JPS63187671A - 1.3mum-range semiconductor photodetector - Google Patents

1.3mum-range semiconductor photodetector

Info

Publication number
JPS63187671A
JPS63187671A JP62019796A JP1979687A JPS63187671A JP S63187671 A JPS63187671 A JP S63187671A JP 62019796 A JP62019796 A JP 62019796A JP 1979687 A JP1979687 A JP 1979687A JP S63187671 A JPS63187671 A JP S63187671A
Authority
JP
Japan
Prior art keywords
layer
type
forbidden band
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62019796A
Other languages
Japanese (ja)
Inventor
Nozomi Matsuo
松尾 望
Shigeyuki Misu
三須 重幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62019796A priority Critical patent/JPS63187671A/en
Publication of JPS63187671A publication Critical patent/JPS63187671A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce dark currents, and to improve frequency characteristics by keeping the forbidden band width Eg of a first semiconductor layer as an optical absorption layer within a range of 0.80<=Eg<=0.95eV. CONSTITUTION:A semiconductor substrate 2 consisting of N-type InP, a buffer layer 3 composed of N-type InP and an InGaAsP optical absorption layer 11 having forbidden band width of 0.90eV are formed onto an N-type electrode 1, an N-type InP window layer 5, an surface protective film 6 made up of SiO2, a P-type light-receiving region 8 shaped into the window layer 5 through Zn diffusion and a P-type electrode 9 are formed onto the layer 11, and a P-type guard ring 7 is shaped into the window layer 5. Accordingly, InGaAsP, forbidden band width of which is kept within a range to 0.95eV (1.3mum) from 0.80eV (a wavelength of 1.55mum), is used as the optical absorption layer, thus eliminating the need for the formation of an intermediate layer, then acquiring a photodetector having excellent high-speed response characteristics with high yield through a simple manufacturing process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1.3−帯波長用半導体受光素子の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor light receiving element for a 1.3-band wavelength.

〔従来の技術〕[Conventional technology]

現在、1−帯光通信用受光素子はfnP系の半導体によ
り(14成されている。その光吸収層として禁制帯1L
V70.7+eVのI n G a A s又はI n
GaASPを用いた半導体受光素子は、光波長で最長1
.7−の波長領域まで感度を有し、光ファイバの光In
失の低い1.3−帯および1.55μm帯の波長を用い
た光通信システムで広く使用可能である。
Currently, the photodetector for 1-band optical communication is made of fnP semiconductor (14).The forbidden band 1L is used as the light absorption layer.
I n Ga As or I n of V70.7+eV
A semiconductor photodetector using GaASP has a maximum optical wavelength of 1
.. It has sensitivity up to 7-wavelength range, and is sensitive to optical fiber light In
It can be widely used in optical communication systems using wavelengths in the 1.3-band and 1.55-μm bands with low loss.

第1図は従来のl−帯光通信用受光七子の一例を示すも
のである。第1図において、(I)1よn側電礪、(2
)は、例えば、n型1nPからなる半?、1体基板、(
3)は、例えば、n型InPからなるバッファ層、(4
)は、例えば、禁制帯中約0.7:+eVのn型InG
aAsからなる光吸収層、(5)は、例えば、n型[n
 Pからなる窓層、(6)は窓層の表面↓こ設けられた
SiO□等からなる表面保護膜、(8)は、例えば、Z
nの拡散等により窓層(5)中に設けられたP型受光領
域、(9)はp(!III電極である。また、(7)は
本素子を△1〕D(アバランシェ・フォトダイオード)
として用いる場合に、窓層(5)中に設けられろP壁領
域からなるガードリングである。本構造では、光吸収層
として、禁制帯巾約0.75eVOn型InGaAs層
を用いているため、この例による素子は、波長1.1〜
1.7−の広い波長範囲において良好な感度を有し、1
−帯の光通信用受光素子として巾広く使用可能である。
FIG. 1 shows an example of a conventional light-receiving device for l-band optical communication. In Fig. 1, (I) 1, n-side electric
) is, for example, an n-type half ? , one-piece board, (
3) is, for example, a buffer layer made of n-type InP, (4)
) is, for example, n-type InG at about 0.7:+eV in the forbidden band.
The light absorption layer (5) made of aAs is, for example, n-type [n
A window layer made of P, (6) is a surface protective film made of SiO□, etc. provided on the surface of the window layer, and (8) is, for example, a Z
A P-type light-receiving region is provided in the window layer (5) by diffusion of n, etc., (9) is a p(!III electrode), and (7) is a △1]D (avalanche photodiode). )
When used as a window layer (5), a guard ring consisting of a P wall region is provided in the window layer (5). In this structure, a VOn-type InGaAs layer with a forbidden band width of about 0.75 e is used as the light absorption layer, so that the device according to this example has a wavelength of 1.1 to
It has good sensitivity in a wide wavelength range of 1.7-
- It can be widely used as a light-receiving element for optical communication in the band.

また、この例による素子は、p−n接合を禁制帯中が約
1.34eVと比較的大きなInP窓層(5)中に設け
ているため、バイアス電圧印加時のp−n接合部におけ
るリーク電流が極めて小さく保持され、従って、暗電流
の小さい、低雑音の優れた受光素子となる。
In addition, since the device according to this example has the p-n junction in the InP window layer (5), which has a relatively large forbidden band of approximately 1.34 eV, leakage at the p-n junction occurs when a bias voltage is applied. The current is kept extremely small, resulting in an excellent light-receiving element with low dark current and low noise.

しかしながら、本構造をもつ受光素子には、第2図に示
すような欠点がある。すなわち、禁制帯中1.34eV
のInP窓層(5)と禁制帯中0.75eVのInGa
As光吸収層(4)とのへテロ接合面において、価電子
帯にΔEvの不連続が生しる。このΔEvが、光照射時
に生じる電子〜正孔対のうち、正孔に対してエネルギー
障壁として働き、正札のドリフトを妨げるため、素子の
高速動作が著しくそこなわれるという問題が生じる。ま
た、本構造をもつ素子の製作工程においては、結晶成長
時に、1nGaAs光吸収層上にInP窓層の成長を行
う必要がある。この場合に、結晶成長法として、例えば
、従来広く用いられている液相エピクキシャル成長法(
LPE?去)を用いると、lnP成長用のメルトにIn
GaAsが1容融しやすいため、lnP窓層成長時に1
nGaAs光吸収層が溶けだす、いわゆる゛メルトバッ
ク°の問題が生し、719層の制御が困難になるととも
に、I n P / I nGaΔS界面の結晶性が著
しく低下するという欠点がある。
However, the light receiving element having this structure has drawbacks as shown in FIG. That is, 1.34 eV in the forbidden band
of InP window layer (5) and 0.75 eV of InGa in the forbidden band.
At the heterojunction surface with the As light absorption layer (4), a discontinuity of ΔEv occurs in the valence band. This ΔEv acts as an energy barrier for holes among the electron-hole pairs generated during light irradiation and prevents the drift of the genuine tag, resulting in a problem that the high-speed operation of the device is significantly impaired. Furthermore, in the manufacturing process of a device having this structure, it is necessary to grow an InP window layer on the 1nGaAs light absorption layer during crystal growth. In this case, as a crystal growth method, for example, the liquid phase epitaxial growth method (
LPE? ), it is possible to add In to the melt for lnP growth.
Since GaAs is easily melted by 1 volume, 1 volume is easily melted during the growth of the lnP window layer.
A so-called "meltback" problem occurs in which the nGaAs light absorption layer begins to melt, making it difficult to control the 719 layer, and has the disadvantage that the crystallinity of the I n P / I nGaΔS interface is significantly reduced.

第;3図は、上記の問題を解決するために考案された半
導体受光素子の一例を示している。同図において、θ0
)は第1図の光吸収層(4)と窓層(5)の間に設けら
れた、例えば禁制帯中1. IeVのInGaAsPか
らなる中間層である。中間JV 01l)を設けること
により、第1図の素子構造で問題とされた価電子帯の不
連続ΔEvは緩和され、従って、しゃ新円波数500M
Hz以上の高速動作可能な受光素子が実現される。また
、I n、 G a A s Pがアンチ・メルトバッ
ク層として作用するため、前述した結晶成長時における
゛メルトバック″による思影響も著しく軽減される。
FIG. 3 shows an example of a semiconductor light receiving element devised to solve the above problem. In the same figure, θ0
) is provided between the light absorption layer (4) and the window layer (5) in FIG. 1, for example, in the forbidden zone 1. This is an intermediate layer made of IeV InGaAsP. By providing an intermediate JV 01l), the discontinuity ΔEv of the valence band, which was a problem in the device structure of FIG.
A light-receiving element capable of high-speed operation at Hz or higher is realized. Furthermore, since In,GaAsP acts as an anti-meltback layer, the influence of "meltback" during crystal growth described above is significantly reduced.

〔発明が解決しようとする問題点] しかしながら、上記第3図に示す素子構造には、製作工
程上に問題があることが判明した。すなわち、InGa
AsP中間層00)の厚みや不純物濃度の変動は素子の
特性に大きな影響を及ぼし、例えば、不適当な厚みや不
純物濃度は素子の感度低下や暗電流の増加をもたらす。
[Problems to be Solved by the Invention] However, it has been found that the element structure shown in FIG. 3 has a problem in the manufacturing process. That is, InGa
Variations in the thickness and impurity concentration of the AsP intermediate layer 00) have a large effect on the characteristics of the device. For example, inappropriate thickness and impurity concentration cause a decrease in the sensitivity of the device and an increase in dark current.

従って、良好な特性の素子を歩留りよく作製するために
は、中間層の厚みや不純物濃度を最適化し、かつ均一性
を良好にすることが必要であるが、従来のLPE法等の
結晶成長技術では、このような条件の素子を製作するこ
とは極めて困難である。また、1.3−帯の受光素子を
製作するためには、光吸収層をInGaAsなどの禁制
帯1〕の狭い半導体層を用いて、製作工程を複雑にする
必要は全くない。
Therefore, in order to manufacture elements with good characteristics at a high yield, it is necessary to optimize the thickness and impurity concentration of the intermediate layer and to improve the uniformity. However, it is extremely difficult to manufacture an element under such conditions. Furthermore, in order to manufacture a 1.3-band light receiving element, there is no need to complicate the manufacturing process by using a semiconductor layer with a narrow forbidden band 1, such as InGaAs, as the light absorption layer.

本発明はこのような点にかんがみてなされたもので、1
.3−帯の波長領域で実用上良好な感度を有し、暗電流
が小さく、周波数特性が良好で、かつ簡単な工程で歩留
りよく製作できる半導体受光素子の構造を提供すること
を目的としている。
The present invention has been made in view of the above points, and has the following features:
.. It is an object of the present invention to provide a structure of a semiconductor light-receiving element that has practically good sensitivity in the 3-band wavelength region, has a small dark current, has good frequency characteristics, and can be manufactured with a high yield through simple steps.

〔問題点を解決するための手段] 上記目的を達成するため、本発明による1、3−帯半導
体受光素子は、光吸収層である第1の半導体層と、該第
1の半導体層上に隣接して形成され、第1の半導体層の
禁制帯中より大きな禁制帯中をもら、かつ、層中にp−
n接合を有する第2の゛ト導体層とよりなる半導体受光
素子において、上記第1の半導体層の禁制帯rl’lE
gを0.80≦Eg≦0.95eV としたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the 1, 3-band semiconductor photodetector according to the present invention includes a first semiconductor layer which is a light absorption layer, and a layer on the first semiconductor layer. formed adjacent to each other, has a larger forbidden band than that of the first semiconductor layer, and has p-
In a semiconductor light-receiving device comprising a second conductor layer having an n-junction, the forbidden band rl'lE of the first semiconductor layer is
It is characterized in that g is set to 0.80≦Eg≦0.95eV.

〔作用〕[Effect]

次に、本発明の作用を、一実施例を示す第4図により説
明する。
Next, the operation of the present invention will be explained with reference to FIG. 4 showing one embodiment.

第4図において、(11)は禁制帯0.90eVのI 
n G aAsPAs状層である。従って、LPE法に
より結晶成長を行う際、InGaAsと異なり、InP
窓層成長時に“メルトバック゛の問題は生しない。I 
nGaAs Pは、Asが増加しPが残少すると禁制帯
中は小さくなる。実験によれば、Asが増加しPが減少
しても、禁制帯中が0.80eν程度まてのl nGa
As P四元結晶は、特に重大な°メルトバック“の問
題を生じないことがII+明した。また、禁制帯中が0
.75eνであるI nGaAsを光吸収層に用いると
、価電子帯の不連続によるヘテロ障壁が応答速度の低下
をもたらすが、禁制帯中が0.80eν以上になると、
応答速度は改善され、ヘテロ障壁は高速応答特性に重大
な悪影響を与えない。第5図は、本発明による構造素子
の周波数特性が第1図に示す従来構造素子の周波数特性
より(Mれていることを示している。
In Figure 4, (11) is the forbidden band I of 0.90 eV.
nGaAsPAs-like layer. Therefore, when performing crystal growth using the LPE method, unlike InGaAs, InP
No “meltback” problem occurs during window layer growth.I
nGaAs P becomes smaller in the forbidden band as As increases and P decreases. According to experiments, even if As increases and P decreases, the forbidden band is less than about 0.80eν l nGa
It has been shown that the AsP quaternary crystal does not cause a particularly serious meltback problem.
.. When InGaAs with 75eν is used for the light absorption layer, a heterobarrier due to discontinuity in the valence band causes a decrease in response speed, but when the forbidden band becomes 0.80eν or more,
The response speed is improved and the heterobarrier does not have a significant negative effect on the fast response characteristics. FIG. 5 shows that the frequency characteristics of the structural element according to the invention are different from the frequency characteristics of the conventional structural element shown in FIG.

以上により、光吸収層として、禁制帯11が0.80e
V (波長1.55−)から0.95eV (1,3−
)までのl nGaAs Pを用いることにより、第3
図に示すような中間層を設ける必要がなく、簡単な製造
工程で、歩留りよく、高速応答特性の優れた受光素子を
得ることができる。
As a result of the above, the forbidden band 11 of the light absorption layer is 0.80e.
V (wavelength 1.55-) to 0.95eV (1,3-
), the third
There is no need to provide an intermediate layer as shown in the figure, and a light receiving element with high yield and excellent high-speed response characteristics can be obtained through a simple manufacturing process.

なお、本実施例では、バイアス電圧を5■とした場合、
暗電流は1nA以下、感度は0.1A/W以上、波長1
.llr+n高速変調光にぞ1するしゃ新円波数は50
0M]lz以上であり、特性的にも極めて良好であるこ
とが41認された。
In addition, in this example, when the bias voltage is set to 5■,
Dark current is 1nA or less, sensitivity is 0.1A/W or more, wavelength 1
.. The new circular wave number for llr+n high-speed modulated light is 50.
0M]lz or more, and it was found that the properties were extremely good.

[実施例] 第4凹は、本発明の一実施例を示す図である。[Example] The fourth recess is a diagram showing an embodiment of the present invention.

(1) 1.: n型電極、(2)はn型1nPからな
る半導体基板、(3)はn型1nPからなるバッファ層
、(l l)は禁制帯tlO,90eνのI n G 
aΔsP光吸収層、(5)はn型1nP窓層、(6)は
SiO2からなる表面保護膜、(8)はZn拡散により
窓層(5)中に設けられたp型受光領域、(9)はn型
電極である。(7)は窓層(5)中に設けられたp型ガ
ードリングである。
(1) 1. : n-type electrode, (2) is a semiconductor substrate made of n-type 1nP, (3) is a buffer layer made of n-type 1nP, (l l) is a forbidden band tlO, I n G of 90 eν
aΔsP light absorption layer, (5) is an n-type 1nP window layer, (6) is a surface protective film made of SiO2, (8) is a p-type light receiving region provided in the window layer (5) by Zn diffusion, (9 ) is an n-type electrode. (7) is a p-type guard ring provided in the window layer (5).

本発明は上記実施例に限定されることなく、■・n々変
形して実施し得るものである。例えば、上記実施例では
、p−n!妾合をZnの拡散によって形成した、いわゆ
るプレーナ型について説明したが、これば例えば、l 
n P窓層をn型1nP、p型I r+ Pの二層構造
としてメサ型としたものでも同様な効果が期待される。
The present invention is not limited to the above-mentioned embodiments, but can be implemented with various modifications. For example, in the above embodiment, p-n! We have explained the so-called planar type in which the coupling is formed by diffusion of Zn.
A similar effect is expected even if the n P window layer is formed into a mesa type with a two-layer structure of n-type 1nP and p-type I r+ P.

また、上記実施例では、光をエピタキシャル成長層イ;
すから入射する構造を示したが、n型1r+P基板側か
ら入射させてもよい。また、本実施例では窓層をInP
としたが、光吸収層より禁制帯中が広い材料であれば、
lnP以外の材料でも一向に差し支えない。光吸収層材
料としては、禁制帯中0.80〜0.95eVという限
定がつくだけで、超格子構造などをも含めて、I nG
aAs P以外の(オ料であっても実施可能であること
は言うまでもない。
Further, in the above embodiment, the light is applied to the epitaxially grown layer;
Although a structure in which the light is incident from the front is shown, the light may be incident from the n-type 1r+P substrate side. In addition, in this example, the window layer is InP.
However, if the material has a wider forbidden band than the light absorption layer,
There is no problem with materials other than lnP. As the light absorption layer material, there is only a limitation of 0.80 to 0.95 eV in the forbidden band, and InG including superlattice structure etc.
It goes without saying that it is possible to implement this method even in cases other than aAsP.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、1.3μ・:1
:の波長領域で実用上良好な感度を有し、ff&’E流
が小さく、周波数特性が良好な半導体受光素子が提供さ
れる。特に、素子構造が筒中化されているため、本発明
は簡単な工程で歩留りよく装作することが可能になると
いう大きな効果を存している。
As explained above, according to the present invention, 1.3μ・:1
Provided is a semiconductor light-receiving element that has practically good sensitivity in the wavelength range of :, has a small ff&'E current, and has good frequency characteristics. In particular, since the element structure is in a cylinder, the present invention has a great effect in that it can be assembled in a simple process with a high yield.

・1.  図面の簡Q’tな説明 第16は従来の半導体受光素子の構造を示す要部断面図
、第2図は第1図の構造の受光素子の問題点を説明する
半導体のエネルギーバンド図、第3図は第1図の構造を
改良した従来の受光素子の構造を示す要部断面図、第4
図は本発明の一実施例を示す要部断面図、第5図は本発
明による+構造素子の周波数特性を示す図である。
・1. Brief explanation of the drawings No. 16 is a sectional view of main parts showing the structure of a conventional semiconductor photodetector, FIG. 2 is a semiconductor energy band diagram explaining the problems of the photodetector with the structure shown in FIG. Figure 3 is a cross-sectional view of main parts showing the structure of a conventional light-receiving element that is an improvement on the structure shown in Figure 1.
The figure is a cross-sectional view of a main part showing an embodiment of the present invention, and FIG. 5 is a diagram showing frequency characteristics of a positive structural element according to the present invention.

1 : nイ、11電)兎、   2 : n型 1n
P基(反、 3 : n型1 n P ハフフッ層、 
4:n型1 n G a A s光吸収層、 5.n型
InP窓層、 6:表面保護膜、  7:p型ガードリ
ング、  8:p苧受光領域、 9;P側′改桟、 l
o:r+梨型1nGaAsP中
1: n-type, 11den) rabbit, 2: n-type 1n
P group (anti, 3: n-type 1 n P huff layer,
4: n-type 1nGaAs light absorption layer, 5. n-type InP window layer, 6: surface protective film, 7: p-type guard ring, 8: p-type light-receiving area, 9; P-side' break, l
o:r+pear-shaped 1nGaAsP medium

Claims (2)

【特許請求の範囲】[Claims] (1)光吸収層である第1の半導体層と、該第1の半導
体層上に隣接して形成され、第1の半導体層の禁制帯巾
より大きな禁制帯巾をもち、かつ、層中にp−n接合を
有する第2の半導体層とよりなる半導体受光素子におい
て、上記第1の半導体層の禁制帯巾Egを 0.80≦Eg≦0.95eV としたことを特徴とする半導体受光素子。
(1) A first semiconductor layer that is a light absorption layer, which is formed adjacent to the first semiconductor layer, has a forbidden band width larger than the forbidden band width of the first semiconductor layer, and has a A semiconductor light-receiving device comprising a second semiconductor layer having a p-n junction in the semiconductor light-receiving device, characterized in that the first semiconductor layer has a forbidden band width Eg of 0.80≦Eg≦0.95 eV. element.
(2)前記第1の半導体層がInGaAsPであること
を特徴とする特許請求の範囲第1項記載の半導体受光素
子。
(2) The semiconductor light-receiving device according to claim 1, wherein the first semiconductor layer is InGaAsP.
JP62019796A 1987-01-30 1987-01-30 1.3mum-range semiconductor photodetector Pending JPS63187671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019796A JPS63187671A (en) 1987-01-30 1987-01-30 1.3mum-range semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019796A JPS63187671A (en) 1987-01-30 1987-01-30 1.3mum-range semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS63187671A true JPS63187671A (en) 1988-08-03

Family

ID=12009309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019796A Pending JPS63187671A (en) 1987-01-30 1987-01-30 1.3mum-range semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS63187671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304824A (en) * 1990-08-31 1994-04-19 Sumitomo Electric Industries, Ltd. Photo-sensing device
JP2006237186A (en) * 2005-02-24 2006-09-07 Mitsubishi Electric Corp Semiconductor photo detector and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304824A (en) * 1990-08-31 1994-04-19 Sumitomo Electric Industries, Ltd. Photo-sensing device
JP2006237186A (en) * 2005-02-24 2006-09-07 Mitsubishi Electric Corp Semiconductor photo detector and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
JP2762939B2 (en) Superlattice avalanche photodiode
JP2601231B2 (en) Superlattice avalanche photodiode
US4651187A (en) Avalanche photodiode
KR900004180B1 (en) Semiconductor photo detector and manufacturing thereof
US4840916A (en) Process for fabricating an avalanche photodiode
JPH08242016A (en) Manufacture of photodiode
US20100133637A1 (en) Avalanche photodiode
JPH05160426A (en) Semiconductor light receiving element
KR980012624A (en) Semiconductor device and method of manufacturing semiconductor device
JP3828982B2 (en) Semiconductor photo detector
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
US4974061A (en) Planar type heterostructure avalanche photodiode
KR100509355B1 (en) Photo-diode and method for fabricating the same
JPS63955B2 (en)
KR20000024447A (en) Avalanche photodetector device and method for manufacturing the same
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
JPS6244709B2 (en)
JPH08274366A (en) Semiconductor light receiving device
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JPH0542837B2 (en)
CN110729374A (en) Improved varactor type photoelectric detector for improving response speed
JPS59136981A (en) Semiconductor photo detector
JPH0265279A (en) Semiconductor photodetecting element
JPS59232470A (en) Semiconductor light receiving element