substrate are firmly bonded via the bonded body. The presence of the bonded body improves the bondability between the copper and the ceramic substrate, so there is no need to heat to a high temperature in the heat bonding process, and a strong bonding force can be exerted even at a relatively low temperature. As a result, there is no risk of blistering or cracking during the heating bonding process, and there is no risk of melting even a thin copper layer.

特に、セラミ7り基体の表面を粗面化していても、粗面
化によって失われたフラックス成分の代わりに接合体が
銅との密着力向上を果たすので、粗面化したために接合
力が低下するという問題が解消される。
In particular, even if the surface of the ceramic substrate is roughened, the bonded body will improve its adhesion to the copper in place of the flux component lost due to the roughening, so the bonding strength will decrease due to the roughening. The problem of doing so is solved.

〔実 施 例〕〔Example〕

ついで、この発明の実施例について、添付図面を参照し
ながら、以下に詳しく説明する。
Next, embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

工程(a)では、セラミック基板として、市販の96%
Al201基板10を準備する。
In step (a), 96% of commercially available ceramic substrates are used.
An Al201 substrate 10 is prepared.

工程(blでは、接合体を形成させるための化合物を含
む処理剤として、Siを含有する市販のシランカフブリ
ング剤中にセラミック基板10を浸漬し、セラミック基
板10の表面にシランカフブリング剤20を塗布する。
In step (bl), the ceramic substrate 10 is immersed in a commercially available silane cuffling agent containing Si as a treatment agent containing a compound for forming a bonded body, and the silane cuffling agent 20 is applied to the surface of the ceramic substrate 10. Apply.

工程(C)では、シランカップリング剤20を塗布した
基板10を、大気中で熱処理する。この処理によって、
シランカップリング剤20は酸化分解され、基板10の
表面にSingからなる接合体21が付着形成される。
In step (C), the substrate 10 coated with the silane coupling agent 20 is heat-treated in the atmosphere. With this process,
The silane coupling agent 20 is oxidized and decomposed to form a bonded body 21 made of Sing on the surface of the substrate 10.

工程(d)では、厚さ10〜200nの銅板30を、接
合体21の上からセラミック基板10に載せ、酸素濃度
11000pp以下の不活性雰囲気下で、銅の融点未満
の加熱温度で1〜20分間保持することによって、銅板
30をセラミック基板10に加熱接合させる。
In step (d), a copper plate 30 with a thickness of 10 to 200 nm is placed on the ceramic substrate 10 from above the bonded body 21, and heated for 1 to 20 minutes at a heating temperature below the melting point of copper in an inert atmosphere with an oxygen concentration of 11,000 pp or less. By holding for a minute, the copper plate 30 is thermally bonded to the ceramic substrate 10.

さらに具体的な実施例について、以下に説明する。More specific examples will be described below.

一実施例1− 市販の96%アルミナ基板(100mm角×厚み0.8
m)を用い、Siを含有する化合物5t(0C,H,)
、中に浸漬することによって、金属アルコキシドS i
  (OC−Hs ) 4を基板表面に塗布し、大気中
900℃で1時間の熱処理を行って接合体を形成させた
Example 1 - Commercially available 96% alumina substrate (100 mm square x thickness 0.8
m), and Si-containing compound 5t(0C,H,)
, the metal alkoxide S i
(OC-Hs) 4 was applied to the surface of the substrate, and heat treatment was performed at 900° C. for 1 hour in the air to form a bonded body.

つぎに、高速スパッタリング法で、基板表面の接合体の
上に、約10nの銅層を形成した。その後、銅層を所定
の回路パターンにエツチング加工した。
Next, a copper layer of about 10 nm thick was formed on the bonded body on the surface of the substrate by high-speed sputtering. Thereafter, the copper layer was etched into a predetermined circuit pattern.

つぎに、加熱接合工程を行った。すなわち、Olを30
ppm含有するNt雰囲気下で、1000℃で10分間
保持した後、引き続き、N2雰囲気中1064℃で5分
間保持して、銅層とセラミック基板とを完全に接合した
Next, a heating bonding process was performed. That is, Ol is 30
After holding at 1000° C. for 10 minutes in an Nt atmosphere containing ppm, the copper layer and ceramic substrate were then held at 1064° C. for 5 minutes in a N2 atmosphere to completely bond the copper layer and the ceramic substrate.

得られたセラミック基板と銅層の密着力を測定したとこ
ろ、7kg/im”以上の密着力を示してセラミック基
板内で破断しており、セラミック基板とm層の密着力が
極めて高いものであることが実証できた。また、#i4
層のフクレ等の欠陥は全く見られなかった。
When the adhesion force between the obtained ceramic substrate and the copper layer was measured, it showed an adhesion force of 7 kg/im'' or more and was broken within the ceramic substrate, indicating that the adhesion force between the ceramic substrate and the m-layer was extremely high. It was demonstrated that #i4
No defects such as layer blisters were observed.

一実施例2− 市販の96%アルミナ基板(10(in角×厚み0.8
m)を、300℃に加熱したリン酸中に5分間浸漬して
、基板表面を粗面化した。つぎに、Siを含有するシラ
ンカップリング剤中に基板を浸漬した後、大気中100
0℃で1時間の熱処理を行って接合体を形成させた。
Example 2 - Commercially available 96% alumina substrate (10 (in square x thickness 0.8
m) was immersed in phosphoric acid heated to 300° C. for 5 minutes to roughen the substrate surface. Next, after immersing the substrate in a silane coupling agent containing Si,
A bonded body was formed by heat treatment at 0° C. for 1 hour.

つぎに、公知のセンシーアクチ法によりPd核付は処理
を行った後、高速無電解銅メツキで約10gの銅層を形
成し、エンチング加工で所定の回路パターンに形成した
Next, the Pd core was treated using the known Scentsy Act method, and then a copper layer of about 10 g was formed using high-speed electroless copper plating, and a predetermined circuit pattern was formed using etching processing.

つぎに、加熱接合工程として、08を20ppm含むN
8雰囲気下で、まず、1000℃で10分間保持した後
、引き続いてN8雰囲気中で、1063℃で3分間保持
することによって、&v4層とセラミック基体とを完全
に接合させた。
Next, as a heating bonding step, N containing 20 ppm of 08
The &v4 layer and the ceramic substrate were completely bonded by first holding the temperature at 1000° C. for 10 minutes in an N8 atmosphere, and then holding the temperature at 1063° C. for 3 minutes in an N8 atmosphere.

得られたセラミック基体と銅層との密着力および接合状
態は、実施例1と同様に良好なものであった。
The adhesion and bonding state between the obtained ceramic substrate and the copper layer were as good as in Example 1.

一実施例3 上記実施例2において、シランカップリング剤の代わり
に、Zr  (QC,H%)4のエタノール溶液を基板
表面に塗布した後、同じ条件で熱処理して接合体を形成
させた。
Example 3 In Example 2 above, instead of the silane coupling agent, an ethanol solution of Zr (QC, H%)4 was applied to the substrate surface and then heat treated under the same conditions to form a bonded body.

この基板の上に約20p重の銅箔を載せた後、加熱接合
させた。加熱接合条件は、0□を4. Oppm含むN
2雰囲気下で、1064℃5分間の熱処理を行った。
After placing a copper foil of about 20p on this substrate, it was bonded by heating. The heating bonding conditions were 0□ to 4. N including Oppm
Heat treatment was performed at 1064° C. for 5 minutes under two atmospheres.

その結果、実施例1と同様の優れた接合力が得られた。As a result, excellent bonding strength similar to that of Example 1 was obtained.

一実施例4− 市販のSiCセラミック基板(50+cm角×厚み0.
64m)を用い、基板表面に5iftをスパッタリング
して、膜厚0.1 viaのSin、層を形成した後、
N、雰囲気中1000℃で1時間の熱処理を行った。つ
いで、実施例3と同様の工程で、約20μlの銅箔を加
熱接合させた。
Example 4 - Commercially available SiC ceramic substrate (50+cm square x thickness 0.
After sputtering 5ift on the substrate surface using a 64m) to form a 0.1 via thick Sin layer,
Heat treatment was performed at 1000° C. for 1 hour in a nitrogen atmosphere. Then, in the same process as in Example 3, about 20 μl of copper foil was heat-bonded.

その結果、実施例1と同様の優れた接合力が得られた。As a result, excellent bonding strength similar to that of Example 1 was obtained.

一実施例5 実施例2において、シランカップリング剤の代わりに、
T i  (iso−OCs Ht ) 4と5i(Q
C、Hi、を混合した溶液を用い、この溶液中に基板を
浸漬した以外は、実施例2と同様の工程を経て、セラミ
ック基板にfI層を接合した。
Example 5 In Example 2, instead of the silane coupling agent,
T i (iso-OCs Ht ) 4 and 5i (Q
The fI layer was bonded to the ceramic substrate through the same steps as in Example 2, except that a solution containing C and Hi was used and the substrate was immersed in this solution.

その結果は、実施例1と同様の優れた接合力が得られた
As a result, excellent bonding strength similar to that of Example 1 was obtained.

一比較例1− 市販の96%アルミナ基板(100++m角×厚み0.
8■■)の表面に、所定の形状に形成された厚み25μ
lの銅箔を載せて、0!を30ppm含むN。
Comparative Example 1 - Commercially available 96% alumina substrate (100++ m square x thickness 0.
8■■) with a thickness of 25μ formed in a predetermined shape on the surface.
Place the copper foil of l, and 0! N containing 30 ppm.

雰囲気中で、1068℃で5分間保持して、銅箔を基板
に加熱接合させた。得られたセラミック基板と銅箔の密
着力は、5kg/vi”以上あったが、フクレの発生が
認められた。
The copper foil was heated and bonded to the substrate by holding it at 1068° C. for 5 minutes in an atmosphere. Although the adhesive strength between the obtained ceramic substrate and the copper foil was 5 kg/vi'' or more, the occurrence of blisters was observed.

一比較例2 実施例2と同様の工程で、アルミナ基板の表面を粗面化
した。つぎに、比較例Iと同様の工程で、粗面化された
セラミック基板の表面に銅箔を加熱接合した。ところが
、得られたセラミック基板と銅箔の密着力は1〜2kg
/n+”Lかなく、充分な接合力が発揮できていなかっ
た。
Comparative Example 2 In the same process as in Example 2, the surface of an alumina substrate was roughened. Next, in the same process as Comparative Example I, a copper foil was heat bonded to the roughened surface of the ceramic substrate. However, the adhesion between the obtained ceramic substrate and copper foil was 1 to 2 kg.
/n+"L, and sufficient bonding force could not be exerted.

−比較例3一 実施例1において、Si  (QCs H% )4によ
る接合体の形成工程を行わなかったほかは、同様の工程
を経て、セラミック基板と銅層の接合を行った。
- Comparative Example 3 - The ceramic substrate and the copper layer were bonded through the same steps as in Example 1, except that the step of forming the bonded body using Si (QCs H%)4 was not performed.

その結果、セラミック基板と銅層の密着力は3〜4kg
/n+”Lかなく、充分な接合力が発揮できていなかっ
た。
As a result, the adhesion between the ceramic substrate and the copper layer was 3 to 4 kg.
/n+"L, and sufficient bonding force could not be exerted.

〔発明の効果〕〔Effect of the invention〕

以上に述べた、この発明にかかるセラミック基体と銅の
接合方法によれば、セラミック基体と銅を加熱接合する
前に、セラミック基体の表面に、特定の元素を含む接合
体を形成しておくことによって、セラミック基体表面の
濡れ性が向上して、銅を強固に接合できるようになる。
According to the above-described method for joining a ceramic substrate and copper according to the present invention, a bonded body containing a specific element is formed on the surface of the ceramic substrate before heating and joining the ceramic substrate and copper. This improves the wettability of the ceramic substrate surface, making it possible to firmly bond copper.

その結果、加熱接合工程におけるフクレや割れの発生も
なくなる。従来のように、接合力を高めるために、加熱
温度を高(したり加熱時間を長くとる必要がなく、比較
的低い温度で短時間の加熱接合工程で充分に接合できる
ので、銅層の厚みが薄くても、溶けたり変形してしまう
心配はなく、正確な形状を維持した状態でセラミック基
体に接合される。
As a result, blisters and cracks do not occur during the heat bonding process. Unlike conventional methods, there is no need to increase the heating temperature or take a long time to increase the bonding strength, and it is possible to achieve sufficient bonding with a short heat bonding process at a relatively low temperature. Even if it is thin, there is no need to worry about it melting or deforming, and it can be bonded to the ceramic substrate while maintaining its precise shape.

特に、セラミック基体の表面が粗面化されてフラックス
成分が除去されていても、フラックス成分の代わりに接
合体がセラミック基体と銅の接合力向上を果たすので、
従来問題となっていた、粗面化表面への銅の接合性を改
善することが可能になる。
In particular, even if the surface of the ceramic substrate is roughened and the flux component is removed, the bonded material instead of the flux component improves the bonding strength between the ceramic substrate and copper.
It becomes possible to improve the bondability of copper to roughened surfaces, which has been a problem in the past.

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明の実施例を工程順に示す模式的断面図で
ある。
The figures are schematic sectional views showing an example of the present invention in the order of steps.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミック基体の表面に、Be、Mg、Ca、Sr
、Ba、B、Al、Y、Si、Ti、Zr、Cuのうち
の少なくとも1種の元素を含む接合体を形成した後、こ
の接合体を介してセラミック基体と銅を加熱接合するセ
ラミック基体と銅の接合方法。
1 Be, Mg, Ca, Sr on the surface of the ceramic substrate
, Ba, B, Al, Y, Si, Ti, Zr, Cu. Copper joining method.
JP25119789A 1989-09-26 1989-09-26 Junction between ceramic base and copper Pending JPH03112874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25119789A JPH03112874A (en) 1989-09-26 1989-09-26 Junction between ceramic base and copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25119789A JPH03112874A (en) 1989-09-26 1989-09-26 Junction between ceramic base and copper

Publications (1)

Publication Number Publication Date
JPH03112874A true JPH03112874A (en) 1991-05-14

Family

ID=17219129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25119789A Pending JPH03112874A (en) 1989-09-26 1989-09-26 Junction between ceramic base and copper

Country Status (1)

Country Link
JP (1) JPH03112874A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117842A (en) * 1991-10-25 1993-05-14 Ulvac Japan Ltd Method for joining of metal with ceramic
JP2003110239A (en) * 2001-09-28 2003-04-11 Hitachi Metals Ltd Multilayer ceramic board and manufacturing method thereof
JP2020020006A (en) * 2018-08-01 2020-02-06 Jx金属株式会社 Laminate of ceramic layer and copper powder paste sintered body
WO2020045386A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulated circuit board, and method for producing copper/ceramic bonded body, and method for manufacturing insulated circuit board
US12027434B2 (en) 2018-01-25 2024-07-02 Mitsubishi Materials Corporation Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
US12037294B2 (en) 2018-08-28 2024-07-16 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit substrate, copper/ceramic bonded body production method, and insulating circuit substrate production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117842A (en) * 1991-10-25 1993-05-14 Ulvac Japan Ltd Method for joining of metal with ceramic
JP2003110239A (en) * 2001-09-28 2003-04-11 Hitachi Metals Ltd Multilayer ceramic board and manufacturing method thereof
US12027434B2 (en) 2018-01-25 2024-07-02 Mitsubishi Materials Corporation Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
JP2020020006A (en) * 2018-08-01 2020-02-06 Jx金属株式会社 Laminate of ceramic layer and copper powder paste sintered body
WO2020045386A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulated circuit board, and method for producing copper/ceramic bonded body, and method for manufacturing insulated circuit board
WO2020044590A1 (en) * 2018-08-28 2020-03-05 三菱マテリアル株式会社 Copper/ceramic bonded body, insulation circuit board, method for producing copper/ceramic bonded body, and method for manufacturing insulation circuit board
CN112638843A (en) * 2018-08-28 2021-04-09 三菱综合材料株式会社 Copper-ceramic joined body, insulated circuit board, method for producing copper-ceramic joined body, and method for producing insulated circuit board
EP3845510A4 (en) * 2018-08-28 2022-06-08 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulated circuit board, and method for producing copper/ceramic bonded body, and method for manufacturing insulated circuit board
CN112638843B (en) * 2018-08-28 2022-11-11 三菱综合材料株式会社 Copper-ceramic junction body, insulated circuit board, method for producing copper-ceramic junction body, and method for producing insulated circuit board
US12037294B2 (en) 2018-08-28 2024-07-16 Mitsubishi Materials Corporation Copper/ceramic bonded body, insulating circuit substrate, copper/ceramic bonded body production method, and insulating circuit substrate production method

Similar Documents

Publication Publication Date Title
US5058799A (en) Metallized ceramic substrate and method therefor
JPH0429390A (en) Manufacture of ceramic circuit board
US4664946A (en) Silicon carbide substrates and a method of producing the same
US4964923A (en) Method of forming a copper film on a ceramic body
US4737416A (en) Formation of copper electrode on aluminum nitride
JPH03112874A (en) Junction between ceramic base and copper
JPH03179793A (en) Surface structure of ceramic board and manufacture thereof
US6013357A (en) Power module circuit board and a process for the manufacture thereof
JP3157520B2 (en) Manufacturing method of aluminum nitride substrate
JPH0424312B2 (en)
JPS61209926A (en) Process for forming metallic film
JPH05191038A (en) Ceramic board with metallic layer and manufacturing method thereof
JP3387655B2 (en) Joining method of ceramics and silicon
JPS62182182A (en) Aluminum nitride sintered body with metallized surface
JPS6150920B2 (en)
JPH02125451A (en) Manufacture of substrate for semiconductor device
JPH0585869A (en) Surface treatment of aluminum nitride ceramic
JPH059396B2 (en)
JPH0245354B2 (en) KINZOKUKAIROOJUSURUSERAMITSUKUSUKIBANNOSEIZOHOHO
JPS61295280A (en) Method of joining ceramic substrate and metal
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JPS60107845A (en) Circuit substrate for semiconductor
JPS63166984A (en) Improvement in bonding strength of metal layer and non-metal substrate
JPH04299884A (en) Manufacture of aluminum nitride substrate
JP2004176117A (en) Method of metallizing copper to ceramics surface