JPS62277774A - Manufacture of photoconductive semiconductor photodetector - Google Patents

Manufacture of photoconductive semiconductor photodetector

Info

Publication number
JPS62277774A
JPS62277774A JP61121571A JP12157186A JPS62277774A JP S62277774 A JPS62277774 A JP S62277774A JP 61121571 A JP61121571 A JP 61121571A JP 12157186 A JP12157186 A JP 12157186A JP S62277774 A JPS62277774 A JP S62277774A
Authority
JP
Japan
Prior art keywords
ingaas
columnar
specific region
film
sio2 film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61121571A
Other languages
Japanese (ja)
Inventor
Hisahiro Ishihara
久寛 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61121571A priority Critical patent/JPS62277774A/en
Publication of JPS62277774A publication Critical patent/JPS62277774A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To give high-speed response characteristics and high quantum-efficiency characteristics by removing electrodes on the surface of a light-absorption layer and applying an electric field through high concentration regions formed to a central section and an outer circumferential section so as to hold a ring- shaped low-concentration light-absorption carrier transit region. CONSTITUTION:n<+>-InGaAs except a columnar specific region is removed through reactive ion etching, using SiO2 film 3/resist film 4 ss masks, a photo-resist is gotten rid of, and n<->-InP 5 and n<->-InGaAs 6 are buried and grown. The SiO2 film 3 is taken off, an SiO2 film 7 is deposited anew, and the SiO2 film except the columnar specific region is removed through etching. Positioning is conducted so that the center of the circular form is made the same as the center of columnar n<+>-InGaAs 2. The n<->-InGaAs except the columnar specific region is gotten rid of through reactive ion etching, employing the SiO2 film 7/resist film 8 as masks. The photo-resist is taken off, and zn as an impurity is thermally diffused.

Description

【発明の詳細な説明】 発明の詳細な説明 〔産業上の利用分野〕 本発明は、光通信や光情報処理等に於いて用いられる光
導電性半導体受光素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a photoconductive semiconductor light-receiving element used in optical communications, optical information processing, and the like.

〔従来の技術〕[Conventional technology]

化合物半導体受光素子は、光通信或いは光情報処理用の
高感度受光器として活発に研究開発並びに実用化が進め
られている。その中でも光導電性半導体受光素子は走行
時間制限モードでは、応答時間がキャリアの走行時間で
決まり、その走行時間と電流利得が反比例の関係にある
為、G b / sオーダー以上の超高速領域では、フ
ォトダイオードタイプの受光素子に代わる高感度光検出
器になりうる期待があり注目されている、中でも光通信
用として注目を集めている光ファイバーの低損失帯域に
あたる1.0〜1.6μm帯波長域では、半導体受光素
子の光吸収層の材料としてI nGaAsが最も適した
ものである。vt来のI n G a AS系光導電性
受光素子の基本構造の一例を第3図に示す、この構造は
半絶縁性InP基板15上にn−−I nGaAs層6
を結晶成長により形成し、更にこのn−−I nGaA
s層6の表面に2つの電極11.12を形成した素子構
造を有している。
Compound semiconductor photodetectors are being actively researched, developed, and put into practical use as high-sensitivity photodetectors for optical communication or optical information processing. Among them, in the transit time limited mode of photoconductive semiconductor light receiving elements, the response time is determined by the carrier transit time, and the transit time and current gain are inversely proportional, so in the ultra-high speed region of Gb/s order or higher, the response time is determined by the transit time of the carrier. The 1.0-1.6 μm wavelength band, which is the low-loss band of optical fibers, is attracting attention as it has the potential to become a highly sensitive photodetector that replaces photodiode-type light-receiving elements. In this area, InGaAs is the most suitable material for the light absorption layer of a semiconductor photodetector. FIG. 3 shows an example of the basic structure of a conventional I n Ga AS photoconductive light-receiving element.
is formed by crystal growth, and further this n--I nGaA
It has an element structure in which two electrodes 11 and 12 are formed on the surface of the s-layer 6.

そして、この両電極間に電圧を印加して、その間でキャ
リアを走行させていた。半導体表面に入射した光により
発生した光励起キャリアによって導電率が増加すること
を用いて光信号を電気信号に変換させるのである。
A voltage was then applied between these two electrodes to cause carriers to travel between them. Optical signals are converted into electrical signals by using the increase in conductivity caused by photoexcited carriers generated by light incident on the semiconductor surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様な従来の構造では、半導体表面近傍で電極金属と
半導体とのアロイが進行している領域13.14では横
方向(半導体表面と平行な方向)に電界が加わるものの
、アロイが進行していない深い領域ではキャリア3走行
させる電界が加わっていなかった。従って、半導体表面
に入射した光によって生成したキャリア対(第3図中、
キャリア対の生成をX印で、電子を○で、正孔を■で示
す〉、のうち半導体層の表面近傍で発生したキャリアは
高速でドリフトするものの(図中、矢印→で示す)、深
い部分で発生したキャリアは第3図に示した様に、電界
が加わっている領域まで拡散して行ってから(図中、矢
印−で示す)ドリフトするという2つの過程を経なけれ
ばならない。これは光応答に対して遅い成分を生じさせ
、パルス応答のすそ引きの原因となっていた。
In such a conventional structure, although an electric field is applied in the lateral direction (in a direction parallel to the semiconductor surface) in regions 13 and 14 where alloying between the electrode metal and the semiconductor is progressing near the semiconductor surface, the alloy is not progressing. In the deep region where there is no electric field, no electric field was applied to cause carrier 3 to travel. Therefore, carrier pairs (in Fig. 3,
The generation of carrier pairs is indicated by X, electrons are indicated by ○, and holes are indicated by As shown in FIG. 3, the carriers generated in the region must go through two processes: they diffuse to the region where the electric field is applied, and then they drift (indicated by the arrow - in the figure). This produces a slow component in the optical response, causing a tail of the pulse response.

特に、光通信で注目金集める1、5μm帯の光に対して
は、I n G a A sの場合十分な感度を持たせ
る為には3μrn程度の吸収長が必要であり、拡散過程
に起因するパルス応答の劣化、或いは拡散過程の間に再
結合によりキャリアが消滅してしまうことによる量子効
率の低下が無視できなくなっていた。
In particular, for light in the 1.5 μm band, which is attracting attention in optical communications, InGaAs requires an absorption length of about 3 μrn in order to have sufficient sensitivity. The deterioration of the quantum efficiency due to the deterioration of the pulse response during the diffusion process or the disappearance of carriers due to recombination during the diffusion process has become impossible to ignore.

更に、光吸収層の上に電極金属が形成されている為、電
極による遮光損によって外部量子効率の低下も招いてい
た。
Furthermore, since the electrode metal is formed on the light absorption layer, the external quantum efficiency also decreases due to light shielding loss due to the electrode.

本発明の目的は、これら従来の欠点を解決した高速応答
特性、高量子効率特性を有する光導電性半導体受光素子
の製造方法を提供す、ることにある。
An object of the present invention is to provide a method for manufacturing a photoconductive semiconductor light-receiving element having high-speed response characteristics and high quantum efficiency characteristics, which overcomes these conventional drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

前述の問題点を解決する為に本発明が提供する光導電性
半導体受光素子の製造方法は、−導電型高濃度化合物半
導体基板上にバンドギャップE1なる同じ導電型の高濃
度化合物半導体層を結晶成長する工程と、この高濃度半
導体層を円柱状の特定領域を残して除去する工程と、特
定領域以外の領域にバンドギャップE2(>El)なる
−同じ導電型の低濃度化合物半導体層及びバンドギャッ
プE1なる同じ導電型の低濃度化合物半導体層を埋め込
み成長する工程と、このバンドギャップE。
In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a photoconductive semiconductor light-receiving device, in which a high concentration compound semiconductor layer of the same conductivity type with a band gap E1 is crystallized on a conductivity type high concentration compound semiconductor substrate. The step of growing the high concentration semiconductor layer, and the step of removing this high concentration semiconductor layer leaving a specific cylindrical region, and forming a band gap E2 (>El) in the region other than the specific region - a low concentration compound semiconductor layer and band of the same conductivity type. The step of filling and growing a low concentration compound semiconductor layer of the same conductivity type, which is the gap E1, and this band gap E.

なる低濃度半導体層を前記円柱状の特定領域と中心を同
一にする円柱状の特定領域を残して除去する工程と、ひ
き続き同じ導電型を呈させるドーパントを不純物拡散す
る工程とを有することを特徴とする。
a step of removing the low concentration semiconductor layer leaving a columnar specific region having the same center as the columnar specific region; and a step of continuously diffusing a dopant to exhibit the same conductivity type. Features.

〔作用〕[Effect]

本発明は上述した構成をとることにより従来技術の問題
点を解決した。即ち本製造方法により製造された光導電
性受光素子では、リング状の形状をした低濃度な光吸収
キャリア走行領域を挟む様に、中心部と外周部に形成さ
れている高濃度領域を通して電界が加わる為、電界は半
導体深さ方向に対して均等に加わり、光吸収低濃度領域
中深い部分で発生したキャリアも拡散過程を経ることな
くドリフトする。従って拡散過程に起因するパルス応答
の劣化、或いは拡散過程の間に再結合によりキャリアが
消滅してしまうことによる量子効率の低下という問題が
解決される。更に光吸収層の表面には電極が無い為、遮
光損による外部量子効率の低下も起こらない。こうして
高速応答、高量子高率な特性が実現できる。
The present invention has solved the problems of the prior art by adopting the above-described configuration. In other words, in the photoconductive light-receiving element manufactured by this manufacturing method, an electric field is generated through the high-concentration region formed at the center and the outer periphery, sandwiching the ring-shaped low-concentration light-absorbing carrier traveling region. As a result, the electric field is applied uniformly in the depth direction of the semiconductor, and carriers generated deep within the light absorption low concentration region also drift without undergoing a diffusion process. Therefore, the problem of deterioration of the pulse response caused by the diffusion process or a decrease in quantum efficiency due to the disappearance of carriers due to recombination during the diffusion process can be solved. Furthermore, since there is no electrode on the surface of the light absorption layer, there is no reduction in external quantum efficiency due to light shielding loss. In this way, high-speed response and high quantum efficiency characteristics can be achieved.

〔実施例゛1 以下、本発明について図面を9照して詳細に説明する。[Example 1 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)〜(g>は、本発明の一実施例の製造工程
を説明する為の各段階での素子断面構造模式図であり、
また第2図は上記製造方法によって得た光導電性半導体
受光素子の断面構造模式図である。
FIGS. 1(a) to (g) are schematic diagrams of the cross-sectional structure of an element at each stage for explaining the manufacturing process of an embodiment of the present invention,
Further, FIG. 2 is a schematic cross-sectional structural diagram of a photoconductive semiconductor light-receiving element obtained by the above manufacturing method.

まず、第1図(a>に示す様にn”−InP基板1上に
n” −1nGaAs 2を結晶成長した後、5i02
膜3を堆積させる。しかる後、フォトレジスト工程を経
て同図(b)に示す様に円形状の特定領域以外のSiO
□膜をエツチングにより除去する。このS i 02膜
3/レジスト膜4をマスクとして反応性イオンエツチン
グを行ない円柱状の特定領域以外のn”−I nGaA
sを除去する(同図(C))。その後、フォトレジスト
を除去し、n−−InP5.n−−InGaAs6の埋
め込み成長を施す(同図(d))。次に5i02膜3を
除去し、新たに5i02膜7を堆積させた後フォトレジ
スト工程を経て同図(e)に示す様に円形状の特定領域
以外のS i 02膜をエツチングにより除去する。こ
の際、この円形の中心が、前記円柱状のn” −I n
GaAs 2の中心と同一になる様に位置合わせを行な
う。その後、前記(C)の工程と同様にして、この5i
02膜7/ルジスト膜8をマスクとして用い反応性イオ
ンエツチングを施し円柱状の特定領域以外のn−−In
GaAsを除去する(同図(f))。次にフォトレジス
トを除去した後、Zn(或いはCd等)の不純物熱拡散
を施してn” −I nGaAs 9.n“−InPl
oを得る(同図(g))。しかる後にn4−InP10
上の特定領域に電極11を形成し、更に基板の裏面を研
磨し、裏面電極12を形成して第2図に示す様な最終的
素子構造を得る。
First, as shown in FIG.
Deposit film 3. After that, through a photoresist process, as shown in FIG.
□Remove the film by etching. Using this S i 02 film 3/resist film 4 as a mask, reactive ion etching is performed to remove n"-I nGaA in areas other than the columnar specific area.
s is removed ((C) in the same figure). After that, the photoresist was removed and the n--InP5. Buried growth of n--InGaAs6 is performed (FIG. 4(d)). Next, the 5i02 film 3 is removed, a new 5i02 film 7 is deposited, a photoresist process is performed, and the Si02 film other than the circular specific area is removed by etching, as shown in FIG. 3(e). At this time, the center of this circle is n''-I n
Align it so that it is the same as the center of GaAs 2. Then, in the same manner as in step (C) above, this 5i
Using the 02 film 7/lugist film 8 as a mask, reactive ion etching is performed to remove n--In except for the columnar specific area.
GaAs is removed ((f) in the same figure). Next, after removing the photoresist, impurity thermal diffusion of Zn (or Cd, etc.) is performed to form n"-I nGaAs 9.n"-InPl.
o is obtained ((g) in the same figure). Then n4-InP10
An electrode 11 is formed in a specific region on the substrate, and the back surface of the substrate is further polished to form a back electrode 12 to obtain a final device structure as shown in FIG.

上記製造工程で(ま反応性イオンエツチングを用いるこ
とにより、円柱状のInGaAs領域2及び6は垂直性
に優れた加工ができる。リング状の形状をしたn−−I
 nGaAs6の光吸収キャリア走行層を間に挟み内側
に埋め込まれたn”−TnG a A s 2と外周部
に不純物拡散で形成されたn”  I n G a A
 s 9とに電圧を印加することにより、n−−I n
GaAs6の光吸収キャリア走行領域の深さ方向に均一
な電界を加えられる構造が得られた。これにより、従来
の素子の様に深い部分で発生した光励起キャリアが、電
界の加わっている上層部まで拡散過程を経た後ドリフト
に移ることは無く、発生した光励起キャリアは、その発
生場所によらずすぐに電界に引かれてドリフトする(第
2図において、第3図と同様に×はキャリア対発生を、
Oは電子を、■は正孔を各々示している)。従ってキャ
リアの拡散過程に起因する応答の劣化、量子効率の低減
を無くすことが可能となった。加えて、この構造では電
極は受光領域外側のn”−InPlo上及び裏面に形成
されており、n−−I nGaAs 6の光吸収層裏面
には存在しない。この為遮光損による外部量子効率の低
減ら防ぐことが可能となった。
In the above manufacturing process (by using reactive ion etching), the cylindrical InGaAs regions 2 and 6 can be processed with excellent verticality.
n"-TnGaA s 2 buried inside with a light-absorbing carrier transport layer of nGaAs6 in between, and n"I n GaA formed by impurity diffusion on the outer periphery.
By applying a voltage to s9, n--I n
A structure was obtained in which a uniform electric field could be applied in the depth direction of the light-absorbing carrier traveling region of GaAs6. As a result, photoexcited carriers generated in a deep part do not drift after undergoing a diffusion process to the upper layer where an electric field is applied, unlike in conventional elements, and the generated photoexcited carriers can be transferred regardless of the location where they are generated. It is immediately attracted by the electric field and drifts (in Figure 2, as in Figure 3, × indicates carrier pair generation,
O indicates an electron and ■ indicates a hole). Therefore, it has become possible to eliminate response deterioration and quantum efficiency reduction caused by the carrier diffusion process. In addition, in this structure, the electrodes are formed on the top and back surface of the n"-InPlo outside the light-receiving region, and are not present on the back surface of the light absorption layer of n--InGaAs 6. Therefore, the external quantum efficiency due to light shielding loss is reduced. It is now possible to prevent this from happening.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、高速応答特性、高
量子効率特性を有する光導電性半導体受光素子の製造方
法が得られる。
As explained above, according to the present invention, a method for manufacturing a photoconductive semiconductor light-receiving element having high-speed response characteristics and high quantum efficiency characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g>は、本発明に係る製造方法の一実
施例を工程順に示す断面構造模式図であり、第2図は前
記実施例によって得られた素子の構造を示す模式的断面
図、第3図は従来例の素子断面模式図である。 1−n”−InP基板、2−n−−I nGaAS、3
,7・・・5i02膜、4.8・・・レジスI・、5−
−−n”’−InP、6−・−n−−I nGaAs、
9・・・n” −I nGaAs、10−n” −I 
n P、11゜12・・・電極、13.14・・・アロ
イ進行領域、15・・・半絶縁性InP基板。 −ぺ 代理人 弁理士 内 原  a 、r 奉2 図  1 1I)/
FIGS. 1(a) to (g) are schematic cross-sectional structural diagrams showing an example of the manufacturing method according to the present invention in the order of steps, and FIG. 2 is a schematic diagram showing the structure of an element obtained by the above example. FIG. 3 is a schematic cross-sectional view of a conventional device. 1-n''-InP substrate, 2-n''-InGaAS, 3
, 7... 5i02 film, 4.8... Regis I, 5-
--n"'-InP, 6--n--I nGaAs,
9...n"-I nGaAs, 10-n"-I
n P, 11°12... Electrode, 13.14... Alloy progressing region, 15... Semi-insulating InP substrate. - Pe Agent Patent Attorney Uchihara A, R Hou 2 Figure 1 1I)/

Claims (1)

【特許請求の範囲】[Claims]  一導電型高濃度化合物半導体基板上にバンドギャップ
E_1なる同じ導電型の高濃度化合物半導体層を結晶成
長する工程と、該高濃度半導体層を円柱状の特定領域を
残して除去する工程と、前記特定領域以外の領域にバン
ドギャップE_2(>E_1)なる同じ導電型の低濃度
化合物半導体層及びバンドギャップE_1なる同じ導電
型の低濃度化合物半導体層を埋め込み成長する工程と、
該バンドギャップE_1なる低濃度半導体層を前記円柱
状の特定領域と中心を同一にする円柱状の特定領域を残
して除去する工程と、ひき続き同じ導電型を呈させるド
ーパントを不純物拡散する工程とを有することを特徴と
する光導電性半導体受光素子の製造方法。
a step of crystal-growing a high-concentration compound semiconductor layer of the same conductivity type with a band gap E_1 on a high-concentration compound semiconductor substrate of one conductivity type; a step of removing the high-concentration semiconductor layer leaving a columnar specific region; burying and growing a low concentration compound semiconductor layer of the same conductivity type with band gap E_2 (>E_1) and a low concentration compound semiconductor layer of the same conductivity type with band gap E_1 in a region other than the specific region;
a step of removing the low concentration semiconductor layer having the band gap E_1, leaving a columnar specific region having the same center as the columnar specific region; and a step of continuously diffusing a dopant to exhibit the same conductivity type. 1. A method for manufacturing a photoconductive semiconductor light-receiving element, comprising:
JP61121571A 1986-05-26 1986-05-26 Manufacture of photoconductive semiconductor photodetector Pending JPS62277774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121571A JPS62277774A (en) 1986-05-26 1986-05-26 Manufacture of photoconductive semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121571A JPS62277774A (en) 1986-05-26 1986-05-26 Manufacture of photoconductive semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS62277774A true JPS62277774A (en) 1987-12-02

Family

ID=14814529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121571A Pending JPS62277774A (en) 1986-05-26 1986-05-26 Manufacture of photoconductive semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS62277774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220868A (en) * 1988-02-29 1989-09-04 Hikari Gijutsu Kenkyu Kaihatsu Kk Horizontal light-receiving element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220868A (en) * 1988-02-29 1989-09-04 Hikari Gijutsu Kenkyu Kaihatsu Kk Horizontal light-receiving element

Similar Documents

Publication Publication Date Title
EP0053513B1 (en) Avalanche photodiodes
US4992386A (en) Method of manufacturing a semiconductor light detector
JPS5854685A (en) Avalanche photodiode and manufacture thereof
JPS62277774A (en) Manufacture of photoconductive semiconductor photodetector
EP0109855B1 (en) Photodiode having heterojunction
JPH0542837B2 (en)
JPH09223805A (en) Semiconductor waveguide type light receiver
JPS5928391A (en) Hetero-junction type photodetector
JPS63240081A (en) Photoconductive semiconductor photodetector
JPH0316275A (en) Manufacture of semiconductor photodetector
JPS6346783A (en) Photoconductive semiconductor photo-detector
JP2664158B2 (en) Method for manufacturing semiconductor light receiving device
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS6180875A (en) Semiconductor device
JPS62179163A (en) Semiconductor photo detector
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JP3055030B2 (en) Manufacturing method of avalanche photodiode
JPH10270741A (en) Semiconductor photoreceptor
KR100399050B1 (en) Avalanche optical detecting device for high speed optical communications and methood for fabricating the same
JPS61101085A (en) Manufacture of group iii-v semiconductor light-receiving element
JPS6146076B2 (en)
JPH06151942A (en) Semiconductor photodetector and manufacture thereof
JPS61144076A (en) Semiconductor light-receiving element
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JPS6356964A (en) Semiconductor photoconduction type photo detector