JPS60247979A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPS60247979A
JPS60247979A JP59103586A JP10358684A JPS60247979A JP S60247979 A JPS60247979 A JP S60247979A JP 59103586 A JP59103586 A JP 59103586A JP 10358684 A JP10358684 A JP 10358684A JP S60247979 A JPS60247979 A JP S60247979A
Authority
JP
Japan
Prior art keywords
layer
light absorption
absorption layer
semiconductor
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59103586A
Other languages
Japanese (ja)
Other versions
JPH0656900B2 (en
Inventor
Kazuo Sakai
堺 和夫
Yuichi Matsushima
松島 裕一
Shigeyuki Akiba
重幸 秋葉
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP59103586A priority Critical patent/JPH0656900B2/en
Publication of JPS60247979A publication Critical patent/JPS60247979A/en
Publication of JPH0656900B2 publication Critical patent/JPH0656900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation

Abstract

PURPOSE:To obtain a photodetector, which responds at high speed and has high sensitivity, by forming structure in which electron.hole pairs shaped through the absorption of incident beams are spatially isolated instantaneously by the internal electric field of an optical absorption layer and the recombination of electrons and holes is prevented. CONSTITUTION:A non-doped InP buffer layer 12 is laminated onto a semi-insulating InP substrate 11, and two layers of non-doped In0.52Al0.48As third semiconductor layers 15 holding a non-doped In0.53Ga0.47As optical absorption layer 16 are formed between an Si doped In0.52Al0.48As first semiconductor layer 13 and a Be doped In0.52Al0.48As second semiconductor layer 14 having a conduction type different from the conduction type of the layer 13, and a plurality of these layer structure are laminated. The forbidden band width of the first-third semiconductor layers 13-15 is made larger than that of the optical absorption layer 16. A distance between electrodes extends over approximately 10mum and electrode width approximately 50mum in metallic electrodes 17, 18. Regions 7, 8 represent high impurity concentration regions for reducing contact resistance.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体光素子に係わり、特に、光導電型の光検
出素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor optical device, and particularly to a photoconductive type photodetecting device.

(従来技術) 光通信シヌテムを実現するには、電気信号を光信号に変
換する半導体レーザと、光信号を伝搬する光ファイバと
、光信号を電気信号に変換する光検出器が必要となる。
(Prior Art) To realize an optical communication system, a semiconductor laser that converts an electrical signal into an optical signal, an optical fiber that propagates the optical signal, and a photodetector that converts the optical signal into an electrical signal are required.

この光検出器には7バランシ・ホト・ダイオード、 p
inホトダイオード、光導電素子等があり、中でも光導
電素子は構造上光電気集積回路への適合性が良いと考え
られ、最近特に注目を浴びている。
This photodetector includes a 7-balance photodiode, p
There are in-line photodiodes, photoconductive elements, etc. Among them, photoconductive elements are considered to have good structural compatibility with opto-electrical integrated circuits, and have recently attracted particular attention.

第1図は従来の光導電素子の構造図であり、1は半絶縁
性のGaAa基板、2は光吸収層で非ドープのGaAs
層(厚さ幻2μm)(以下、「光吸収層」と称す)、3
は光吸収層2より禁止帯幅の大きい非ドープのAto、
a Ga(1,7As層(厚さ七1ooX)(以下、「
非ドープ層」と称す)、4はSiドープのAto、3G
a(、,7As層(ドナー濃度# 10”m−3,厚さ
夕500大)(以下、r’siドープ層」と称す)、5
,6は金属電極、7,8は接触抵抗低減のための高不純
物濃度領域である。例えば、波長08μmの光9をS1
ド一プ層4の側から入射すると、光はSiドープ層4お
よび非ドープ層3を通過して光吸収層2で吸収され、電
子・正孔対を発生する。この電子・正孔は電極5,6に
電圧を印加することKより、取シ出されて光検出を行な
うことができる。
Figure 1 is a structural diagram of a conventional photoconductive element, in which 1 is a semi-insulating GaAa substrate, 2 is a light absorption layer made of undoped GaAs.
layer (thickness 2 μm) (hereinafter referred to as “light absorption layer”), 3
is undoped Ato with a wider forbidden band width than the light absorption layer 2,
a Ga(1,7As layer (thickness 71ooX) (hereinafter referred to as “
4 is Si-doped Ato, 3G
a(,,7As layer (donor concentration #10"m-3, thickness 500 mm) (hereinafter referred to as "r'si doped layer"), 5
, 6 are metal electrodes, and 7 and 8 are high impurity concentration regions for reducing contact resistance. For example, light 9 with a wavelength of 08 μm is
When light enters from the doped layer 4 side, it passes through the Si doped layer 4 and the undoped layer 3 and is absorbed by the light absorption layer 2, generating electron-hole pairs. By applying a voltage to the electrodes 5 and 6, these electrons and holes can be extracted and optically detected.

第2図は素子の動作をよシ詳しく説明するだめのバンド
構造図である。入射光9によシ生成された電子・正孔対
のうち電子は、非ドープ層3と接する光吸収層2の中に
形成される電子蓄積領域10に流入して電子濃度が増加
する。従って、電極5−6間に一定の電圧(例えば2V
)を印加すれば、光入射に対応して電流が増加し、光検
出を行なうことができる。なお、EFはフェルミ準位、
ECは伝導帯端のエネルギー準位、Evは価電子帯端の
エネルギー準位である。
FIG. 2 is a band structure diagram for explaining the operation of the device in more detail. Among the electron-hole pairs generated by the incident light 9, electrons flow into the electron storage region 10 formed in the light absorption layer 2 in contact with the undoped layer 3, and the electron concentration increases. Therefore, a constant voltage (e.g. 2V) is applied between the electrodes 5-6.
), the current increases in response to the incidence of light, making it possible to perform photodetection. Note that EF is the Fermi level,
EC is the energy level at the conduction band edge, and Ev is the energy level at the valence band edge.

第1図のような構造では、拡散電位差によって光吸収層
2.非ドープ層3及びSiドープ層4に空乏層ができる
が、その大部分は不純物濃度の低い光吸収層2の側に生
じる。光吸収層2と非ドープ層3のへテロ界面から光吸
収層2の中の空乏層端までの距離dは光吸収層2の不純
物濃度、光吸収層2と非ドープ層3のへテロ界面におけ
る伝導帯端のエネルギー位置等により変わるが、仮に光
吸収層2のイオン化不純物濃度N1を10 ”crrr
3.拡散電位差VDをI■と仮定すると、ポアソン方程
式を解くことにより となシ、距離d=1.2μmとなる。ここで、ε0は真
空中の誘電率、ε8は比誘電率、qは電気素量である。
In the structure shown in FIG. 1, the light absorption layer 2. A depletion layer is formed in the undoped layer 3 and the Si-doped layer 4, but most of the depletion layer is formed on the side of the light absorption layer 2 where the impurity concentration is low. The distance d from the hetero interface between the light absorption layer 2 and the undoped layer 3 to the edge of the depletion layer in the light absorption layer 2 is the impurity concentration of the light absorption layer 2, and the hetero interface between the light absorption layer 2 and the undoped layer 3. Although it varies depending on the energy position of the conduction band edge in
3. Assuming that the diffusion potential difference VD is I, the distance d=1.2 μm can be obtained by solving Poisson's equation. Here, ε0 is the dielectric constant in vacuum, ε8 is the relative permittivity, and q is the elementary charge.

まだ、空乏層中の電界Fは基板1の側の空乏層端より距
離Xだけ空乏層内に入った点において、で与えられる。
Still, the electric field F in the depletion layer is given by at a point that enters the depletion layer by a distance X from the edge of the depletion layer on the substrate 1 side.

すなわち、基板1の方に進むにしたがって電界Fは小さ
くなり、ペテロ界面から1,2μm以上離れると空乏層
は存在しなくなり電界Fは零となる。
That is, the electric field F becomes smaller as it moves toward the substrate 1, and when the distance is 1 to 2 μm or more from the Peter interface, the depletion layer no longer exists and the electric field F becomes zero.

一方、入射光9は光吸収層2と非ドープ層3の界面から
減衰しながら進むが、光吸収層2の中における吸収係数
を10%m−’とすれば、12μm入つだ光吸収層2の
所で70チが吸収されるに過ぎない。
On the other hand, the incident light 9 travels from the interface between the light absorption layer 2 and the undoped layer 3 while being attenuated, but if the absorption coefficient in the light absorption layer 2 is 10% m-', then the light absorption layer 9 has a depth of 12 μm. Only 70 chi is absorbed at 2.

残シ30%は空乏層外部で吸収され、これにより生じた
電子は拡散によって空乏層まで達した後、内部電界によ
って電子蓄積領域10まで移動する必要があった。従っ
て、光電流の応答速度は、電子の拡散過程で制限される
ので遅くなる。更に、応答速度は光照射により発生した
電子、正孔が電極5と電極60間を移動する時間によっ
ても左右される。従って、第1図の構造では正孔の移動
速度が遅いだめ、応答速度が遅く々るという欠点があっ
た。
The remaining 30% was absorbed outside the depletion layer, and the electrons generated thereby had to diffuse to the depletion layer and then move to the electron storage region 10 by the internal electric field. Therefore, the response speed of the photocurrent is limited by the electron diffusion process and becomes slow. Furthermore, the response speed is also influenced by the time taken for electrons and holes generated by light irradiation to move between the electrodes 5 and 60. Therefore, the structure shown in FIG. 1 has the disadvantage that the response speed is slow because the hole movement speed is slow.

このように光検出器の応答速度が遅くなれば、伝送すべ
き情報の通信速度も遅(しなければならないため、高速
応答の光検出器が強く望まれていた。
If the response speed of a photodetector is slow, the communication speed of information to be transmitted must also be slow, so a photodetector with a high-speed response has been strongly desired.

また、空乏層中で発生した電子・正孔対は内部電界が小
さいために再結合してしまい、感度の低下を招いていた
Furthermore, the electron-hole pairs generated in the depletion layer recombine due to the small internal electric field, resulting in a decrease in sensitivity.

(発明の目的及び特徴) 本発明は、上述した従来技術の欠点に鑑みなされたもの
で、高速応答でかつ高感度な光導電型の光検出器を提供
することを目的とする。
(Objects and Features of the Invention) The present invention has been made in view of the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a photoconductive photodetector with high-speed response and high sensitivity.

(発明の構成及び作用) 本発明の特徴は光吸収層と電気的接続を有するための少
なくとも1対の電極が具備されている光素子において、
光吸収層より禁止帯幅が大きくかつ導電型の異なる第1
の半導体層および第2の半導体層が、それぞれ光吸収層
の一方側と他方側に配置されるように、前記光吸収層よ
りも禁止帯幅が大きくかつ不純物をドープしていない第
3の半導体層を介して或は介さずに、形成されだ層構造
を少なくとも1組備え、前記光吸収層の層厚を不純物濃
度の値によって定められる層厚以下になるように定める
ことにより、受光領域における前記光吸収層内には層厚
方向に内部電界が生じるようにしたことKある。
(Structure and operation of the invention) The present invention is characterized in that an optical element is provided with at least one pair of electrodes for electrical connection with a light absorption layer.
The first layer has a larger forbidden band width than the light absorption layer and has a different conductivity type.
a third semiconductor having a wider forbidden band width than the light absorption layer and not doped with impurities, such that the semiconductor layer and the second semiconductor layer are arranged on one side and the other side of the light absorption layer, respectively; By providing at least one set of layer structures formed with or without intervening layers, and by determining the layer thickness of the light absorption layer to be equal to or less than the layer thickness determined by the value of the impurity concentration, An internal electric field is generated within the light absorption layer in the layer thickness direction.

以下に図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

実施例1 第3図は本発明による一実施例であり、半絶縁性InP
基板11の上に非ドープエnPバッファ層12(厚さ1
2 μm 、 n 七1 X 1015L:m−3)が
積層され、S】ドープIno、5□Ato48As第1
の半導体層13(厚さ夕1000 A + n ”= 
I X 1018m ” )と第1の半導体層13と導
電型が異なるBeドープエno、52 AL04B”L
S第2の半導体層14(厚さ= 1000λ+ p タ
I X 1018tyn−3)との間に非ドープIno
52Ato、4BAs第3の半導体層15(厚さ=20
0X、キャリア濃度≦l X 10”z−’ ) 71
:非ドープIn(、,53Ga(1,47As光吸収層
16(厚さ友5000人。
Example 1 FIG. 3 shows an example according to the present invention, in which semi-insulating InP
An undoped nP buffer layer 12 (thickness 1
2 μm, n71 x 1015L:m-3) were stacked, S]doped Ino, 5□Ato48As first
Semiconductor layer 13 (thickness: 1000 A + n ”=
52 AL04B"L
S second semiconductor layer 14 (thickness = 1000λ+p 1018tyn-3)
52Ato, 4BAs third semiconductor layer 15 (thickness=20
0X, carrier concentration ≦l x 10"z-') 71
: Undoped In(, 53Ga(1,47As) light absorption layer 16 (thickness: 5000 mm).

キャリア濃度≦I X 1015cm−3)を挾んで2
層形成され、これらの層構造が複数積層されている。尚
、第1−第3の半導体層13〜15は光吸収層16より
禁止帯幅が大きい。1だ、17 、18は電極間距離が
約10μmで電極幅が約50μmから成る金属電極であ
り、7.8は接触抵抗低減のだめの高不純物濃度領域で
ある。
Carrier concentration ≦I
A plurality of these layered structures are laminated. Note that the first to third semiconductor layers 13 to 15 have a larger forbidden band width than the light absorption layer 16. 1, 17, and 18 are metal electrodes having an inter-electrode distance of about 10 μm and an electrode width of about 50 μm, and 7.8 is a high impurity concentration region for reducing contact resistance.

同図から明らかなように、光吸収層16を中心にして、
その両側に第3の半導体層15が、更にその一方と他方
には第1の半導体層13と第2の半導体層14がそれぞ
れ形成されている。このような層構造えすることにより
1光吸収層16で高不純物濃度領域7,8を除く領域(
以下、「受光領域」と称す)の大部分に内部電界を発生
させることができる。後述するように、受光領域のうち
活性領域全体に内部電界が発生する。従って、光照射に
より発生した電子・正孔は内部電界で空間的に分離され
て、電子及び正孔の各々の蓄積領域に集するために、再
結合等による感度の劣化をなりシ、がっ高速応答が可能
となる。
As is clear from the figure, centering around the light absorption layer 16,
A third semiconductor layer 15 is formed on both sides thereof, and a first semiconductor layer 13 and a second semiconductor layer 14 are formed on one side and the other side, respectively. By changing the layer structure in this way, the regions (
An internal electric field can be generated in most of the light-receiving area (hereinafter referred to as the "light-receiving area"). As will be described later, an internal electric field is generated throughout the active region of the light receiving region. Therefore, since the electrons and holes generated by light irradiation are spatially separated by the internal electric field and concentrated in the respective accumulation regions of electrons and holes, deterioration of sensitivity due to recombination etc. is avoided. High-speed response is possible.

尚、本実施例ではこのような層構造を4組構成して入射
光を電気信号に変換する効率を高めだが、この層構造1
組以上であれば良いことは言うまでもない。
In this example, four sets of such layer structures were constructed to increase the efficiency of converting incident light into electrical signals, but this layer structure 1
Needless to say, it is better if you are above the group.

第4図は本実施例の構成をより解りゃすく説明するだめ
のバンド構造図である。例えば、波長15μmの入射光
9を基板11の下側或いは第1の半導体層13の上側か
ら照射すると、入射光9は各受光領域で吸収され、電子
・正孔対が生成される。これらの電子・正孔対は、各光
吸収層16に垂直方向の内部電界によって直ちに分離さ
れ、電子及び正孔のボテン/ヤルがi?に/J・である
電子W種領域10(以下、「電子領域」と略す)及び正
孔蓄積領域10a(以下、「正孔領域」と略す)に口重
る。ここで、光吸収層16の内部電界の分布はボアノン
方程式を解くこと罠より(2)式からするが、光吸収層
16の層厚とイオン化不純物濃度によって異なる。例え
ば、光吸収層16の層厚を5oooX、拡散電位差VD
を0.75V、比誘電率csを12とすれば、受光領域
で電子及び正孔の蓄積領域を除いた光吸収層16の領域
(以下、「活性領域」と称す)を全て空乏化にするだめ
のイオン化不純物濃度Niは約4×1015crn−3
となる。よって、この値以下の不純物濃度であれば、受
光領域における光吸収層内の活性領域の全体に内部電界
が生じる。
FIG. 4 is a band structure diagram for explaining the structure of this embodiment more clearly. For example, when incident light 9 with a wavelength of 15 μm is irradiated from below the substrate 11 or from above the first semiconductor layer 13, the incident light 9 is absorbed in each light receiving region, and electron-hole pairs are generated. These electron-hole pairs are immediately separated by an internal electric field perpendicular to each light absorption layer 16, and the electron and hole pairs are i? The electron W type region 10 (hereinafter abbreviated as "electron region") and the hole accumulation region 10a (hereinafter abbreviated as "hole region") which are /J. Here, the distribution of the internal electric field of the light absorption layer 16 is determined from equation (2) by solving the Bohanon equation, and it differs depending on the layer thickness of the light absorption layer 16 and the concentration of ionized impurities. For example, the layer thickness of the light absorption layer 16 is 5oooX, and the diffusion potential difference is VD.
If is 0.75V and the relative dielectric constant cs is 12, the entire region of the light absorption layer 16 (hereinafter referred to as "active region") excluding the electron and hole accumulation region in the light receiving region is depleted. The ionized impurity concentration Ni is approximately 4×1015 crn-3
becomes. Therefore, if the impurity concentration is below this value, an internal electric field will be generated throughout the active region in the light absorption layer in the light receiving region.

まだ、光吸収層厚dを設定するに際しては、光吸収層1
6の禁止帯幅をEg+不純物濃度をNi 、比誘電率を
ε、としだ時 を満足するようにすれば、実用上問題はない。
However, when setting the light absorption layer thickness d, the light absorption layer 1
There is no practical problem as long as the forbidden band width of 6 is set to Eg + impurity concentration to Ni, relative dielectric constant to ε.

尚、受光領域で電子及び正孔の蓄積領域は伝導帯端又は
価電子帯端がフェルミ準位EFより低エネルギー側に位
置するので、外部からエネルギー(光照射)を与えなく
とも、若干の電子や正孔が集まるため空乏化しない。
Note that the conduction band edge or valence band edge of the electron and hole accumulation region in the light receiving region is located on the lower energy side than the Fermi level EF, so even if no energy (light irradiation) is applied from the outside, some electrons can be accumulated. and holes gather, so depletion does not occur.

すなわち、各活性領域の全体に電界がかかることたより
、電子と正孔が電子領域及び正孔領域に移動する時間は
、従来の構造に比べて極めて速くなる。まだ、電子拳正
孔が各蓄積領域内から電極に向けて移動する際も、各蓄
積領域内及びその両側にはドープ用の不純物が存在しな
いような構造となっているため散乱を受けにくくなって
いる。
That is, since an electric field is applied to the entirety of each active region, the time taken for electrons and holes to move to the electron region and the hole region becomes extremely faster than in the conventional structure. However, even when electron holes move from each accumulation region toward the electrode, the structure is such that there are no doping impurities in or on either side of each accumulation region, making them less susceptible to scattering. ing.

更に、電子・正孔は各蓄積領域内で2次元的な導電粒子
として振るまうことになる。従って、光電流の応答速度
は従来の構造に比べて極めて速くなる。
Furthermore, electrons and holes behave as two-dimensional conductive particles within each accumulation region. Therefore, the response speed of the photocurrent becomes extremely fast compared to the conventional structure.

一方、感度は本実施例のごとく電子と正孔が空乏層領域
の内部電界によシ直ちに電子領域及び正孔領域に分離さ
れるため、再結合による感度の劣化がなく高感度となる
。更に、本実施例のように光吸収層16の数を複数にす
るか、または光吸収層16の層厚を厚くすることにより
量子効率が高まり、さらに高感度の光検出器が得られる
。まだ、入射面での反射を無くすために反射阻止膜を施
せば、入射光の大部分を電子・正孔に変換でき高感度に
なることは言う1でもない。
On the other hand, as in this embodiment, since electrons and holes are immediately separated into an electron region and a hole region by the internal electric field of the depletion layer region, there is no deterioration in sensitivity due to recombination, resulting in high sensitivity. Furthermore, by increasing the number of light absorption layers 16 or increasing the thickness of the light absorption layers 16 as in this embodiment, the quantum efficiency is increased and a photodetector with even higher sensitivity can be obtained. However, if an anti-reflection film is applied to eliminate reflection on the incident surface, most of the incident light can be converted into electrons and holes, resulting in high sensitivity.

尚、本実施例における光入射の方法であるが、電極17
 、18側の上面、基板11側あるいは横側から入射し
ても良い。
Note that the method of light incidence in this embodiment is that the electrode 17
, the upper surface of the 18 side, the substrate 11 side, or the side.

実施例2 第5図は本発明の他の実施例であり、15aは第3図の
第3の半導体層(厚さ夕200人)の厚さを5oooX
にしだものであり、19は非ドープIn。、5□A1o
、481sバッファ層(厚さタ1μm、キャリア濃度<
 I X 10”crn−” )である。
Embodiment 2 FIG. 5 shows another embodiment of the present invention, in which 15a is the thickness of the third semiconductor layer (thickness: 200 layers) shown in FIG.
19 is undoped In. , 5□A1o
, 481s buffer layer (thickness: 1 μm, carrier concentration <
IX10"crn-").

第6図はそのバンド構造図を示す。第6図から明らかな
ように、本実施例は第1の半導体層13(または第2の
半導体層14)−第3の半導体層15−光吸収層16−
第3の半導体層15−第2の半導体層14(捷たけ第1
の半導体層13)という層構造を複数積層する場合に、
実施例1の如く単純に繰り返して複数積層するのでは々
く、光吸収層16より禁止帯幅が大きく、かつ不純物を
ドープしていない第3の半導体層15aを介しながら複
数積層したものである。このような構造にすることによ
、す、活性領域の内部電界の向きを統一して形成するこ
とができ、前記実施例1と同様に高感度、高速応答の光
検出が可能となる。
FIG. 6 shows the band structure diagram. As is clear from FIG. 6, in this embodiment, the first semiconductor layer 13 (or second semiconductor layer 14) - third semiconductor layer 15 - light absorption layer 16 -
Third semiconductor layer 15-second semiconductor layer 14 (first
When stacking a plurality of layer structures such as semiconductor layers 13),
Rather than simply repeating and stacking multiple layers as in Example 1, multiple layers are stacked via a third semiconductor layer 15a which has a wider forbidden band width than the light absorption layer 16 and is not doped with impurities. . By adopting such a structure, the direction of the internal electric field in the active region can be unified, and as in the first embodiment, high-sensitivity and fast-response photodetection is possible.

また、本実施例では2組の層構造を積層したが量子効率
をさらに高めるのに3組以上積層しても良い。
Further, in this embodiment, two sets of layer structures are laminated, but three or more sets may be laminated to further improve the quantum efficiency.

実施例3 第7図(a)及び(b)は本発明による他の実施例であ
り、前述した本発明の実施例1及び2で層15を除いた
ものである。
Embodiment 3 FIGS. 7(a) and 7(b) show another embodiment according to the present invention, in which the layer 15 is removed from the above-described embodiments 1 and 2 of the present invention.

実施例1及び2においては、光吸収層16の両側に非ド
ープの半導体層15が形成されていた。層15は電子或
いは正孔が各々の蓄積領域内で層に平行に走行する際に
、層13 、14内のイオン化不純物による散乱を軽減
するために設けられたものである。
In Examples 1 and 2, undoped semiconductor layers 15 were formed on both sides of the light absorption layer 16. Layer 15 is provided to reduce scattering due to ionized impurities in layers 13 and 14 when electrons or holes travel parallel to the layer within each accumulation region.

ここで、このイオン化不純物による散乱の影響は低温(
例えば77K)で顕著になるものであり、室温において
は格子散乱による影響が大きい。即ち一本発明による半
導体光素子は室温において使用する場合には、層15の
有無はあまり応答速度に影響を与えることはない。こう
した観点から、第7図(a)及び(b)に示すように層
15を除いた構造でも実用上何ら差支えない。
Here, the effect of scattering due to this ionized impurity is low temperature (
For example, it becomes noticeable at temperatures of 77 K), and the influence of lattice scattering is large at room temperature. That is, when the semiconductor optical device according to the present invention is used at room temperature, the presence or absence of the layer 15 does not significantly affect the response speed. From this point of view, a structure in which the layer 15 is omitted as shown in FIGS. 7(a) and 7(b) does not pose any practical problem.

実施例4 第8図(a) 、 (b) 、 (c)及び(d)は本
発明による他の実施例であり、前述した本発明の実施例
1,2及び3にポテンシャル調整のだめのゲート電極2
0を設けたものである。
Embodiment 4 FIGS. 8(a), (b), (c) and (d) are other embodiments according to the present invention, in which gates for potential adjustment are added to Embodiments 1, 2 and 3 of the present invention described above. Electrode 2
0 is set.

このゲート電極20に電圧を印加すると、電極17と電
極18七の間の暗電流を減少させることができるので、
光検出の感度を高めることが可能となる。
By applying a voltage to this gate electrode 20, the dark current between the electrode 17 and the electrode 187 can be reduced.
It becomes possible to increase the sensitivity of light detection.

尚、本実施例では電極20と第1の半導体層13との間
で7ヨソトキ一接合が形成されているので、電極20と
第1の半導体層13との間に絶縁膜が不要であるが、/
ヨツトキー接合が形成されていない場合は絶縁膜を挿入
する必要がある。
Note that in this embodiment, a 7-way junction is formed between the electrode 20 and the first semiconductor layer 13, so there is no need for an insulating film between the electrode 20 and the first semiconductor layer 13. ,/
If a Yottoky junction is not formed, it is necessary to insert an insulating film.

また、光を電極側の上面から入射する場合には電極20
を透明電極にする必要があるが、他の面から入射する場
合にはもちろんその必要はない。
In addition, when the light is incident from the upper surface of the electrode side, the electrode 20
It is necessary to make the electrode transparent, but of course this is not necessary if the light is incident from another surface.

尚、本実施例では半絶縁性基板11を用いだが、この代
りに導電性の基板を用い、半絶縁性バッファ層を介して
半導体層を形成しても良いことは言う壕でもない。
Note that although the semi-insulating substrate 11 is used in this embodiment, it is needless to say that a conductive substrate may be used instead and the semiconductor layer may be formed via a semi-insulating buffer layer.

以上の説明では、基板としてはInPを、又光吸収層及
びその両側の層としてそれぞれInO,53Gao、4
7As及びinO,52A4−48Asを用いたが、こ
うしfc組合せに限るものではない。例えば、InP基
板を用いる場合には、InPとほぼ格子整合のとれたI
nk−、□GaxAtyAsのうち組成を変えたものを
光吸収層及びその両側の層として用いればよい。又In
4−.−ツGaxA4Asの代りに、In4−xGax
AsyP、の2種の組成を用いてもよい。更にGaAs
を基板として用いた場合には、Ate−、GaxAsに
おける2種の組成の組合せを用いればよい。以」二の記
述はいくつかの例を示しただけであり、これらに限らず
広く化合物半導体全般を利用することができ、又基板に
関してはAt203を始めとする絶縁体であってもかま
わない。
In the above explanation, InP is used as the substrate, and InO, 53Gao, and 4
Although 7As and inO, 52A4-48As were used, the fc combination is not limited to this. For example, when using an InP substrate, I
nk- and □GaxAtyAs with different compositions may be used as the light absorption layer and the layers on both sides thereof. Also In
4-. -In4-xGax instead of GaxA4As
Two types of compositions of AsyP may be used. Furthermore, GaAs
When using as a substrate, a combination of two types of compositions in Ate- and GaxAs may be used. The following description only shows some examples, and a wide range of compound semiconductors in general can be used, and the substrate may be an insulator such as At203.

このような素子構造の作製にあたっては、分子線エビタ
キ/ヤル法をはじめとして、有機金属気相堆積法、気相
エビクキ/キル法、液相エビタキ/ヤル法等の結晶成長
方法が適用可能であり、又電極形成等に関しても従来の
技術で作製できる。
In the production of such device structures, crystal growth methods such as the molecular beam lobster/yal method, organometallic vapor phase deposition, vapor phase lobster/kill method, and liquid phase lobster/kill method can be applied. Also, electrode formation and the like can be manufactured using conventional techniques.

(発明の効果) 本発明は入射光を吸収してできた電子・正孔対を光吸収
層16の内部電界により直ちに空間的に分離するため、
電子と正孔の再結合を防止できるので、高速応答でかつ
高感度の光検出素子であり、光フアイバ通信あるいは光
電気集積回路用の素子に応用でき、その効果1’J極め
て大である。
(Effects of the Invention) The present invention immediately spatially separates electron-hole pairs created by absorbing incident light by the internal electric field of the light absorption layer 16.
Since recombination of electrons and holes can be prevented, it is a photodetecting element with high speed response and high sensitivity, and can be applied to elements for optical fiber communication or optoelectronic integrated circuits, and its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光導電素子の構造を示す斜視図、第2図
は第1図の従来例のバンド構造図、第3図は本発明によ
る光導電素子の構造を示す斜視図、第4図は第3図の実
施例のバンド構造図、第5図は本発明による他の実施例
を示す斜視図、第6図は第5図の実施例のバンド構造図
、第7図及び第8図は本発明による他の実施例を示す斜
視図である。 1・・・基板、2・・・光吸収層、3・・・非ドープ層
、4・・・S1ド一プ層、5,6・・・金属電極、7.
8・・高不純物濃度領域、 9・・・入射光、10・・
・電子蓄積領域、10a・・・正孔蓄積値域、EF・・
・フェルミ準位、EC・・伝導帯端のエネルギー漁位、
Ev・・・価電子帯端のエネルギー準位、11・・・基
板、12・・バッファ層、13・・・第1の半導体層、
14 ・第2の半導体層、15 、15a・・・第3の
半導体層、16・光吸収層、17 、18・・・金属電
極、2o・ゲート電極。 特許出願人 国際電信電話株式会社 代理人犬塚 学 外1名 率1図 d 率20 0 7″3 ゝ 第30 7
FIG. 1 is a perspective view showing the structure of a conventional photoconductive element, FIG. 2 is a band structure diagram of the conventional example shown in FIG. 1, FIG. 3 is a perspective view showing the structure of a photoconductive element according to the present invention, and FIG. The figures are a band structure diagram of the embodiment shown in FIG. 3, FIG. 5 is a perspective view showing another embodiment according to the present invention, FIG. 6 is a band structure diagram of the embodiment shown in FIG. 5, and FIGS. The figure is a perspective view showing another embodiment according to the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Light absorption layer, 3... Undoped layer, 4... S1 doped layer, 5, 6... Metal electrode, 7.
8... High impurity concentration region, 9... Incident light, 10...
・Electron accumulation region, 10a...Hole accumulation value range, EF...
・Fermi level, EC... energy level at the conduction band edge,
Ev... Energy level at the edge of the valence band, 11... Substrate, 12... Buffer layer, 13... First semiconductor layer,
14. second semiconductor layer, 15, 15a... third semiconductor layer, 16. light absorption layer, 17, 18... metal electrode, 2o. gate electrode. Patent applicant International Telegraph and Telephone Co., Ltd. Agent Inuzuka 1 off-campus person rate 1 figure d rate 20 0 7″3 ゝ30th 7th

Claims (3)

【特許請求の範囲】[Claims] (1)光吸収層と電気的接続を有するだめの少なくとも
1対の電極が具備されている半導体光素子において、前
記光吸収層より禁止帯幅が大きくかつ導電型の異なる第
1の半導体層および第2の半導体層がそれぞれ前記光吸
収層の一方側と他方側に配置されるように形成された層
構造を少くとも1組備え、前記光吸収層の層厚を不純物
濃度の値によって定められる層厚以下になるように定め
て受光領域における前記光吸収層内の空乏層領域には層
厚方向に内部電界が生じるように構成されたことを特徴
とする半導体光素子。
(1) In a semiconductor optical device comprising at least one pair of electrodes electrically connected to a light absorption layer, a first semiconductor layer having a larger forbidden band width and a different conductivity type than the light absorption layer; It includes at least one set of layer structures in which second semiconductor layers are respectively disposed on one side and the other side of the light absorption layer, and the layer thickness of the light absorption layer is determined by the value of the impurity concentration. 1. A semiconductor optical device characterized in that an internal electric field is generated in a layer thickness direction in a depletion layer region in the light absorbing layer in a light receiving region by determining the layer thickness to be equal to or smaller than the layer thickness.
(2)前記光吸収層の不純物濃度をN1.比誘電率をε
3.禁止帯幅をEgとし、又、電気素量をq、真空中の
誘電率をε。とじた時、前記光吸収層の層厚dは で定められる条件を満足するように定められていること
を特徴とする特許請求の範囲第】項記載の半導体光素子
(2) The impurity concentration of the light absorption layer is set to N1. The relative permittivity is ε
3. The forbidden band width is Eg, the elementary charge is q, and the dielectric constant in vacuum is ε. 2. The semiconductor optical device according to claim 1, wherein the layer thickness d of the light absorption layer is determined so as to satisfy the following conditions when closed.
(3)光吸収層と電気的接続を有するだめの少なくとも
1対の電極が具備されている半導体光素子において、前
記光吸収層より禁止帯幅が太き(かつ導電型の異なる第
1の半導体層および第2の半導体層がそれぞれ前記光吸
収層の一方側と他方側に配置されるように前記光吸収層
よりも禁止帯幅が大きくかつ不純物をドープしていない
第3の半導体層を介して形成された層構造を少な(とも
1組備え、前記光吸収層の層厚を不純物濃度の値によっ
て定められる層厚以下になるように定めて受光領域にお
ける前記光吸収層内の空乏層領域には層厚方向に内部電
界が生じるように構成されたことを特徴とする半導体光
素子。 (4ン 前記光吸収層の不純物濃度をN1.比誘電率を
ε3.禁止帯幅をEgとし、又、電気素量をq、真空中
の誘電率をε。とじた時、前記光吸収層の層厚dは で定められる条件を満足するように定められていること
を特徴とする特許請求の範囲第3項記載の半導体光素子
(3) In a semiconductor optical device comprising at least one pair of electrodes electrically connected to a light absorption layer, a first semiconductor having a wider band gap (and having a different conductivity type) than the light absorption layer; via a third semiconductor layer which has a wider forbidden band width than the light absorption layer and is not doped with impurities so that the second semiconductor layer and the third semiconductor layer are arranged on one side and the other side of the light absorption layer, respectively. A depletion layer region in the light absorption layer in the light receiving region is formed by setting a layer structure formed by a small number of layer structures (one set in each), and determining the layer thickness of the light absorption layer to be equal to or less than the layer thickness determined by the value of the impurity concentration. A semiconductor optical device characterized in that it is configured such that an internal electric field is generated in the layer thickness direction. Further, the thickness d of the light absorption layer is determined to satisfy the condition defined by q, the elementary quantity of electricity, and ε, the dielectric constant in vacuum. A semiconductor optical device according to scope 3.
JP59103586A 1984-05-24 1984-05-24 Semiconductor optical device Expired - Fee Related JPH0656900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59103586A JPH0656900B2 (en) 1984-05-24 1984-05-24 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59103586A JPH0656900B2 (en) 1984-05-24 1984-05-24 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPS60247979A true JPS60247979A (en) 1985-12-07
JPH0656900B2 JPH0656900B2 (en) 1994-07-27

Family

ID=14357876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59103586A Expired - Fee Related JPH0656900B2 (en) 1984-05-24 1984-05-24 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JPH0656900B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288474A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS62183570A (en) * 1986-02-07 1987-08-11 Mitsubishi Electric Corp Photodetector
JPS62277775A (en) * 1986-05-26 1987-12-02 Nec Corp Semiconductor photodetector
JPS62281479A (en) * 1986-05-30 1987-12-07 Nec Corp Semiconductor photodetector
JPS639162A (en) * 1986-06-27 1988-01-14 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor device containing super-lattice structure and control of the same
JPS6356964A (en) * 1986-08-27 1988-03-11 Nec Corp Semiconductor photoconduction type photo detector
US5065205A (en) * 1989-05-12 1991-11-12 The United States Of America As Represented By The United States Department Of Energy Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors
US6369436B1 (en) * 2000-05-22 2002-04-09 Boris Gilman Semiconductor wavelength demultiplexer
JP2012033773A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor element and semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726482A (en) * 1980-07-24 1982-02-12 Fujitsu Ltd Semiconductor photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726482A (en) * 1980-07-24 1982-02-12 Fujitsu Ltd Semiconductor photodetector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288474A (en) * 1985-06-17 1986-12-18 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS62183570A (en) * 1986-02-07 1987-08-11 Mitsubishi Electric Corp Photodetector
JPS62277775A (en) * 1986-05-26 1987-12-02 Nec Corp Semiconductor photodetector
JPS62281479A (en) * 1986-05-30 1987-12-07 Nec Corp Semiconductor photodetector
JPS639162A (en) * 1986-06-27 1988-01-14 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor device containing super-lattice structure and control of the same
JPS6356964A (en) * 1986-08-27 1988-03-11 Nec Corp Semiconductor photoconduction type photo detector
US5065205A (en) * 1989-05-12 1991-11-12 The United States Of America As Represented By The United States Department Of Energy Long wavelength, high gain InAsSb strained-layer superlattice photoconductive detectors
US6369436B1 (en) * 2000-05-22 2002-04-09 Boris Gilman Semiconductor wavelength demultiplexer
JP2012033773A (en) * 2010-07-30 2012-02-16 Panasonic Electric Works Co Ltd Semiconductor element and semiconductor device

Also Published As

Publication number Publication date
JPH0656900B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JP3141847B2 (en) Avalanche photodiode
Decoster et al. Optoelectronic sensors
US10199525B2 (en) Light-receiving element and optical integrated circuit
US5780916A (en) Asymmetric contacted metal-semiconductor-metal photodetectors
US5777390A (en) Transparent and opaque metal-semiconductor-metal photodetectors
WO2011112406A2 (en) Silicon-based schottky barrier detector with improved responsivity
JPH022691A (en) Semiconductor light receiving device
JPS60247979A (en) Semiconductor optical element
US20230055105A1 (en) Waveguide photodetector
EP0082787B1 (en) Photodiode with separated absorption and avalanche regions
JPS6285477A (en) Photosemiconductor device
JPH0473310B2 (en)
WO2022133655A1 (en) Avalanche photodiode
JP2670557B2 (en) Avalanche photodiode
JPH0494579A (en) Semiconductor photodetector
JP2754652B2 (en) Avalanche photodiode
JPH01194352A (en) Photo detector and integrated receiver
JP3286034B2 (en) Semiconductor light receiving element
JPH06260679A (en) Avalanche photodiode
JPH06244450A (en) Avalanche photodiode
JPH01149486A (en) Semiconductor photodetector
JPH06237009A (en) Avalanche photodiode
JPH0437594B2 (en)
JPH0575160A (en) Avalanche photodiode and its operation
JPS62232975A (en) Photoconducting detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees