JPH06101578B2 - Planar heterojunction avalanche photodiode - Google Patents

Planar heterojunction avalanche photodiode

Info

Publication number
JPH06101578B2
JPH06101578B2 JP59054908A JP5490884A JPH06101578B2 JP H06101578 B2 JPH06101578 B2 JP H06101578B2 JP 59054908 A JP59054908 A JP 59054908A JP 5490884 A JP5490884 A JP 5490884A JP H06101578 B2 JPH06101578 B2 JP H06101578B2
Authority
JP
Japan
Prior art keywords
region
junction
conductivity type
layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59054908A
Other languages
Japanese (ja)
Other versions
JPS60198786A (en
Inventor
俊敬 鳥飼
剣申 田口
喜正 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59054908A priority Critical patent/JPH06101578B2/en
Priority to US06/713,669 priority patent/US4651187A/en
Priority to DE8585103299T priority patent/DE3567128D1/en
Priority to CA000477076A priority patent/CA1261450A/en
Priority to EP85103299A priority patent/EP0159544B1/en
Publication of JPS60198786A publication Critical patent/JPS60198786A/en
Publication of JPH06101578B2 publication Critical patent/JPH06101578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆バイアス電圧で使用する半導体受光素子に関
し、更に詳しくはいわゆるガードリング効果を有するブ
レーナ型ヘテロ接合半導体受光素子に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor photodetector used with a reverse bias voltage, and more particularly to a brener type heterojunction semiconductor photodetector having a so-called guard ring effect.

(従来技術とその問題点) 現在、光通信用波長域として光ファイバーの伝送損失の
低い1〜1.6μm波長域が主流であり、この波長域にお
いて高速かつ高感度特性を有する半導体受光素子として
フォトダイオード(PD)あるいはアバランシフォトダイ
オード(APD)の研究開発が進められている。上記波長
域に感度を有する材料としてGeおよびIn0.53 Ga0.47As
が現在最も研究されているが、Ge−APDは暗電流が多く
従って過剰雑音が大きいという欠点を有している。それ
に代ってIn0.53 Ga0.47AsはInPに格子整合したヘテロ接
合形成が可能であるため、In Ga As層で光吸収によって
発生した電子−正孔キャリアの一方のみをアバランシ層
であるInP層へ輸送してアバランシ増倍させるような構
造を採用することにより、過剰雑音が小さくでき従って
高受信感度の達成が可能である。その構造例は第1図の
如くであり、この構造については既に特願54−39169に
おいて提案されている。n+−InP基板1の上にn−InPバ
ッファ層2、n-−In0.53 Ga0.47As層3、n−InP層4、
n-−InP層4′を形成した後、熱拡散あるいはイオン注
入によりp型導電領域5を設けてpn接合を形成してい
る。6は反射防止を兼ねた表面保護膜で、7、8は各々
p側電極、n側電極である。かかる構造においては、電
極7−8間に逆バイアス電圧を印加し、空之層をIn Ga
As層3まで伸ばす事によって禁制帯域の狭いIn Ga Asで
光を吸収させ、発生した正孔キャリアを禁制帯域の広い
InP層4内に設けたpn接合まで輸送してアバランシ増倍
を生じさせている。すなわち禁制帯幅の広いInpで電圧
降伏が生じるために、低暗電流受光素子が実現でき、従
って低雑音かつ高受信感度が期待できる。
(Prior art and its problems) At present, the wavelength range for optical communication is mainly the wavelength range of 1 to 1.6 μm with low transmission loss of optical fiber, and a photodiode is used as a semiconductor light receiving element having high speed and high sensitivity characteristics in this wavelength range. Research and development of (PD) or avalanche photodiode (APD) is in progress. Ge and In 0.53 Ga 0.47 As are materials with sensitivity in the above wavelength range.
Is currently the most studied, but Ge-APD has the drawback of high dark current and therefore high excess noise. Instead, In 0.53 Ga 0.47 As can form a heterojunction that is lattice-matched to InP, so only one of the electron-hole carriers generated by light absorption in the In Ga As layer is transferred to the InP layer, which is the avalanche layer. By adopting a structure for transporting and performing avalanche multiplication, excess noise can be reduced and therefore high reception sensitivity can be achieved. An example of the structure is as shown in FIG. 1, and this structure has already been proposed in Japanese Patent Application No. 54-39169. On the n + -InP substrate 1, an n-InP buffer layer 2, an n --In 0.53 Ga 0.47 As layer 3, an n-InP layer 4,
After the n -- InP layer 4'is formed, a p-type conductive region 5 is provided by thermal diffusion or ion implantation to form a pn junction. Reference numeral 6 is a surface protective film which also serves as antireflection, and 7 and 8 are a p-side electrode and an n-side electrode, respectively. In such a structure, a reverse bias voltage is applied between the electrodes 7 and 8 and the sky layer is made of In Ga.
By extending to the As layer 3, light is absorbed by In Ga As with a narrow forbidden band, and the generated hole carriers have a wide forbidden band.
It is transported to the pn junction provided in the InP layer 4 to cause avalanche multiplication. That is, since a voltage breakdown occurs in Inp having a wide band gap, a low dark current light receiving element can be realized, and thus low noise and high reception sensitivity can be expected.

しかしながら、第1図に示す構造においては選択的に形
成したpn接合部の正の曲率を有する部分5aに高電界が集
中する為、平坦部5bよりも低い逆バイアス電圧において
電圧降伏が生じ、受光領域に対応する5bの部分で充分に
キャリア増倍が得られないという欠点を有している。そ
こで5a部が負の曲率(rO)を有し、かつ降伏電圧が
5b部よりも高くなる傾斜型接合を設けた、すなわち第2
図に示すような云わゆるガードリング5′を有する構造
がよく知られている。これはSi−APDあるいはGe−APDの
ように単一の材料から形成される受光素子においては非
常に有効である。しかし、第1図に示したヘテロ接合を
有するAPDに対しては有効ではない。この状況を更に詳
しく説明する。第2図に示すように、第1図の構造にガ
ードリング5′を適用した場合、ガードリング5′の接
合位置が受光領域5のそれよりもIn Ga As層3とInP層4とのヘテロ界面に近接するため、ヘテ
ロ界面に印加される電界強度はは、受光領域5よりもガ
ードリング5′の部分の方が高くなる。従って空之層が
In Ga As層3に達しているとき上述した第1図の場合と
同様、ガードリングの曲率部5′aにおいてIn Ga As層
の電圧降伏が生じてしまい、受光領域に対応する5bの部
分でのキャリア増倍が充分に行われないという欠点を有
してしまう。すなわち、従来構造では、受光領域で充分
に増倍が得られないうちに電圧降伏が生じてしまうとい
う欠点を有していた。
However, in the structure shown in FIG. 1, since the high electric field concentrates on the portion 5a having a positive curvature of the selectively formed pn junction, voltage breakdown occurs at a reverse bias voltage lower than that of the flat portion 5b, and It has a drawback that carrier multiplication cannot be sufficiently obtained in the portion 5b corresponding to the region. Therefore, the 5a part has a negative curvature (rO), and the breakdown voltage is
Providing a graded joint that is higher than part 5b, ie the second
A structure having what is called a guard ring 5'as shown in the figure is well known. This is very effective in a light receiving element formed of a single material such as Si-APD or Ge-APD. However, it is not effective for the APD having the heterojunction shown in FIG. This situation will be described in more detail. As shown in FIG. 2, when the guard ring 5 ′ is applied to the structure of FIG. 1, the junction position of the guard ring 5 ′ is higher than that of the light receiving region 5 in the In Ga As layer 3 and the InP layer 4. Since it is close to the interface, the electric field strength applied to the hetero interface is higher in the guard ring 5 ′ than in the light receiving region 5. Therefore, the sky layer
When reaching the In Ga As layer 3, as in the case of FIG. 1 described above, the voltage breakdown of the In Ga As layer occurs in the curvature portion 5′a of the guard ring, and at the portion 5b corresponding to the light receiving region. However, there is a drawback in that the carrier multiplication is not sufficiently performed. That is, the conventional structure has a drawback that voltage breakdown occurs before multiplication is sufficiently obtained in the light receiving region.

(発明の目的) 本発明はこのような従来の欠点を除去せしめ、ガードリ
ングにおいて電圧降伏が生じる以前に、受光領域で充分
なキャリア増倍による電圧降伏が生じるヘテロ接合を用
いた半導体受光素子を提供することにある。
(Object of the Invention) The present invention eliminates such a conventional defect and provides a semiconductor light receiving element using a heterojunction in which a voltage breakdown due to sufficient carrier multiplication occurs in the light receiving region before the voltage breakdown occurs in the guard ring. To provide.

(発明の構成) 本発明のプレーナ型ヘテロ接合アバランシェフォトダイ
オードは少なくともEg1なる禁制帯幅を有する第1導電
型の光吸収のための半導体層、該光吸収層の上に積層さ
れたEg2(ただしEg2>Eg1)なる禁制帯幅を有する第1
導電型アバランシェ増倍のための半導体層を有し、該ア
バランシェ増倍層中に急峻な階段型pn接合(第1のpn接
合とする)フロントを与える、不純物濃度の十分高い第
2導電型の第1領域、該第2導電型第1領域の外周縁に
おける第1導電型アバランシェ増倍層との境界を与える
曲率を有する部分を、リング状に囲んだ第2導電型の第
2の領域、該リング状第2導電型第2領域の外側周縁部
における第1導電型アバランシェ増倍層との境界を与え
る領域を更にリング状に囲んだ第2導電型の第3領域が
設けられて、第2導電型第2領域及び第2導電型第3領
域は第1導電型アバランシェ増倍層との境界において傾
斜型pn接合(それぞれ第2、第3のpn接合とする)を与
える事を特徴とし、更に、第2導電型第2領域のpn接合
フロントの表面からの深さは第2導電型第1領域及び第
2導電型第3領域の深さよりも深いことを特徴とする。
(Structure of the Invention) The planar heterojunction avalanche photodiode of the present invention comprises a semiconductor layer for light absorption of the first conductivity type having a forbidden band width of at least Eg 1 , and Eg 2 laminated on the light absorption layer. The first with a forbidden band width (where Eg 2 > Eg 1 )
A second conductivity type having a sufficiently high impurity concentration, which has a semiconductor layer for conductivity type avalanche multiplication, and provides a steep step type pn junction (first pn junction) front in the avalanche multiplication layer. A second region of the second conductivity type in which a first region, a portion having a curvature that provides a boundary with the first conductivity type avalanche multiplication layer in the outer peripheral edge of the second region of the second conductivity type is surrounded by a ring. A third region of the second conductivity type is further provided, which further surrounds a region of the outer peripheral portion of the second region of the ring-shaped second conductivity type that provides a boundary with the avalanche multiplication layer of the first conductivity type in a ring shape. The second-conductivity-type second region and the second-conductivity-type third region are characterized by providing inclined pn junctions (second and third pn junctions, respectively) at the boundary with the first-conductivity-type avalanche multiplication layer. , Further, from the surface of the pn junction front of the second region of the second conductivity type The depth is deeper than the depth of the second conductivity type first region and the second conductivity type third region.

(発明の詳細な説明) 本発明は上述の構成により従来の欠点を解決した。すな
わち受光領域である第1のpn接合とがードリングである
第2のpn接合から構成される第2図の構造では、第2の
pn接合が第1のpn接合よりもヘテロ界面に近接するため
第2のpn接合の曲率部5′aにおける電圧降伏が生じる
ために均一な高アバランシェ増倍層特性が得られなかっ
たが、第2のpn接合を囲むように第2のpn接合よりも浅
く位置する本発明の第3のpn接合を設けることにより、
第2のpn接合曲率部5′aの曲率を負にすることができ
(rO)従って第2のpn接合と第3のpn接合の降伏電
圧を第1のpn接合部のそれよりも高く設定でき均一な高
アバランシェ増倍特性が得られる。
(Detailed Description of the Invention) The present invention has solved the conventional drawbacks by the above-mentioned configuration. That is, in the structure of FIG. 2 in which the first pn junction which is the light receiving region and the second pn junction which is a drain,
Since the pn junction is closer to the hetero interface than the first pn junction, voltage breakdown occurs at the curved portion 5'a of the second pn junction, and uniform high avalanche multiplication layer characteristics cannot be obtained. By providing the third pn junction of the present invention which is located shallower than the second pn junction so as to surround the second pn junction,
The curvature of the second pn junction curvature portion 5'a can be made negative (rO). Therefore, the breakdown voltage of the second pn junction and the third pn junction is set higher than that of the first pn junction portion. As a result, uniform high avalanche multiplication characteristics can be obtained.

(実施例) 以下第1図、第2図と同様InP/In Ga Asヘテロ接合APD
について実施例を用いてより詳細に説明するが、他のヘ
テロ接合、例えばAl Ga As/Ga As、Al Ga Sb/Ga Sb等に
ついても全く同様であることは容易に理解される。
(Examples) InP / In Ga As heterojunction APD similar to FIGS. 1 and 2 below
Examples will be described in more detail with reference to Examples, but it is easily understood that other heterojunctions such as Al Ga As / Ga As and Al Ga Sb / Ga Sb are exactly the same.

第3図は、本発明による受光素子の一実施例である。FIG. 3 shows an embodiment of the light receiving element according to the present invention.

n+−InP基板1上に、n−InPバッファ層2を1μm厚
に、3〜5×1015cm-3キャリア濃度のn−In0.53 Ga
0.47As層3を3.5μm厚に、波長1.3μm相当のIn Ga As
P層3′を0.3μm厚に、1〜2×1016cm-3キャリア濃度
のn−InP層4を1.5μm厚に、1〜5×1015cm-3キャリ
ア濃度のn-−InP層4′を2μm厚に順次形成した後、C
dの熱拡散法により階段型の第1のpn接合5を、Beのイ
オン注入法により傾斜型の第2及び第3のpn接合5′、
5″を各々形成した。
On the n + -InP substrate 1, an n-InP buffer layer 2 having a thickness of 1 μm and a carrier concentration of n-In 0.53 Ga of 3 to 5 × 10 15 cm −3 is formed.
0.47 As layer 3 with a thickness of 3.5 μm and In Ga As with a wavelength of 1.3 μm
The P layer 3 'to 0.3μm thick, the 1~2 × 10 16 cm -3 n- InP layer 4 of the carrier concentration in 1.5μm thickness, of 1~5 × 10 15 cm -3 carrier concentration n - -InP layer After sequentially forming 4'to a thickness of 2 μm, C
The step-type first pn junction 5 is formed by the thermal diffusion method of d, and the inclined second and third pn junctions 5 ′ are formed by the Be ion implantation method.
5 ″ each was formed.

第2と第3のpn接合5′、5″は各々、Beイオンの加速
エネルギーを変えることによって(第2は100KV、第3
は60KV加速)、その接合深さを調整した。
The second and third pn junctions 5 ′ and 5 ″ are each formed by changing the acceleration energy of Be ions (the second is 100 KV, the third is
60KV acceleration), the junction depth was adjusted.

第3図に示す構造により、第2のpn接合曲率部5′aの
曲率が第2図の場合と違って負になる(rO)ため、
第2のpn接合の降伏電圧が、従来の第2図の場合よりも
高くなる。更に第3のpn接合は、第2のpn接合よりもヘ
テロ界面から離れているため、第3のpn接合曲率部5″
aにおける電圧降伏は、第2図における曲率部5′aよ
りも高くかつ第1のpn接合の受光領域に対応する5b部よ
りも高くすることができる。従って受光領域に対応する
第1のpn接合部5bにおけるキャリア増倍を充分に行うこ
とができる。
Because of the structure shown in FIG. 3, the curvature of the second pn junction curvature portion 5'a becomes negative (rO) unlike the case of FIG.
The breakdown voltage of the second pn junction becomes higher than that in the conventional case of FIG. Furthermore, since the third pn junction is farther from the hetero interface than the second pn junction, the third pn junction curved portion 5 ″ is formed.
The voltage breakdown at a can be higher than that of the curved portion 5'a in FIG. 2 and higher than that of the portion 5b corresponding to the light receiving region of the first pn junction. Therefore, carrier multiplication in the first pn junction 5b corresponding to the light receiving region can be sufficiently performed.

(発明の効果) 本発明による第3図の構造で作製したInP/In Ga Asヘテ
ロ接合APDの増倍特性は第4図に示す如くであり、第2
および第3のpn接合から成るガードリング部よりも第1
のpn接合から成る受光領域におけるキャリア増倍が大き
い状況が実現された。このときの最大増倍率は50倍程度
であり、従来の第2図の構造を用いた場合の10倍程度よ
りも良好な結果を得た。
(Effect of the invention) The multiplication characteristics of the InP / In Ga As heterojunction APD manufactured by the structure of FIG. 3 according to the present invention are as shown in FIG.
And the guard ring portion formed of the third pn junction
The situation has been realized in which the carrier multiplication is large in the light-receiving region consisting of the pn junction. The maximum multiplication factor at this time is about 50 times, which is better than about 10 times when the conventional structure of FIG. 2 is used.

以上、本発明によれば、第1のpn接合フロント平坦部よ
りも高い降伏電圧のガードリングを形成でき、受光領域
における均一なアバランシェ高増倍特性が得られる利点
を有している。
As described above, according to the present invention, it is possible to form a guard ring having a breakdown voltage higher than that of the first pn junction front flat portion, and to obtain uniform avalanche high multiplication characteristics in the light receiving region.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は従来のヘテロ接合半導体受光素子の断
面図であり、第3図は本発明のヘテロ接合半導体受光素
子を示す図である。 第4図は本発明の効果の一例で、増倍特性を示してい
る。 図において、1は半導体基板、2は1と同種の半導体バ
ッファ層、3は禁制帯幅の小さい光吸収層、3′は3と
4との中間の禁制帯幅を有する半導体層4は禁制帯幅の
大きいアバランシ増倍層、4′は4と同種で4よりもキ
ャリア濃度の低い半導体層、5、5′、5″は各々第1
のpn接合、第2のpn接合、第3のpn接合、5a、5′a、
5″aはその接合の曲率部、5bは接合の平坦部、6は表
面保護膜、7、8は各々pn側電極、n側電極である。
1 and 2 are cross-sectional views of a conventional heterojunction semiconductor photodetector, and FIG. 3 is a diagram showing a heterojunction semiconductor photodetector of the present invention. FIG. 4 shows an example of the effect of the present invention and shows the multiplication characteristic. In the figure, 1 is a semiconductor substrate, 2 is a semiconductor buffer layer of the same type as 1, 3 is a light absorption layer having a small forbidden band width, 3'is a semiconductor layer 4 having a forbidden band width between 3 and 4, and a forbidden band. The avalanche multiplication layer having a large width, 4'is a semiconductor layer of the same type as 4 and having a carrier concentration lower than 4, 5, 5 ', 5 "is the first
Pn junction, second pn junction, third pn junction, 5a, 5'a,
Reference numeral 5 "a is a curved portion of the junction, 5b is a flat portion of the junction, 6 is a surface protective film, 7 and 8 are pn side electrodes and n side electrodes, respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 喜正 東京都港区芝5丁目33番1号 日本電気株 式会社内 (56)参考文献 特開 昭56−58286(JP,A) 特開 昭58−30164(JP,A) 特開 昭58−157177(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshimasa Sugimoto 5-33-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (56) References JP-A-56-58286 (JP, A) JP-A-SHO 58-30164 (JP, A) JP-A-58-157177 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくともEg1なる禁制帯幅を有する第1
導電型の光吸収のための半導体層、該光吸収層の上に積
層されたEg2(ただしEg2>Eg1)なる禁制帯幅を有する
第1導電型のアバランシェ増倍のための半導体層を有
し、該アバランシェ増倍層中に急峻な階段型pn接合(第
1のpn接合とする)フロントを与える不純物濃度の十分
高い第2導電型の第1領域、該第2導電型第1領域の外
周縁における第1導電型アバランシェ増倍層との境界を
与える曲率を有する部分を、リング状に囲んだ第2導電
型の第2領域、該リング状第2導電型第2領域の外側周
縁部における第1導電型アバランシェ増倍層との境界を
与える領域を更にリング状に囲んだ第2導電型の第3領
域が設けられて、第2導電型第2領域及び第2導電型第
3領域は第1導電型アバランシェ増倍層との境界におい
て傾斜型pn接合(それぞれ第2、第3のpn接合とする)
を与えることを特徴とし、更に、第2導電型第2領域の
pn接合フロントの表面からの深さは第2導電型第1領域
及び第2導電型第3領域の深さよりも深いことを特徴と
するプレーナ型ヘテロ接合アバランシェフォトダイオー
ド。
1. A first having a forbidden band width of at least Eg 1 .
A conductive type semiconductor layer for absorbing light, and a semiconductor layer for avalanche multiplication of the first conductive type having a forbidden band width of Eg 2 (where Eg 2 > Eg 1 ) laminated on the light absorbing layer. A first region of the second conductivity type having a sufficiently high impurity concentration for providing a steep step type pn junction (referred to as a first pn junction) front in the avalanche multiplication layer, and the second conductivity type first region. A second conductive type second region in which a portion having a curvature that gives a boundary with the first conductive type avalanche multiplication layer in the outer peripheral edge of the region is surrounded in a ring shape, and outside the ring-shaped second conductive type second region A third region of the second conductivity type is further provided, which surrounds a region that provides a boundary with the avalanche multiplication layer of the first conductivity type in the peripheral portion and further surrounds in a ring shape. The three regions have a graded pn junction at the boundary with the first conductivity type avalanche multiplication layer. It is the second, the third pn junction)
Of the second region of the second conductivity type.
A planar heterojunction avalanche photodiode characterized in that the depth from the surface of the pn junction front is deeper than the depths of the second conductivity type first region and the second conductivity type third region.
JP59054908A 1984-03-22 1984-03-22 Planar heterojunction avalanche photodiode Expired - Lifetime JPH06101578B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59054908A JPH06101578B2 (en) 1984-03-22 1984-03-22 Planar heterojunction avalanche photodiode
US06/713,669 US4651187A (en) 1984-03-22 1985-03-19 Avalanche photodiode
DE8585103299T DE3567128D1 (en) 1984-03-22 1985-03-21 Avalanche photodiode and its manufacturing method
CA000477076A CA1261450A (en) 1984-03-22 1985-03-21 Avalanche photodiode with double guard ring
EP85103299A EP0159544B1 (en) 1984-03-22 1985-03-21 Avalanche photodiode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054908A JPH06101578B2 (en) 1984-03-22 1984-03-22 Planar heterojunction avalanche photodiode

Publications (2)

Publication Number Publication Date
JPS60198786A JPS60198786A (en) 1985-10-08
JPH06101578B2 true JPH06101578B2 (en) 1994-12-12

Family

ID=12983695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054908A Expired - Lifetime JPH06101578B2 (en) 1984-03-22 1984-03-22 Planar heterojunction avalanche photodiode

Country Status (1)

Country Link
JP (1) JPH06101578B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390868A (en) * 1986-10-03 1988-04-21 Nec Corp Manufacture of semiconductor photodetector
JP2573201B2 (en) * 1987-02-26 1997-01-22 株式会社東芝 Method for forming diffusion layer of semiconductor device
JPH02248081A (en) * 1989-03-22 1990-10-03 Toshiba Corp Avalanche photodiode and manufacture thereof
CA2396325C (en) 2001-09-06 2010-03-30 Sumitomo Electric Industries, Ltd. Zn1-xmgxsyse1-y pin photodiode and zn1-xmgxsyse1-y avalanche-photodiode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101278A (en) * 1978-01-26 1979-08-09 Nec Corp Manufacture for semiconductor device
JPS54102876A (en) * 1978-01-30 1979-08-13 Mitsubishi Electric Corp Manufacture for planer type semiconductor device
JPS5642385A (en) * 1979-09-12 1981-04-20 Nec Corp Hetero-structure semiconductor device
JPS5658286A (en) * 1979-10-18 1981-05-21 Nippon Telegr & Teleph Corp <Ntt> Forming method for guard ring of avalanche photodiode
JPS5830164A (en) * 1981-08-17 1983-02-22 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and manufacture thereof
JPS58157177A (en) * 1982-03-15 1983-09-19 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS60198786A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
US4684969A (en) Heterojunction avalanche photodiode
JP2934294B2 (en) Avalanche photodiode
JPS5854685A (en) Avalanche photodiode and manufacture thereof
Taguchi et al. Planar-structure InP/InGaAsP/InGaAs avalanche photodiodes with preferential lateral extended guard ring for 1.0-1.6 mu m wavelength optical communication use
CA2050435C (en) Photo-sensing device
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
CA1228663A (en) Photodetector with isolated avalanche region
US20020105010A1 (en) Semiconductor light detecting device
JPH06101578B2 (en) Planar heterojunction avalanche photodiode
JPS6285477A (en) Photosemiconductor device
CA1180092A (en) Photodiode with separate absorption and avalanche zones
JPH0513798A (en) Semiconductor photodetection device
JPH06105795B2 (en) Method for manufacturing group III-V semiconductor light receiving element
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPH0437591B2 (en)
JP2680817B2 (en) Method for manufacturing planar heterojunction semiconductor photodetector
JP3172996B2 (en) Semiconductor light receiving element
JPH0265279A (en) Semiconductor photodetecting element
JPH01261874A (en) Photodetector
JP2995751B2 (en) Semiconductor light receiving element
JPS63142683A (en) Avalanche photodiode
JP2991555B2 (en) Semiconductor light receiving element
JPH06260679A (en) Avalanche photodiode
JP2767877B2 (en) Manufacturing method of semiconductor light receiving element
JP2754652B2 (en) Avalanche photodiode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term