JPS6346783A - Photoconductive semiconductor photo-detector - Google Patents

Photoconductive semiconductor photo-detector

Info

Publication number
JPS6346783A
JPS6346783A JP61191375A JP19137586A JPS6346783A JP S6346783 A JPS6346783 A JP S6346783A JP 61191375 A JP61191375 A JP 61191375A JP 19137586 A JP19137586 A JP 19137586A JP S6346783 A JPS6346783 A JP S6346783A
Authority
JP
Japan
Prior art keywords
electrode
region
semiconductor
semiconductor light
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61191375A
Other languages
Japanese (ja)
Inventor
Hisahiro Ishihara
久寛 石原
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61191375A priority Critical patent/JPS6346783A/en
Publication of JPS6346783A publication Critical patent/JPS6346783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain high speed responding characteristic of a semiconductor photodetector by reducing carrier concentration conductivity type semiconductor electrode lower than that of a carrier moving region only near the side of the electrode where minority carrier reaches. CONSTITUTION:After an n<-> type InGaAs layer 2 is crystal-grown on a semi- insulating InP substrate 1, the layer 2 out of a photodetecting region is removed by mesa etching. After an SiO2 film 5 is then formed, the region 5 of a specific region near a source is removed in a photoresist forming step. With the photoresist and the film 5 as masks Be<++> ions are implanted to a selected region, and an n<--> type InGaAs region 6 reduced in carrier concentration by compensating is formed by annealing. Then, a source electrode 4 and a drain electrode 3 are formed by depositing in vacuum AuGeNi and heat treating it. Thus, holes accelerated by an internal potential near the electrode 4 can be exhausted to the electrode at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信や光情報処理等に於て用いられる光導
電性半導体受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a photoconductive semiconductor light-receiving element used in optical communications, optical information processing, and the like.

〔従来の技術〕[Conventional technology]

化合物半導体受光素子は、光通信或いは光情報処理用の
受光器に用いられており、高速で高怒度な素子の開発が
精力的に進められている。中でも光導電性半導体受光素
子は、ダイオードタイプの受光素子のようにキャリア走
行領域に空乏層(即ち容量)を持たないため、CR時定
数の影響を受けに<<、キャリアの寿命及びキャリアの
走行時間が短くなるように素子設計することにより、高
利得帯域幅積(高GB積)特性が得られる期待がある。
Compound semiconductor light-receiving elements are used in optical receivers for optical communications or optical information processing, and the development of high-speed, high-intensity elements is being actively pursued. Among them, photoconductive semiconductor light-receiving elements do not have a depletion layer (i.e., capacitance) in the carrier travel region unlike diode-type light-receiving elements. There is an expectation that high gain bandwidth product (high GB product) characteristics can be obtained by designing the device so that the time is shortened.

光通信用として注目を集めている光ファイバーの低損失
帯域にあたる1.0−1.6μm帯波長域では、半導体
受光素子の材料としてI nGaASが最も適したもの
である。従来のInGaAs系光導電性半導体受光素子
の基本構造の一例を第3図に示す。この構造は半絶縁性
1nP基板1上にn−−T nGaAs層2を結晶成長
し1、更にメサエッチングを施したこの半導体層2の表
面に2つの電極3.4を形成した素子fII造を有して
いる。
In the 1.0-1.6 μm wavelength band, which is the low-loss band of optical fibers that are attracting attention for optical communications, InGaAS is the most suitable material for semiconductor light-receiving elements. An example of the basic structure of a conventional InGaAs-based photoconductive semiconductor light receiving element is shown in FIG. This structure is an element fII structure in which an n--T nGaAs layer 2 is crystal-grown on a semi-insulating 1nP substrate 1, and two electrodes 3.4 are formed on the surface of this semiconductor layer 2, which is mesa-etched. have.

この画電極3.4間に電圧を印加して、その間に入射し
た光励起キャリアによって導電率が増加する事を用いて
、光信号を電気信号に変換させるわけである。
A voltage is applied between the picture electrodes 3 and 4, and the conductivity increases due to the photoexcited carriers incident therebetween, thereby converting the optical signal into an electrical signal.

ここで、n型半導体の場合内部電流利得はG−τ/l 
 ・・・・・・・・(1)τ;正正孔ライフタイム 土、;電子の走行時間 で求まる。走行時間制限の場合にはライフタイムτは正
孔の走行時間となるので、電流利得Gは正孔と電子の走
行時間の比で求まる事になる。■−V族化合物半導体で
は電子の方が正孔に比べ走行速度が太きいろ、利得Gは
常に1より大きくなる。
Here, in the case of an n-type semiconductor, the internal current gain is G-τ/l
・・・・・・・・・(1) τ: Positive-hole lifetime; Determined from electron transit time. In the case of transit time limitation, the lifetime τ becomes the transit time of holes, so the current gain G is determined by the ratio of the transit times of holes and electrons. (2) In a V group compound semiconductor, the electron travels faster than the hole, so the gain G is always greater than 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述した従来の光導電性半導体受光素子は、正
孔の遅い走行速度によって、応答速度が制限されるとい
う欠点があった。特に電極間を走行する正孔を考えた場
合、ドレイン電極(+電極)付近では強い電界を感じド
リフトするものの、ソース電極(−電極)付近では非常
に弱い電界を怒じる事になる為、高速で電極に出て行く
事が出来ない。これが正孔の実質的な走行時間を制限し
、応答劣化の一因となっていた( J、C,Gamme
l博士学位論文、p122.コーネル大学、1980参
照)。
However, the above-mentioned conventional photoconductive semiconductor light-receiving device has a drawback in that its response speed is limited by the slow traveling speed of holes. In particular, when considering holes traveling between electrodes, although they feel a strong electric field and drift near the drain electrode (+ electrode), they experience a very weak electric field near the source electrode (- electrode). It cannot go out to the electrode at high speed. This limited the effective transit time of the holes and was a cause of response deterioration (J, C, Gamme
lDoctoral dissertation, p122. (See Cornell University, 1980).

本発明の目的は、上記欠点を解決し、ソース電極近傍の
弱電界下を正孔が高速で電極に出て行く、即ち高速応答
特性を有する光導電性半導体受光素子を提供する事にあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks and to provide a photoconductive semiconductor light-receiving element in which holes exit to the electrode at high speed under a weak electric field near the source electrode, that is, the photoconductive semiconductor light-receiving element has high-speed response characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電子と正孔のうち走行速度の速い方をマジョ
リティキャリアとする導電型の半導体の表面に一対の電
極を有し、該電極間に印加された電界によりキャリアを
前記導電型の半導体の表面と平行な方向に走行させる光
導電性半導体受光素子に於て、前記導電型の半導体の前
記電極のマイノリティキャリアが到達する側のものの近
傍のみを、前記キャリアの走行領域より低キャリア濃度
化させた事を特徴とする。
The present invention has a pair of electrodes on the surface of a conductive type semiconductor in which electrons and holes, whichever has a faster traveling speed, is the majority carrier, and an electric field applied between the electrodes moves carriers into the conductive type semiconductor. In a photoconductive semiconductor light-receiving element that travels in a direction parallel to the surface of the conductive semiconductor, only the vicinity of the side of the electrode of the semiconductor of the conductivity type where the minority carriers reach is made to have a lower carrier concentration than the region where the carriers travel. It is characterized by the fact that

〔作用〕[Effect]

本発明は、上述の構成をとる事により従来の光導電性半
導体受光素子の問題点を解決した。即ち、本発明による
光導電性半導体受光素子では、例えば走行速度の速い方
のマジョリティキャリアが電子である例で説明すると、
n型半導体中のソース電極近傍(正孔が半導体外に出て
行く付近)をキャリアの走行領域よりも低キャリア濃度
化する事により、拡散電位によって正孔を高速でドリフ
トさせる働きをする内部ポテンシャルが生じる。この内
部ポテンシャルによって高速応答特性が得られるもので
ある。これは電子と正孔の役割が逆になっても成立する
The present invention solves the problems of conventional photoconductive semiconductor light-receiving elements by adopting the above-described configuration. That is, in the photoconductive semiconductor light-receiving element according to the present invention, for example, an example in which the majority carriers having a faster traveling speed are electrons:
By lowering the carrier concentration near the source electrode (near the area where holes exit the semiconductor) in an n-type semiconductor than in the carrier travel region, an internal potential that works to cause holes to drift at high speed due to the diffusion potential. occurs. This internal potential provides high-speed response characteristics. This holds true even if the roles of electrons and holes are reversed.

〔実施例〕〔Example〕

以下、本発明の一実施例について図面を参照して詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の光導電性半導体受光素子の
断面構造を示す模式図である。本実施例によれば、半絶
縁性InP基板1上にキャリア濃度〜2 X 10 ”
csづのn−−I nGaAs 2を〜1.5μm結晶
成長した後、メサエッチングにより受光領域外のInG
aAs2を除去する。次に、5i02膜5を形成した後
、フォトレジスト工程によりソース近傍の特定領域の5
i02膜5を除去。更にこのフォトレジストとSi○2
膜5をマスクとして選択領域にBe−をイオン注入、ア
ニール処理を施してコンペンセイトによってより低キャ
リア濃度化されたn−−−InGaAs領域6を形成す
る。続いてソース電極4、ドレイン電極3をAuGeN
iの真空蒸着、熱処理により形成する。
FIG. 1 is a schematic diagram showing the cross-sectional structure of a photoconductive semiconductor light-receiving element according to an embodiment of the present invention. According to this embodiment, the carrier concentration on the semi-insulating InP substrate 1 is ~2 x 10''
After crystal growth of ~1.5 μm of csduno-I nGaAs 2, InG outside the light-receiving area was removed by mesa etching.
Remove aAs2. Next, after forming the 5i02 film 5, a photoresist process is performed to form the 5i02 film 5 in a specific region near the source.
Remove i02 film 5. Furthermore, this photoresist and Si○2
Using the film 5 as a mask, Be- is ion-implanted into a selected region and annealing is performed to form an n--InGaAs region 6 whose carrier concentration is lowered by compensating. Next, the source electrode 4 and the drain electrode 3 are made of AuGeN.
It is formed by vacuum evaporation of i and heat treatment.

こうして得た素子のソース近傍のn−−InGaAs2
n−−−I nGaAs界面での模式的なバンドダイア
グラムを第2図に示す。拡散電位によって生じた内部ポ
テンシャルは正孔に対して、n−−−InGaAsに向
かってドリフトさせる力を加える。この様にソース電極
4の付近で内部ポテンシャルによって加速された正孔は
高速で電極に出て行く事が可能となる。
n--InGaAs2 near the source of the device thus obtained
A schematic band diagram at the n---I nGaAs interface is shown in FIG. 2. The internal potential created by the diffusion potential exerts a force on the holes that causes them to drift toward n--InGaAs. In this way, holes accelerated by the internal potential near the source electrode 4 can go out to the electrode at high speed.

上記実施例ではコンペイセントによるn−領域の形勢に
イオン注入を用いたが、他の方法、例えば不純物熱拡散
等によって形成してもよい。
In the above embodiment, ion implantation was used to form the n- region by compensit, but it may be formed by other methods such as impurity thermal diffusion.

[発明の効果〕 以上説明した様に、本発明によれば正孔の実質的な走行
時間の改善が得られ、高速応答特性を有した光導電性半
導体受光素子が得られる。
[Effects of the Invention] As explained above, according to the present invention, the transit time of holes can be substantially improved, and a photoconductive semiconductor light-receiving element having high-speed response characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す光導電性半導体受光素
子の断面構造の模式図、第2図は本実施例による素子の
ソース近傍のn−−I nGaAs、/n−−InGa
As界面での模式的なバンドダイアダラム、第3図は従
来の光導電性半導体受光素子の断面構造の模式図である
。 図に於て、1は半絶縁性InP基板、2はn−−I n
GaAs、3はトレイン電極、4はソース電極、5はS
 i 02 FIJ、、6はn−一−InGaAs\蝿
、〆一 纂2図 第3図
FIG. 1 is a schematic diagram of the cross-sectional structure of a photoconductive semiconductor light-receiving device according to an embodiment of the present invention, and FIG.
FIG. 3 is a schematic diagram of a cross-sectional structure of a conventional photoconductive semiconductor light-receiving element. In the figure, 1 is a semi-insulating InP substrate, 2 is an n--I n
GaAs, 3 is a train electrode, 4 is a source electrode, 5 is S
i 02 FIJ,, 6 is n-1-InGaAs\Fly, Figure 3, Figure 2

Claims (1)

【特許請求の範囲】[Claims]  電子と正孔のうち走行速度の速い方をマジョリティキ
ャリアとする導電型の半導体の表面に一対の電極を有し
、該電極間に印加された電界によりキャリアを前記導電
型の半導体の表面と平行な方向に走行させる光導電性半
導体受光素子に於て、前記導電型の半導体の前記電極の
マイノリティキャリアが到達する側のものの近傍のみを
、前記キャリアの走行領域より低キャリア濃度化させた
事を特徴とする光導電性半導体受光素子。
A pair of electrodes is provided on the surface of a semiconductor of a conductivity type in which electrons and holes, whichever has a faster traveling speed, is the majority carrier, and an electric field applied between the electrodes causes carriers to be moved parallel to the surface of the semiconductor of the conductivity type. In a photoconductive semiconductor light-receiving element that travels in a direction, only the vicinity of the side of the electrode of the semiconductor of the conductivity type where the minority carriers reach is made to have a lower carrier concentration than the region in which the carriers travel. Features of photoconductive semiconductor light-receiving device.
JP61191375A 1986-08-15 1986-08-15 Photoconductive semiconductor photo-detector Pending JPS6346783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191375A JPS6346783A (en) 1986-08-15 1986-08-15 Photoconductive semiconductor photo-detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191375A JPS6346783A (en) 1986-08-15 1986-08-15 Photoconductive semiconductor photo-detector

Publications (1)

Publication Number Publication Date
JPS6346783A true JPS6346783A (en) 1988-02-27

Family

ID=16273543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191375A Pending JPS6346783A (en) 1986-08-15 1986-08-15 Photoconductive semiconductor photo-detector

Country Status (1)

Country Link
JP (1) JPS6346783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300124A (en) * 2007-05-01 2007-11-15 Sony Corp Semiconductor device and manufacturing method thereof
EP2392626A1 (en) 2010-06-03 2011-12-07 Shin-Etsu Chemical Co., Ltd. Silicone resin composition for solar cell module, and solar cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300124A (en) * 2007-05-01 2007-11-15 Sony Corp Semiconductor device and manufacturing method thereof
JP4582111B2 (en) * 2007-05-01 2010-11-17 ソニー株式会社 Semiconductor device and manufacturing method thereof
EP2392626A1 (en) 2010-06-03 2011-12-07 Shin-Etsu Chemical Co., Ltd. Silicone resin composition for solar cell module, and solar cell module

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
US5157473A (en) Avalanche photodiode having guard ring
JP2006040919A (en) Avalanche photodiode
JPS63116474A (en) Avalanche photodetector
CA1228663A (en) Photodetector with isolated avalanche region
JPS6346783A (en) Photoconductive semiconductor photo-detector
JPS6285477A (en) Photosemiconductor device
JPH09223805A (en) Semiconductor waveguide type light receiver
US20240162366A1 (en) Inversion layer apd
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JP3147133B2 (en) Horizontal light receiving element and method of forming the same
JPS62245684A (en) Photoconductive semiconductor photodetector
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPS62179163A (en) Semiconductor photo detector
JPH06101578B2 (en) Planar heterojunction avalanche photodiode
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPS6355983A (en) Photoconductive semiconductor photodetector
JPS63240081A (en) Photoconductive semiconductor photodetector
JPH03101266A (en) Semiconductor device
JPH02253666A (en) Semiconductor photodetector
JPS61121482A (en) Photoconductive semiconductor light-receiving element
JPS62128575A (en) Semiconductor photodetector
JPS62277774A (en) Manufacture of photoconductive semiconductor photodetector
JPH06260679A (en) Avalanche photodiode
JPS58170077A (en) Semiconductor photodetector