JP2736457B2 - Package for storing semiconductor elements - Google Patents
Package for storing semiconductor elementsInfo
- Publication number
- JP2736457B2 JP2736457B2 JP1308606A JP30860689A JP2736457B2 JP 2736457 B2 JP2736457 B2 JP 2736457B2 JP 1308606 A JP1308606 A JP 1308606A JP 30860689 A JP30860689 A JP 30860689A JP 2736457 B2 JP2736457 B2 JP 2736457B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor element
- external lead
- package
- lid
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子を収容する半導体素子収納用パッ
ケージの改良に関するものである。Description: TECHNICAL FIELD The present invention relates to an improvement in a semiconductor device housing package for housing a semiconductor device.
(従来の技術) 従来、半導体素子を収容するためのパッケージ、特に
ガラスの溶着によって封止するガラス封止型半導体素子
収納用パッケージは、絶縁基体と蓋体とから成り、内部
に半導体素子を収容する空所を有する絶縁容器と、該容
器内に収容される半導体素子を外部電回路に電気的に接
続するための外部リード端子とから構成されており、絶
縁基体及び蓋体の相対向する主面に予め封止用のガラス
部材を被着形成すると共に、絶縁基体主面に外部リード
端子を固定し、半導体素子の各電極と外部リード端子と
をワイヤボンド接続した後、絶縁基体及び蓋体のそれぞ
れに被着させた封止用のガラス部材を溶融一体化させる
ことによって内部に半導体素子を気密に封止している。(Prior Art) Conventionally, a package for accommodating a semiconductor element, particularly a package for accommodating a glass-encapsulated semiconductor element sealed by welding glass, includes an insulating base and a lid, and accommodates the semiconductor element inside. And an external lead terminal for electrically connecting a semiconductor element housed in the container to an external electric circuit. A glass member for sealing is previously formed on the surface, an external lead terminal is fixed to the main surface of the insulating base, and each electrode of the semiconductor element and the external lead terminal are wire-bonded to each other. The semiconductor element is hermetically sealed inside by fusing and integrating the sealing glass members adhered to the respective elements.
(発明が解決しようとする課題) しかし乍ら、この従来のガラス封止型半導体素子収納
用パッケージは通常、外部リード端子がコバール(29Wt
%、Ni−16Wt%Co−55Wt%Fe合金)や42Alloy(42Wt%N
i−58Wt%Fe合金)の導電性材料から成っており、該コ
バールや42Alloy等は導電率が低いことから以下に述べ
る欠点を有する。(Problems to be Solved by the Invention) However, this conventional package for housing a glass-sealed semiconductor element usually has an external lead terminal of Kovar (29 Wt).
%, Ni-16Wt% Co-55Wt% Fe alloy) and 42Alloy (42Wt% N
i-58Wt% Fe alloy), and Kovar and 42Alloy have the following disadvantages due to their low electrical conductivity.
4 即ち、 コバールや42Alloyはその導電率が3.0〜3.5%(IAC
S)と低い。そのためこのコバールや42Alloy等から成る
外部リード端子に信号を伝搬させた場合、信号の伝搬速
度が極めて遅いものとなり、高速駆動を行う半導体素子
はその収容が不可となってしまう、 半導体素子収納用パッケージの内部に収容する半導体
素子の高密度化、高集積化の進展に伴い、半導体素子の
電極数が大幅に増大しており、半導体素子の各電極を外
部電気回路に接続する外部リード端子の線幅も極めて細
くなってきている。そのため外部リード端子は上記に
記載のコバールや42Alloyの導電率が低いことと相俊っ
て電気抵抗が極めて大きなものになってきており、外部
リード端子に信号を伝搬させると、該外部リード端子の
電気抵抗に起因して信号が大きく減衰し、内部に収容す
る半導体素子に信号を正確に入力することができず、半
導体素子に誤動作を生じさせてしまう、 等の欠点を有していた。4 That is, Kovar and 42Alloy have a conductivity of 3.0 to 3.5% (IAC
S) and low. Therefore, when a signal is propagated to an external lead terminal made of Kovar or 42Alloy, the signal propagation speed becomes extremely slow, and semiconductor devices that perform high-speed driving cannot be accommodated. The number of electrodes of a semiconductor element has increased significantly with the progress of higher density and higher integration of semiconductor elements housed inside the semiconductor device, and wires of external lead terminals for connecting each electrode of the semiconductor element to an external electric circuit. The width has also become extremely narrow. For this reason, the external lead terminal has become extremely large in electrical resistance in tandem with the low conductivity of Kovar and 42 Alloy described above, and when a signal is propagated to the external lead terminal, the external lead terminal becomes The signal is greatly attenuated due to the electric resistance, and the signal cannot be accurately input to the semiconductor element housed therein, thereby causing a malfunction in the semiconductor element.
(発明の目的) 本発明は上記欠点に鑑み案出されたもので、その目的
は外部リード端子における信号の減衰を極小となし、内
部に収容する半導体素子への信号の入出力を確実に行う
ことを可能として半導体素子を長期間にわたり正常、且
つ安定に作動させることができる半導体素子収納用パッ
ケージを提供することにある。(Object of the Invention) The present invention has been devised in view of the above-mentioned drawbacks, and an object of the present invention is to minimize signal attenuation at an external lead terminal and to reliably input and output a signal to a semiconductor element housed therein. It is therefore an object of the present invention to provide a semiconductor element storage package that enables the semiconductor element to operate normally and stably for a long period of time.
また本発明の他の目的は高速駆動を行う半導体素子を
収容することができる半導体素子収納用パッケージを提
供することにある。Another object of the present invention is to provide a semiconductor element housing package capable of housing a semiconductor element which operates at high speed.
(課題を解決するための手段) 本発明は内部に半導体素子を収容するための空所を有
する絶縁容器に外部リード端子をガラス部材を介して取
着して成る半導体素子収納用パッケージにおいて、前記
絶縁容器を酸化アルミニウム質焼結体で、外部リード端
子を熱膨張係数65乃至75×10-7/℃、導電率25%(IAC
S)以上の金属で、ガラス部材をシリカ30.0乃至50.0Wt
%、酸化鉛10.0乃至30.0Wt%、酸化ホウ素5.0乃至15.0W
t%、酸化バリウム5.0乃至15.0Wt%酸化ビスマス5.0乃
至10.0Wt%、アルミナ1.0Wt%、カルシア10.0Wt%以下
から成るガラスで形成したことを特徴とするものであ
る。(Means for Solving the Problems) The present invention relates to a package for housing semiconductor elements, wherein external lead terminals are attached via a glass member to an insulating container having a space for housing a semiconductor element therein. The insulating container is made of aluminum oxide sintered body, and the external lead terminals are made of a thermal expansion coefficient of 65 to 75 × 10 -7 / ° C and a conductivity of 25% (IAC
S) With the above metals, glass material is silica 30.0 to 50.0Wt
%, Lead oxide 10.0 ~ 30.0Wt%, boron oxide 5.0 ~ 15.0W
It is characterized by being formed of a glass comprising t%, barium oxide 5.0 to 15.0 Wt%, bismuth oxide 5.0 to 10.0 Wt%, alumina 1.0 Wt%, and calcia 10.0 Wt% or less.
(実施例) 次に本発明を添付図面に基づき詳細に説明する。(Example) Next, the present invention will be described in detail with reference to the accompanying drawings.
第1図及び第2図は本発明の半導体素子収納用パッケ
ージの一実施例を示し、1は絶縁基体、2は蓋体であ
る。この絶縁基体1と蓋体2とにより絶縁容器3が構成
される。1 and 2 show an embodiment of a package for accommodating a semiconductor element according to the present invention, wherein 1 is an insulating base and 2 is a lid. The insulating container 3 is constituted by the insulating base 1 and the lid 2.
前記絶縁基体1及び蓋体2はそれぞれの中央部に半導
体素子を収容する空所を形成するための凹部が設けてあ
り、絶縁基体1の凹部底面には半導体素子4が樹脂、ガ
ラス、ロウ剤等の接着剤を介し取着固定される。The insulating base 1 and the lid 2 are each provided with a concave portion for forming a space for accommodating a semiconductor element at the center thereof, and the semiconductor element 4 is formed of resin, glass, brazing agent on the bottom surface of the concave portion of the insulating base 1. It is attached and fixed via an adhesive such as.
前記絶縁基体1及び蓋体2は酸化アルミニウム焼結体
から成り、第1図に示すような絶縁基体1及び蓋体2に
対応した形状を有するプレス型内に、酸化アルミニウム
(Al2O3)、シリカ(SiO2)、マグネシア(MgO)等の原
料粉末を充填させるとともに一定圧力を印加して成形
し、しかる後、成形品を約1500℃の温度で焼成すること
によって製作される。The insulating substrate 1 and the lid 2 are made of an aluminum oxide sintered body, and aluminum oxide (Al 2 O 3 ) is placed in a press mold having a shape corresponding to the insulating substrate 1 and the lid 2 as shown in FIG. It is manufactured by filling a raw material powder such as silica (SiO 2 ), magnesia (MgO) and the like, applying a constant pressure and molding, and then firing the molded article at a temperature of about 1500 ° C.
尚、前記絶縁基体1及び蓋体2を形成する酸化アルミ
ニウム質焼結体はその熱膨張係数が65〜75×10-7/℃で
あり、後述する封止用ガラス部材の熱膨張係数との関係
において絶縁基体1及び蓋体2と封止用ガラス部材間に
大きな熱膨張の差が生じることはない。The aluminum oxide sintered body forming the insulating base 1 and the lid 2 has a thermal expansion coefficient of 65 to 75 × 10 −7 / ° C., which is lower than the thermal expansion coefficient of a sealing glass member described later. In this connection, there is no large difference in thermal expansion between the insulating base 1 and the lid 2 and the sealing glass member.
また前記絶縁基体1及び蓋体2にはその相対向する主
面に封止用のガラス部材6が予め被着形成されており、
該絶縁基体1及び蓋体2の各々に被着されている封止用
ガラス部材6を加熱溶融させ一体化させることにより絶
縁容器3内の半導体素子4を気密に封止する。Further, a glass member 6 for sealing is previously formed on the opposing main surfaces of the insulating base 1 and the lid 2.
The semiconductor element 4 in the insulating container 3 is hermetically sealed by heating and melting the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 to be integrated.
前記絶縁基体1及び蓋体2の相対向する主面に被着さ
れる封止用ガラス部材6は、シリカ30.0乃至50Wt%、酸
化鉛10.0乃至30.0Wt%、酸化ホウ素5.0乃至15.0Wt%、
酸化バリウム5.0乃至15.0Wt%酸化ビスマス5.0乃至10.0
Wt%、アルミナ1.0乃至10.0Wt%、カルシア10Wt%以下
より形成されるガラスから成り、上記各成分を所定の値
に秤量混合すると共に、該混合粉末を1300〜1400℃の温
度で加熱溶融させることによって製作される。このガラ
ス部材6はその熱膨張係数が55乃至70×10-7/℃であ
る。The sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2 is composed of silica 30.0 to 50 wt%, lead oxide 10.0 to 30.0 wt%, boron oxide 5.0 to 15.0 wt%,
Barium oxide 5.0 to 15.0 Wt% bismuth oxide 5.0 to 10.0
It consists of glass formed from Wt%, alumina 1.0 to 10.0 Wt%, calcia 10 Wt% or less, weighs and mixes each of the above components to a predetermined value, and heat-melts the mixed powder at a temperature of 1300 to 1400 ° C. Produced by The glass member 6 has a coefficient of thermal expansion of 55 to 70 × 10 −7 / ° C.
前記封止用ガラス部材6はその熱膨張係数が55乃至70
×10-7/℃であり、絶縁基体1及び蓋体2の各々の熱膨
張係数と近似することから絶縁基体1及び蓋体2の各々
に被着されている封止用ガラス部材6を加熱溶融させ一
体化させることにより絶縁容器3内の半導体素子4を気
密に封止する際、絶縁基体1及び蓋体2と封止用ガラス
部材6との間には両者の熱膨張係数の相違に起因する熱
応力が発生することは殆どなく、絶縁基体1と蓋体2と
を封止用ガラス部材6を介して強固に接合することが可
能となる。The glass member for sealing 6 has a coefficient of thermal expansion of 55 to 70.
Since the coefficient of thermal expansion is × 10 −7 / ° C. and approximates the thermal expansion coefficients of the insulating base 1 and the lid 2, the sealing glass member 6 attached to each of the insulating base 1 and the lid 2 is heated. When the semiconductor element 4 in the insulating container 3 is air-tightly sealed by being melted and integrated, a difference in thermal expansion coefficient between the insulating base 1 and the lid 2 and the sealing glass member 6 may be caused. The resulting thermal stress hardly occurs, and the insulating base 1 and the lid 2 can be firmly joined via the sealing glass member 6.
尚、前記封止用ガラス部材6はシリカ(SiO2)が30.0
Wt%未満であるとガラスの結晶化が進んで絶縁容器3の
気密封止が困難となり、また50.0Wt%を越えるとガラス
の熱膨張が小さくなって絶縁基体1と蓋体2の熱膨張と
合わなくなることからシリカ(SiO2)は30.0乃至50.0Wt
%の範囲に限定される。The sealing glass member 6 is made of silica (SiO 2 ) of 30.0%.
If it is less than Wt%, the crystallization of the glass proceeds and it is difficult to hermetically seal the insulating container 3. 30.0-50.0Wt for silica (SiO 2 )
%.
また酸化鉛(PbO)が10.0Wt%未満であるとガラスの
熱膨張が小さくなって絶縁基体1と蓋体2の熱膨張と合
わなくなり、また30.0Wt%を越えるとガラスの耐薬品性
が劣化して絶縁容器3の気密封止の信頼性が大きく低下
するため酸化鉛(PbO)は10.0乃至30.0Wt%の範囲に限
定される。If the lead oxide (PbO) content is less than 10.0 Wt%, the thermal expansion of the glass becomes small and does not match the thermal expansion of the insulating substrate 1 and the lid 2. If it exceeds 30.0 Wt%, the chemical resistance of the glass deteriorates. As a result, the reliability of hermetic sealing of the insulating container 3 is greatly reduced, so that lead oxide (PbO) is limited to the range of 10.0 to 30.0 Wt%.
また酸化ホウ素(B2O3)が5.0Wt%未満であるとガラ
スの結晶化が進んで絶縁容器3の気密封止が困難とな
り、また15.0Wt%を越えるとガラスの耐薬品性が劣化し
て絶縁容器3の気密封止の信頼性が大きく低下するため
酸化ホウ素(B2O3)は5.0乃至15.0Wt%の範囲に限定さ
れる。If the content of boron oxide (B 2 O 3 ) is less than 5.0 Wt%, crystallization of the glass proceeds and it becomes difficult to hermetically seal the insulating container 3. If the content exceeds 15.0 Wt%, the chemical resistance of the glass deteriorates. Therefore, the reliability of hermetic sealing of the insulating container 3 is greatly reduced, so that the amount of boron oxide (B 2 O 3 ) is limited to the range of 5.0 to 15.0 Wt%.
また酸化バリウム(BaO)が5.0Wt%未満であるとガラ
スの耐薬品性が劣化して絶縁容器3の気密封止の信頼性
が大きく低下し、また15.0Wt%を越えるとガラスの結晶
化が進んで絶縁容器3の気密封止が困難となるため酸化
バリウム(BaO)は5.0乃至15.0Wt%の範囲に限定され
る。When barium oxide (BaO) is less than 5.0 Wt%, the chemical resistance of the glass is deteriorated, and the reliability of hermetic sealing of the insulating container 3 is greatly reduced. Barium oxide (BaO) is limited to the range of 5.0 to 15.0 Wt% because it becomes difficult to hermetically seal the insulating container 3.
また酸化ビスマス(Bi2O3)が5.0Wt%未満であるとガ
ラスの結晶化が進んで絶縁容器3の気密封止が困難とな
り、また10.0Wt%を越えるとガラスの耐薬品性が劣化し
て絶縁容器3の気密封止の信頼性が大きく低下するため
酸化ビスマス(Bi2O3)は5.0乃至10.0Wt%の範囲に限定
される。If bismuth oxide (Bi 2 O 3 ) is less than 5.0 Wt%, crystallization of the glass proceeds and it becomes difficult to hermetically seal the insulating container 3. If it exceeds 10.0 Wt%, the chemical resistance of the glass deteriorates. Therefore, the reliability of hermetic sealing of the insulating container 3 is greatly reduced, so that bismuth oxide (Bi 2 O 3 ) is limited to the range of 5.0 to 10.0 Wt%.
またアルミナ(Al2O3)が1.0Wt%未満であるとガラス
の耐薬品性が劣化して絶縁容器3の気密封止の信頼性が
大きく低下し、また10.0Wt%を越えるとガラスの熱膨張
が小さくなって絶縁基体1と蓋体2の熱膨張と合わなく
なるためアルミナ(Al2O3)は1.0乃至10.0Wt%の範囲に
限定される 更にカルシア(CaO)が10.0Wt%を越えるとガラスの
耐薬品性が劣化して絶縁容器3の気密封止の信頼性が大
きく低下するためカルシア(CaO)は10.0Wt%以下に限
定される。If the alumina (Al 2 O 3 ) content is less than 1.0 Wt%, the chemical resistance of the glass is deteriorated, and the reliability of hermetic sealing of the insulating container 3 is greatly reduced. Alumina (Al 2 O 3 ) is limited to the range of 1.0 to 10.0 Wt% because the expansion becomes small and does not match the thermal expansion of the insulating base 1 and the lid 2. Further, when the calcia (CaO) exceeds 10.0 Wt%, Since the chemical resistance of the glass deteriorates and the reliability of hermetic sealing of the insulating container 3 is greatly reduced, calcia (CaO) is limited to 10.0 Wt% or less.
前記封止用ガラス部材6は前述した成分から成るガラ
スの粉末に適当な有機溶剤、溶媒を添加して得たガラス
ペーストを従来周知の厚膜手法を採用することによって
絶縁基体1及び蓋体2の相対向する主面に被着形成され
る。The sealing glass member 6 is made of a glass paste obtained by adding a suitable organic solvent and a solvent to a glass powder composed of the above-described components by employing a conventionally well-known thick film method to form the insulating base 1 and the lid 2. Are formed on opposite main surfaces.
前記絶縁基体1と蓋体2との間には導電性材料から成
る外部リード端子5が配されており、該外部リード端子
5は半導体素子4の各電極がワイヤ7を介し電気的に接
続され、外部リード端子5を外部電気回路に接続するこ
とによって半導体素子4が外部電気回路に接続されるこ
ととなる。An external lead terminal 5 made of a conductive material is disposed between the insulating base 1 and the lid 2. The external lead terminal 5 is electrically connected to each electrode of the semiconductor element 4 via a wire 7. By connecting the external lead terminal 5 to an external electric circuit, the semiconductor element 4 is connected to the external electric circuit.
前記外部リード端子5は絶縁基体1と蓋体2の相対向
する主面に被着させた封止用ガラス部材6を溶融一体化
させ、絶縁容器3を気密封止する際に同時に絶縁基体1
と蓋体2との間に取着される。The external lead terminals 5 are formed by melting and integrating a sealing glass member 6 attached to the opposing main surfaces of the insulating base 1 and the lid 2, and simultaneously sealing the insulating container 3 with the insulating base 1.
And the cover 2.
前記外部リード端子5は非磁性体金属である銅(Cu)
から成る芯体の外表面にニッケル−コバルト−鉄合金
(Ni−Co−Fe合金)を被着させたもの、或いは板状のニ
ッケル−コバルト−鉄合金(Ni−Co−Fe合金)もしくは
インバー合金(36.5Wt%Ni−63.5Wt%Fe合金)の上下面
に非磁性体金属である銅(Cu)を接合させたもの等から
成り、その導電率は25%(IACS)以上、熱膨張係数は65
乃至75×10-7/℃である。The external lead terminal 5 is made of a non-magnetic metal such as copper (Cu).
A nickel-cobalt-iron alloy (Ni-Co-Fe alloy) adhered to the outer surface of a core made of, or a plate-like nickel-cobalt-iron alloy (Ni-Co-Fe alloy) or an invar alloy (36.5Wt% Ni-63.5Wt% Fe alloy) consisting of copper (Cu), which is a non-magnetic metal, bonded to the upper and lower surfaces, has a conductivity of 25% (IACS) or more, and a thermal expansion coefficient of 65
To 75 × 10 −7 / ° C.
前記外部リード端子5はその導電率が25.0%(IACS)
以上であり、電気を流し易いことから外部リード端子5
の信号伝搬速度を極めて速いものとなすことができ、絶
縁容器3内に収容した半導体素子4を高速駆動させたと
しても半導体素子4と外部電気回路との間における信号
の出し入れは常に安定、且つ確実となすことができる。The external lead terminal 5 has a conductivity of 25.0% (IACS)
As described above, it is easy to conduct electricity.
Can be made extremely fast, and even if the semiconductor element 4 housed in the insulating container 3 is driven at a high speed, the signal transfer between the semiconductor element 4 and the external electric circuit is always stable, and You can be sure.
また外部リード端子5の導電率が高いことから外部リ
ード端子5の線幅が細くなったとしても外部リード端子
5の電気抵抗を低く抑えることができ、その結果、外部
リード端子5における信号の減衰を極小として内部に収
容する半導体素子4に外部電気回路から供給される電気
信号を正確に入力することができる。Further, since the electrical conductivity of the external lead terminal 5 is high, the electrical resistance of the external lead terminal 5 can be kept low even if the line width of the external lead terminal 5 is reduced, and as a result, signal attenuation at the external lead terminal 5 is achieved. The electric signal supplied from the external electric circuit can be accurately input to the semiconductor element 4 housed therein with the minimum value.
更に前記外部リード端子5はその熱膨張係数が65乃至
75×10-7/℃であり、封止用ガラス部材6の熱膨張係数
と近似することから外部リード端子5を絶縁基体1と蓋
体2の間に封止用ガラス部材6を用いて固定する際、外
部リード端子5と封止用ガラス部材6との間には両者の
熱膨張係数の相違に起因する熱応力が発生することはな
く、外部リード端子5を封止用ガラス部材6で強固に固
定することも可能となる。Further, the external lead terminal 5 has a coefficient of thermal expansion of 65 to
The external lead terminal 5 is fixed between the insulating base 1 and the lid 2 using the sealing glass member 6 because it is 75 × 10 −7 / ° C. and is close to the thermal expansion coefficient of the sealing glass member 6. In this case, no thermal stress is generated between the external lead terminal 5 and the sealing glass member 6 due to the difference in the coefficient of thermal expansion between the external lead terminal 5 and the sealing glass member 6. It becomes possible to fix firmly.
かくして、この半導体素子収納用パッケージによれば
絶縁基体1の凹部底面に半導体素子4を取着固定すると
ともに該半導体素子4の各電極をボンディングワイヤ7
により外部リード端子5に接続させ、しかる後、絶縁基
体1と蓋体2とを該絶縁基体1及び蓋体2の相対向する
主面に予め被着させておいた封止用ガラス部材6を溶融
一体化させることによって接合させ、これによって最終
製品としての半導体装置が完成する。Thus, according to the package for accommodating the semiconductor element, the semiconductor element 4 is attached and fixed to the bottom surface of the concave portion of the insulating base 1 and each electrode of the semiconductor element 4 is connected to the bonding wire 7.
After that, the sealing glass member 6 in which the insulating substrate 1 and the lid 2 are previously adhered to the opposing main surfaces of the insulating substrate 1 and the lid 2 is removed. The semiconductor device as a final product is completed by joining by melting and integrating.
(発明の効果) 本発明の半導体素子収納用パッケージによれば、絶縁
基体及び蓋体を酸化アルミニウム質焼結体で、外部リー
ド端子を熱膨張係数65乃至75×10-7/℃、導電率25%(I
ACS)以上の金属で、ガラス部材をシリカ30.0乃至50.0W
t%、酸化鉛10.0乃至30.0Wt%、酸化ホウ素5.0乃至15.0
Wt%、酸化バリウム5.0乃至15.0Wt%酸化ビスマス5.0乃
至10.0Wt%、アルミナ1.0乃至10.0Wt%、カルシア10.0W
t%以下から成るガラスで形成したことから外部リード
端子の信号伝搬速度を極めて速いものとなすことがで
き、絶縁容器内に収容した半導体素子を高速駆動させた
としても半導体素子と外部電気回路との間における信号
の出し入れを常に安定、且つ確実となすことが可能とな
る。(Effect of the Invention) According to the package for housing a semiconductor element of the present invention, the insulating base and the lid are made of an aluminum oxide sintered body, the external lead terminals are made of a coefficient of thermal expansion of 65 to 75 × 10 −7 / ° C., and the conductivity is 25% (I
ACS) More than metal, glass material is silica 30.0-50.0W
t%, lead oxide 10.0 to 30.0 Wt%, boron oxide 5.0 to 15.0
Wt%, barium oxide 5.0-15.0Wt% bismuth oxide 5.0-10.0Wt%, alumina 1.0-10.0Wt%, calcia 10.0W
The signal propagation speed of the external lead terminal can be made extremely high because it is made of glass of less than t%, and even if the semiconductor element housed in the insulating container is driven at high speed, the semiconductor element and the external electric circuit can be connected. It is possible to always stably and surely put a signal in and out during the period.
また外部リード端子の線幅が細くなったとしても外部
リード端子の電気抵抗を低く抑えることができ、その結
果、外部リード端子における信号の減衰を極小として内
部に収容する半導体素子に外部電気回路から供給される
電気信号を正確に入力することが可能となる。Also, even if the line width of the external lead terminal is reduced, the electric resistance of the external lead terminal can be kept low. The supplied electric signal can be input accurately.
更に外部リード端子はその熱膨張係数が絶縁基体、蓋
体及び封止用ガラス部材の各々の熱膨張係数と近似し、
絶縁基体と蓋体との間に外部リード端子を挟み、各々を
封止用ガラス部材で取着接合したとしても絶縁基体及び
蓋体と封止用ガラス部材との間、外部リード端子と封止
用ガラス部材との間のいずれにも熱膨張係数の相違に起
因する熱応力は発生せず、すべてを強固に取着接合する
ことも可能となる。Further, the thermal expansion coefficient of the external lead terminal is close to the thermal expansion coefficient of each of the insulating base, the lid and the sealing glass member,
Even when the external lead terminals are sandwiched between the insulating base and the lid, and each of them is attached and bonded by the sealing glass member, the external lead terminals and the sealing are provided between the insulating base and the lid and the sealing glass member. No thermal stress due to the difference in the coefficient of thermal expansion is generated between the glass member and the glass member, and it is possible to firmly attach and bond all of them.
第1図は本発明の半導体素子収納用パッケージの一実施
例を示す断面図、第2図は第1図に示すパッケージの絶
縁基体上面より見た平面図である。 1……絶縁基体、2……蓋体 3……絶縁容器 5……外部リード端子 6……封止用ガラス部材FIG. 1 is a cross-sectional view showing one embodiment of a package for housing a semiconductor element according to the present invention, and FIG. 2 is a plan view of the package shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Insulating base 2 ... Lid 3 ... Insulating container 5 ... External lead terminal 6 ... Glass member for sealing
Claims (1)
有する絶縁容器に外部リード端子をガラス部材を介して
取着して成る半導体素子収納用パッケージにおいて、前
記絶縁容器を酸化アルミニウム質焼結体で、外部リード
端子を熱膨張係数65乃至75×10-7/℃、導電率25%(IAC
S)以上の金属で、ガラス部材をシリカ30.0乃至50.0Wt
%、酸化鉛10.0乃至30.0Wt%、酸化ホウ素5.0.乃至15.0
Wt%、酸化バリウム5.0乃至15.0Wt%酸化ビスマス5.0乃
至10.0Wt%、アルミナ1.0乃至10.0Wt%、カルシア10.0W
t%以下から成るガラスで形成したことを特徴とする半
導体素子収納用パッケージ。1. A semiconductor element storage package comprising an external lead terminal attached via a glass member to an insulating container having a space for accommodating a semiconductor element therein. By bonding, the external lead terminals have a coefficient of thermal expansion of 65 to 75 × 10 -7 / ° C and a conductivity of 25%
S) With the above metals, glass material is silica 30.0 to 50.0Wt
%, Lead oxide 10.0 to 30.0 Wt%, boron oxide 5.0 to 15.0
Wt%, barium oxide 5.0-15.0Wt% bismuth oxide 5.0-10.0Wt%, alumina 1.0-10.0Wt%, calcia 10.0W
A package for housing a semiconductor element, wherein the package is made of glass of t% or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1308606A JP2736457B2 (en) | 1989-11-27 | 1989-11-27 | Package for storing semiconductor elements |
US07/574,472 US5168126A (en) | 1989-08-25 | 1990-08-27 | Container package for semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1308606A JP2736457B2 (en) | 1989-11-27 | 1989-11-27 | Package for storing semiconductor elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03167845A JPH03167845A (en) | 1991-07-19 |
JP2736457B2 true JP2736457B2 (en) | 1998-04-02 |
Family
ID=17983064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1308606A Expired - Lifetime JP2736457B2 (en) | 1989-08-25 | 1989-11-27 | Package for storing semiconductor elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2736457B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5851405A (en) * | 1981-09-12 | 1983-03-26 | 京セラ株式会社 | Method of producing electrically insulating silicon carbide sintered material |
JPS58130546A (en) * | 1981-12-28 | 1983-08-04 | Ibiden Co Ltd | Silicon carbide substrate and manufacture thereof |
JPS6265954A (en) * | 1985-09-18 | 1987-03-25 | Nippon Electric Glass Co Ltd | Borosilicate glass for sealing alumina |
-
1989
- 1989-11-27 JP JP1308606A patent/JP2736457B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03167845A (en) | 1991-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2736457B2 (en) | Package for storing semiconductor elements | |
JP2736455B2 (en) | Package for storing semiconductor elements | |
JP2736458B2 (en) | Package for storing semiconductor elements | |
JP2691307B2 (en) | Package for storing semiconductor elements | |
JP2736459B2 (en) | Package for storing semiconductor elements | |
JP2736461B2 (en) | Package for storing semiconductor elements | |
JP2691310B2 (en) | Package for storing semiconductor elements | |
JP2678509B2 (en) | Package for storing semiconductor elements | |
JP2742617B2 (en) | Package for storing semiconductor elements | |
JP2736456B2 (en) | Package for storing semiconductor elements | |
JP2742613B2 (en) | Package for storing semiconductor elements | |
JP2736454B2 (en) | Package for storing semiconductor elements | |
JP2736453B2 (en) | Package for storing semiconductor elements | |
JP2747613B2 (en) | Package for storing semiconductor elements | |
JP2736463B2 (en) | Package for storing semiconductor elements | |
JP2736451B2 (en) | Package for storing semiconductor elements | |
JP2736462B2 (en) | Package for storing semiconductor elements | |
JP2736460B2 (en) | Package for storing semiconductor elements | |
JP2691306B2 (en) | Package for storing semiconductor elements | |
JP2691308B2 (en) | Package for storing semiconductor elements | |
JP2736464B2 (en) | Package for storing semiconductor elements | |
JP2691305B2 (en) | Package for storing semiconductor elements | |
JP2742611B2 (en) | Package for storing semiconductor elements | |
JP2736452B2 (en) | Package for storing semiconductor elements | |
JP2742616B2 (en) | Package for storing semiconductor elements |