JPS62245684A - Photoconductive semiconductor photodetector - Google Patents

Photoconductive semiconductor photodetector

Info

Publication number
JPS62245684A
JPS62245684A JP61089309A JP8930986A JPS62245684A JP S62245684 A JPS62245684 A JP S62245684A JP 61089309 A JP61089309 A JP 61089309A JP 8930986 A JP8930986 A JP 8930986A JP S62245684 A JPS62245684 A JP S62245684A
Authority
JP
Japan
Prior art keywords
source electrode
electrode
photodetector
main carrier
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089309A
Other languages
Japanese (ja)
Inventor
Hisahiro Ishihara
久寛 石原
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61089309A priority Critical patent/JPS62245684A/en
Publication of JPS62245684A publication Critical patent/JPS62245684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To manufacture the title photodetector with high gain band width space by a method wherein the main carrier arresting level is set up only on the specific region near the electrode on the main carrier reaching side on the surface of a conductivity type semiconductor using the main carrier at high running speed. CONSTITUTION:An N<->-InGaAs 2 is deposited on a semiinsulating InP substrate 1 while a source electrode 4 and a drain electrode 3 are formed by evaporating AuGeNi and heat-treatment. The InGaAs 2 excluding the photodetector region is removed by mesa etching process. Next, an SiO2 film 5 is formed while an opening is made in a specific part near the source electrode 4 to form a damage region by implanting Be ions. Thus, the electron running time is not increased and a hole is impressed with intensive field near the drain electrode (+) to be drifted while being impressed with very faint field near the source electrode (-) so that the hole may be arrested by a lattice defect led in the part near the source electrode only to decide the life time for improving the response. In such a constitution, the loss in current gain can be minimized while improving the response characteristics to manufacture a photodetector with high gain band width space.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信や光情報処理等に於て用いられる光導
電性半導体受光素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a photoconductive semiconductor light-receiving element used in optical communications, optical information processing, and the like.

(従来の技術) 化合物半導体受光素子は、光通信或いは光情報処理用の
受光器に用いられており、高速で高感度な素子の開発が
精力的に進められている。中でも光導電性半導体受光素
子は、ダイオードタイプの受光素子のようにキャリア走
行領域に空乏層(即ち容量)を持たないために、CR時
定数の影響を受けにくく、キャリアの青命及びキャリア
の走行時間が短くなるように素子設計することにより、
高利得帯域幅積(高GB積)特性が得られる期待がある
(Prior Art) Compound semiconductor light-receiving elements are used in optical receivers for optical communications or optical information processing, and efforts are being made to develop high-speed, highly sensitive elements. Among them, photoconductive semiconductor light-receiving elements do not have a depletion layer (i.e., capacitance) in the carrier travel region unlike diode-type light-receiving elements, so they are less affected by the CR time constant, and the carrier life and carrier travel are less affected by the CR time constant. By designing the element to shorten the time,
There is hope that high gain bandwidth product (high GB product) characteristics can be obtained.

光通信用として注目を集めている光ファイバーの低損失
帯域にあたる1.0−1.6pm帯波長域では、半導体
受光素子の光吸収層の材料としてInGaAsが最も適
したものである。このInGaAs系光導電性半導体受
光素子の基本構造の一例を第2図に示す。この構造は半
絶縁性InP基板1上にn−InGaAs層2を結晶成
長し、更にメサエッチングを施したこの半導体層2の表
面に2つの電極3,4を形成した素子構造を有している
。この両電極間に電圧を印加して、その間に入射した光
励起キャリアによって導電率が増加する事を用いて、光
信号を電気信号に変換させるわけである。ここで、n型
半導体の場合内部電流利得は G=−c/l           ・・・・・(1)
℃;正正孔ライフタイム t;電子の走行時間 で求まる。走行時間制限の場合にはIは正孔の走行時間
となるので、電流利得は正孔と電子の走行時間の比で求
まることになる。III −V族半導体では電子の方が
正孔に比べ走行速度が大きい為、利得は常に1より大き
くなる。また、応答特性はこの正孔の遅い走行時間によ
り制限されており、パルス応答の裾引きの原因となって
いた。そこで応答特性の改善を図る為に、半導体中にダ
メージを加え正孔をトラップする準位を生じさせ、正孔
のライフタイムを短くする試みがなされている。その−
例を第3図に示す。この例では、第2図の例と同様に電
極を形成した後、Be++イオンを400keVの加速
エネルギーで4×1010cm−2程度注入して半導体
中に欠陥を生じさせている(アプライド・フィツクス・
レターズ(Appl、 Phys、 Lett、)46
(4)、 pp396−398.1985参照)。
In the 1.0-1.6 pm wavelength band, which corresponds to the low-loss band of optical fibers that are attracting attention for optical communications, InGaAs is the most suitable material for the light absorption layer of a semiconductor photodetector. An example of the basic structure of this InGaAs-based photoconductive semiconductor light receiving element is shown in FIG. This structure has an element structure in which an n-InGaAs layer 2 is crystal-grown on a semi-insulating InP substrate 1, and two electrodes 3 and 4 are formed on the surface of this semiconductor layer 2, which is further mesa-etched. . A voltage is applied between these two electrodes, and the conductivity increases due to photoexcited carriers incident between the two electrodes, thereby converting an optical signal into an electrical signal. Here, in the case of an n-type semiconductor, the internal current gain is G = -c/l (1)
°C: Hole lifetime t: Determined by electron transit time. In the case of transit time limitation, I is the transit time of holes, so the current gain is determined by the ratio of the transit times of holes and electrons. In III-V group semiconductors, electrons travel at a faster speed than holes, so the gain is always greater than 1. Furthermore, the response characteristics are limited by the slow transit time of the holes, which causes tailing of the pulse response. Therefore, in order to improve the response characteristics, attempts have been made to shorten the lifetime of holes by damaging the semiconductor and creating a level that traps holes. That-
An example is shown in FIG. In this example, after electrodes are formed in the same manner as in the example shown in Figure 2, Be++ ions are implanted at an acceleration energy of 400 keV to a depth of about 4 x 1010 cm-2 to create defects in the semiconductor (Applied Fixtures).
Letters (Appl, Phys, Lett,) 46
(4), pp396-398.1985).

(発明が解決しようとする問題点) しかしこの様に電極間の半導体中に一様にダメージ領域
6がある場合、正孔のライフタイムが短くなると同時に
、モビリティの劣化により電子の走行時間が長くなる為
、(1)式で分子が小さくなり且つ分母が大きくなるこ
とにより利得が小さく抑えられてしまう。そこで本発明
の目的はこれら従来の欠点を解決し、利得の損失を最小
限に止めた上で高速応答を有する。即ち高GB積な光導
電性半導体受光素子を提供する事にある。
(Problem to be solved by the invention) However, if there is a uniformly damaged region 6 in the semiconductor between the electrodes, the lifetime of holes becomes short, and at the same time the transit time of electrons becomes long due to deterioration of mobility. Therefore, in equation (1), the numerator becomes small and the denominator becomes large, so that the gain is suppressed to a small value. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve these conventional drawbacks and provide a high-speed response while minimizing gain loss. That is, the object is to provide a photoconductive semiconductor light-receiving element with a high GB product.

(問題点を解決する為の手段) 前述の問題点を解決する為に本発明が提供する光導電性
半導体受光素子は、電子と正孔のうち走行速度の速い方
をマジョリティキャリアとする導電型の半導体表面に、
一対の電極を有し、該電極間に印加された電界によりキ
ャリアを表面と平行な方向に走行させる構造を備え、且
つマイノリティキャリアが到達する側の電極近傍の特定
領域のみにマイノリティキャリアトラップ準位が形成さ
れている事を特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a photoconductive semiconductor light-receiving element, which is a conductive type in which electrons and holes, whichever has a faster traveling speed, are majority carriers. on the semiconductor surface of
It has a pair of electrodes, and has a structure in which carriers travel in a direction parallel to the surface by an electric field applied between the electrodes, and a minority carrier trap level is created only in a specific region near the electrode on the side where minority carriers reach. It is characterized by the formation of

(作用) 本発明は上述の構成をとることにより従来技術の問題点
を解決した。即ち本発明による光導電性半導体受光素子
では、例えば走行速度の速い方のマジョリティキャリア
が電子の例で説明するとn型半導体中のソース電極近傍
領域(正孔が半導体外に出て行く付近)のみにトラップ
準位を形成する為、キャリアのモビリティを大きく損な
う事が無く、また正孔はソース電極付近まで走行してか
らトラップされるのでライフタイムが極端に短くなる事
も無く、利得の損失は最小限に抑えられる。併せてソー
ス電極付近までドリフトして来た正孔は、弱電界下でゆ
っくりと電極に出て行くかわりにソース近傍に導入され
た格子欠陥によりトラップされてライフタイムが決定さ
れるので応答の改善が得られる。これは電子と正孔の役
割が逆になっても成立する。
(Function) The present invention solves the problems of the prior art by adopting the above-described configuration. That is, in the photoconductive semiconductor light-receiving device according to the present invention, for example, if we take an example in which the faster-moving majority carriers are electrons, only the region near the source electrode in the n-type semiconductor (the region where holes exit the semiconductor) Since a trap level is formed at Minimized. At the same time, holes that have drifted to the vicinity of the source electrode are trapped by lattice defects introduced near the source instead of slowly leaving the electrode under a weak electric field, and their lifetime is determined, improving response. is obtained. This holds true even if the roles of electrons and holes are reversed.

こうして高利得帯域幅積(高GB積)特性が実現される
In this way, high gain bandwidth product (high GB product) characteristics are achieved.

(実施例) 以下本発明の一実施例について図面を参照して詳細に説
明する。第1図は本発明の一実施例の光導電性半導体受
光素子の断面積構造を示す模式図である。本実施例によ
れば、半絶縁性InP基板1上にn−−InGaAs2
を〜1.5pm結晶成長した後ソース電極4、ドレイン
電極3をAuGeNiの真空蒸着、熱処理により形成す
る。続いてメサエッチングにより受光領域外のInGa
Asを除去する。次に5i02膜5を形成した後、フォ
トレジスト工程によりソース電極近傍の特定領域の5i
02を除去、更にこのフォトレジストと5i02とマス
クとして選択領域にBe+十を400keVの加速エネ
ルギー、ドーズ量I X 10”cm−2でイオン注入
してダメージ領域を形成する。
(Example) An example of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing the cross-sectional structure of a photoconductive semiconductor light-receiving element according to an embodiment of the present invention. According to this embodiment, n--InGaAs2 is formed on the semi-insulating InP substrate 1.
After crystal growth of ~1.5 pm, a source electrode 4 and a drain electrode 3 are formed by vacuum evaporation of AuGeNi and heat treatment. Next, mesa etching is performed to remove the InGa outside the light receiving area.
Remove As. Next, after forming a 5i02 film 5, a photoresist process is performed to form a 5i02 film 5 in a specific area near the source electrode.
02 is removed, and using this photoresist, 5i02, and a mask, Be+1 is ion-implanted into the selected region at an acceleration energy of 400 keV and a dose of I.times.10"cm@-2 to form a damaged region.

こうして得た素子では、キャリアのモビリティを劣化さ
せる原因となる格子欠陥はソース電極近傍の限られた領
域にしか導入されない為、電子の走行時間((1)式の
分母)を増加させる影響が少ない。
In the device obtained in this way, lattice defects that cause carrier mobility deterioration are introduced only in a limited area near the source electrode, so there is little effect of increasing electron transit time (denominator of equation (1)). .

併せて正孔も、光励起で発生して直ちにトラップされて
しまう事は無く、ソース電極近傍まで走行((1)式の
分子)も極端に小さくなる事は無い。従って、電流の損
失は最小限に抑える事ができる。
In addition, holes are not generated by photoexcitation and immediately trapped, and the molecules that travel to the vicinity of the source electrode (molecules in formula (1)) do not become extremely small. Therefore, current loss can be minimized.

ところで電極間を走行する正孔を考えた場合、ドレイン
電極(+電極)付近では強い電界を感じ、ドリフトする
ものの、ソース電極(−電極)付近では非常に弱い電界
を感じる事になる為、高速で電極に出て行く事が出来な
い。これが正孔の実質的な走行時間を制限し応答劣化の
一因となっていた(J、 C。
By the way, when considering a hole traveling between electrodes, it feels a strong electric field near the drain electrode (+ electrode) and drifts, but it feels a very weak electric field near the source electrode (- electrode), so it drifts at high speed. So I can't go out to the electrode. This limited the effective transit time of holes and was a cause of response deterioration (J, C).

Gammel博士学位論文、 p122.コーネル大学
、 1980参照)。
Gammel doctoral dissertation, p122. (See Cornell University, 1980).

本発明によれば、ソース電極付近に走行して米た正孔は
弱電界下でゆっくりと電極に出て行くかわりに、ソース
近傍にのみ導入された格子欠陥によりトラップされてラ
イフタイムが決定されるので応答の改善が得られ、パル
ス立ち下がり部の裾引きを無くす事が可能となった。
According to the present invention, instead of the holes traveling near the source electrode slowly exiting to the electrode under a weak electric field, they are trapped by lattice defects introduced only near the source, and their lifetime is determined. This improves the response and eliminates the tailing of the trailing edge of the pulse.

上記実施例ではトラップ準位形成のためにイオン注入を
利用しているが、他の方法、例えば不純物拡散等によっ
て形成してもよい。
In the above embodiment, ion implantation is used to form the trap level, but the trap level may be formed by other methods such as impurity diffusion.

(発明の効果) 以上説明した様に、本発明によれば、電流利得の損失を
最小限に抑さえた上で、応答特性の改善を得る事が出来
、高GB積特性を有した光導電性半導体受光素子が実現
出来る。
(Effects of the Invention) As explained above, according to the present invention, it is possible to minimize current gain loss, improve response characteristics, and provide a photoconductive material with high GB product characteristics. A semiconductor photodetector can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す光導電性半導体受光
素子の断面構造模式図、第2図及び第3図は従来例を示
す光導電性半導体受光素子の断面構造模式図である。 図に於いて、1;半絶縁性InP基板、2;n−一  
      心
FIG. 1 is a schematic diagram of a cross-sectional structure of a photoconductive semiconductor light-receiving device showing an embodiment of the present invention, and FIGS. 2 and 3 are schematic diagrams of a cross-sectional structure of a photoconductive semiconductor light-receiving device showing conventional examples. . In the figure, 1: semi-insulating InP substrate, 2: n-1
heart

Claims (1)

【特許請求の範囲】[Claims] 電子と正孔のうち走行速度の速い方をマジョリティキャ
リアとする導電型の半導体の表面に、一対の電極を有し
、該電極間に印加された電界によりキャリアを表面と平
行な方向に走行させる光導電性半導体受光素子において
、マイノリティキャリアが到達する側の電極近傍領域の
みにマイノリティキャリアトラップ準位が形成されてい
る事を特徴とする光導電性半導体受光素子。
A pair of electrodes is provided on the surface of a conductive type semiconductor in which the faster traveling speed of electrons and holes is the majority carrier, and an electric field applied between the electrodes causes the carriers to travel in a direction parallel to the surface. A photoconductive semiconductor light receiving element characterized in that a minority carrier trap level is formed only in a region near an electrode on the side where minority carriers reach.
JP61089309A 1986-04-17 1986-04-17 Photoconductive semiconductor photodetector Pending JPS62245684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089309A JPS62245684A (en) 1986-04-17 1986-04-17 Photoconductive semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089309A JPS62245684A (en) 1986-04-17 1986-04-17 Photoconductive semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS62245684A true JPS62245684A (en) 1987-10-26

Family

ID=13967063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089309A Pending JPS62245684A (en) 1986-04-17 1986-04-17 Photoconductive semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS62245684A (en)

Similar Documents

Publication Publication Date Title
JPH06291359A (en) Semiconductor light receiving device
US4346394A (en) Gallium arsenide burrus FET structure for optical detection
JPS63116474A (en) Avalanche photodetector
JPS63955B2 (en)
JPS60234384A (en) Electronic avalanche photodetector
US4416053A (en) Method of fabricating gallium arsenide burris FET structure for optical detection
CA1280196C (en) Avanlanche photodiode
JPS62245684A (en) Photoconductive semiconductor photodetector
JPS60247979A (en) Semiconductor optical element
US4783689A (en) Photodiode having heterojunction
JPS60234383A (en) Electronic avalanche photodetector
CN109494277B (en) Long-wave infrared detector and manufacturing method thereof
JPS6346783A (en) Photoconductive semiconductor photo-detector
Jagannath et al. High‐speed 1.3 μm InGaAs/GaAs metal‐semiconductor‐metal photodetector
JPH04127569A (en) Semiconductor device and manufacture thereof
JPS62281478A (en) Photodetector
JPH11340481A (en) Photodetector and fabrication
WO2022018860A1 (en) Optical receiver
US20240162366A1 (en) Inversion layer apd
JPS62179163A (en) Semiconductor photo detector
Döhler High-speed nipi photodetector with internal gain
CN118431247A (en) Infrared detector
JPS6355983A (en) Photoconductive semiconductor photodetector
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS61121482A (en) Photoconductive semiconductor light-receiving element