JPS61101085A - Manufacture of group iii-v semiconductor light-receiving element - Google Patents

Manufacture of group iii-v semiconductor light-receiving element

Info

Publication number
JPS61101085A
JPS61101085A JP59223230A JP22323084A JPS61101085A JP S61101085 A JPS61101085 A JP S61101085A JP 59223230 A JP59223230 A JP 59223230A JP 22323084 A JP22323084 A JP 22323084A JP S61101085 A JPS61101085 A JP S61101085A
Authority
JP
Japan
Prior art keywords
junction
guard ring
layer
semiconductor light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59223230A
Other languages
Japanese (ja)
Other versions
JPH06105795B2 (en
Inventor
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59223230A priority Critical patent/JPH06105795B2/en
Priority to US06/713,669 priority patent/US4651187A/en
Priority to DE8585103299T priority patent/DE3567128D1/en
Priority to CA000477076A priority patent/CA1261450A/en
Priority to EP85103299A priority patent/EP0159544B1/en
Publication of JPS61101085A publication Critical patent/JPS61101085A/en
Publication of JPH06105795B2 publication Critical patent/JPH06105795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Abstract

PURPOSE:To elevate he guard ring breakdown voltage by a method wherein a second guard ring is formed positioned shallower than the first guard ring. CONSTITUTION:A light-absorbing layer 3 equipped with a forbidden band Eg1 and an avalanche multiplication layer 4 equipped with a forbidden band Eg2 (where Eg2>Eg1) are deposited one upon the other. A P<+>-N junction 5 is selectively provided in the layer 4. Into the periphery of the junction 5, a quantity D1 of beryllium ions is driven at an acceleration voltage V1 for the formation of a first slant-type P-N junction 5'. Into the periphery of the junction 5', a quantity D2 (where D2<D1) of beryllium ions are driven at an acceleration voltage of V2 (where V2<V1) for the formation of a second slant-type P-N junction 5''. Accordingly, the breakdown voltage of the second guard ring may be higher than that of the first guard ring, ensuring sufficient carrier multiplication in the light-receiving region 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は逆バイアス電圧で使用する■−v族半導体受光
素子の、特に、ガードリング効果を有するプレーナ型か
つヘテロ接合型半導体受光素子の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the manufacture of ■-V group semiconductor photodetectors used at reverse bias voltages, particularly planar and heterojunction semiconductor photodetectors having a guard ring effect. Regarding the method.

(従来技術とその問題点) 現在、元通信用波長域として元ファイバーの伝送損失の
低い1〜1.6μm波長域が主流であシ、この波長域に
おいて高速かつ高感度を有する半導体受光素子としてア
バランシ・フォトダイオード(以下APDと略記)の研
究開発が進められている。
(Prior art and its problems) Currently, the 1 to 1.6 μm wavelength range with low transmission loss of the original fiber is the mainstream wavelength range for communication, and semiconductor photodetectors with high speed and high sensitivity in this wavelength range are used. Research and development of avalanche photodiodes (hereinafter abbreviated as APD) is progressing.

上記波長域に感度を有するIng、53Ga6,47A
sが現在量も多く研究されている。InO,53Ga0
.4□AsはInPに格子整合したへテロ接合が可能で
あるため、−InGaAs層で光吸収によって発生した
電子−正孔キャリアの正孔のみをInP層へ輸送してア
バランシ増倍させるような構造を採用する事により、低
雑音、従って高受信感度を有したAPDが可能となる。
Ing, 53Ga6,47A with sensitivity in the above wavelength range
s is currently being studied in large quantities. InO,53Ga0
.. 4□As can form a lattice-matched heterojunction with InP, so a structure is created in which only the electron-hole carrier holes generated by light absorption in the -InGaAs layer are transported to the InP layer and multiplied by avalanche. By adopting this, an APD with low noise and therefore high reception sensitivity becomes possible.

その構造例は、第2図の如くであシ、これは既に特願昭
54−39169において提案されているo 、n 7
InP基板1の上に、n−InPバッファ層2 、 n
”−−1no’、53GaO,’47As4aAs−I
nPn電層n−InPn種層を順次成長した後、p+型
導電領域5を設けてpn接合を形成している06は反射
防止を兼ねた表面保護膜、7.8は各々、p側電極、n
側電極である。かかる構造においては電極7−8間に逆
バイアス電圧を印加し、空乏層をInGaAs層3まで
伸ばす事によって禁制帯幅の狭いIn(1aAsで九を
吸収させ発生した正孔キャリアのみを禁制帯幅の広いI
nP層4内に設けたp+n接合まで輸送し、てアバラン
シ増倍を生じさせている。即ち、禁制帯幅の広いInP
で電圧降伏が生じるために、 InGaAsでのトンネ
ル電流の発生が抑えられ低暗電流受光素子が実現できる
◎しかし、第2図の構造においては、選択的に形成した
pn接合部の正の曲率を有する部分5aに高電界が集中
する為、平坦部5bよシも低い逆バイアス電圧において
電圧降伏が生じ、受光領域に対応する5bの部分で充分
にキャリア増倍が得られないという欠点を有している。
An example of its structure is shown in Fig. 2, which has already been proposed in Japanese Patent Application No. 54-39169.
On the InP substrate 1, an n-InP buffer layer 2, n
"--1no', 53GaO, '47As4aAs-I
After successively growing nPn conductive layer n-InPn seed layer, p+ type conductive region 5 is provided to form a pn junction. 06 is a surface protection film which also serves as anti-reflection, 7.8 is a p-side electrode, n
This is the side electrode. In such a structure, by applying a reverse bias voltage between the electrodes 7 and 8 and extending the depletion layer to the InGaAs layer 3, only the hole carriers generated by absorbing In (1aAs), which has a narrow forbidden band width, are absorbed into the forbidden band width. wide I
The light is transported to the p+n junction provided in the nP layer 4, causing avalanche multiplication. In other words, InP with a wide forbidden band width
As voltage breakdown occurs at Since a high electric field is concentrated in the portion 5a, voltage breakdown occurs at a lower reverse bias voltage than in the flat portion 5b, which has the disadvantage that sufficient carrier multiplication cannot be obtained in the portion 5b corresponding to the light-receiving region. ing.

そこで5a部が負の曲率を有し、かつ降伏電圧が5b部
よシも高くなる傾斜型接合をp+n接脅接縁周縁部けた
、即ち、第3図に示すような云わゆるガードリング5′
を有する構造が、例えば第31回応用物理学学術講演会
予稿集31p−L−2(昭和59年3月)に報告されて
いる。しかし、第3図に示す構造においても、周縁降伏
(エツジブレークダウン)の抑えられた均一キャリア増
倍を得るのが困難であった。その理由は以下の通シであ
る0第3図に示すように、第2図の構造にガードリング
5′を適用した場合、ガードリング5′の接合位置が受
光領域5のそれよりもIn(1aAs層3とInPn電
層のへテロ界面に近接する為、ヘテロ界面に印加される
電界強度は、受光領域5よすもガードリング5′の部分
が高くなる。従って空乏層がInGaAs層3に達して
いる時、上述した第2図の場合と同様、ガードリングの
曲率部5’aにおいて電圧降伏が生じてしまい、受光領
域に対応する5bの部分でのキャリア増倍が充分に行わ
れないという欠点を有してしまう〇 (発明の目的) ・本発明は、上記の従来の欠点を除去せしめ、ガードリ
ンクにおける電圧降伏が生じる以前に、受光領域で充分
なキャリア増倍を生じさせる構造のAPDの製造方法を
提供することにある。
Therefore, a sloped junction in which the portion 5a has a negative curvature and the breakdown voltage is higher than that in the portion 5b is provided at the peripheral edge of the p+n contact, that is, a so-called guard ring 5' as shown in FIG.
A structure having the following is reported, for example, in the Proceedings of the 31st Applied Physics Conference 31p-L-2 (March 1980). However, even in the structure shown in FIG. 3, it was difficult to obtain uniform carrier multiplication with suppressed edge breakdown. The reason for this is as follows.0 As shown in FIG. 3, when the guard ring 5' is applied to the structure shown in FIG. Since the 1aAs layer 3 and the InPn electric layer are close to the hetero interface, the electric field intensity applied to the hetero interface is higher in the light receiving region 5 and in the guard ring 5'. When it reaches that point, voltage breakdown occurs at the curved part 5'a of the guard ring, as in the case of FIG. (Objective of the Invention) - The present invention eliminates the above-mentioned conventional drawbacks and provides a structure that causes sufficient carrier multiplication in the light-receiving region before voltage breakdown occurs in the guard link. An object of the present invention is to provide a method for manufacturing an APD.

(発明の構成) 本発明は、少なくとも、Eg1&る禁制帯幅を有する光
吸収層とE2(ただし8g2〉Egl)なる禁側帯幅を
有するアバランシ増倍層を積層する工程と、該アバラン
シ増倍層中に選択的にp+n接合を設ける工程とを備え
ている半導体受光素子の製造方法において 、+n接合
の周縁部にν、なる加速電圧でかつ■)、なる注入量の
ベリリウムイオンを注入して第1の傾斜型pn接合を設
ける工程及び該第1の傾斜型pn接合の周縁にV2(た
だしVm ”< ’Vt )なる加速電圧でかつD’2
 (ただし1)2〈r)l)な□る注入量のベリリウム
イオンを注入して第2の傾斜型pn接合を設ける工程を
具備することを特徴としている。
(Structure of the Invention) The present invention comprises at least a step of laminating a light absorption layer having a forbidden band width of Eg1 & an avalanche multiplication layer having a forbidden band width of E2 (8g2>Egl), and the avalanche multiplication layer. In the method of manufacturing a semiconductor light receiving element, the semiconductor light receiving element is manufactured by implanting beryllium ions into the periphery of the +n junction at an acceleration voltage of ν and an implantation amount of . A step of providing a first inclined pn junction and an acceleration voltage of V2 (however, Vm''<'Vt) and D'2 at the periphery of the first inclined pn junction.
(However, 1) 2〈r)l) The method is characterized by comprising a step of implanting beryllium ions in an implantation amount of □ to form a second graded pn junction.

(発明の作用・原理) 本発明は上述の方法によシ、従来の欠点を解決した◎す
なわち、第3図に示したガードリンク51の正の曲率を
有する周縁部で生じた電圧降伏を抑える為に、更に該ガ
ードリング(第1のガードリングと称する)周縁部の曲
率を緩和するように、第1のガードリングよシも浅く位
置する新たな第2のガードリングを形成した。
(Operation/Principle of the Invention) The present invention solves the conventional drawbacks by using the method described above. In other words, the voltage breakdown that occurs at the peripheral portion of the guard link 51 having a positive curvature as shown in FIG. 3 is suppressed. Therefore, a new second guard ring was formed which is also located shallower than the first guard ring so as to further reduce the curvature of the peripheral edge of the guard ring (referred to as the first guard ring).

ここで、第1及び第2のガードリングをベリリウムのイ
オン注入によって形成した口これは、ベリリウムのイオ
ン注入が最も傾斜型のpn接合を形成し易い事による。
Here, the first and second guard rings are formed by beryllium ion implantation. This is because beryllium ion implantation is the easiest to form a sloped pn junction.

第2のガードリングによって第1のガードリングをおお
う為、ガードリングの降伏電圧は第2のガードリングに
よって決まる〇第2のガードリングは、第1のガードリ
ングよシも浅く位置するので、  InP/InGaA
aヘテロ界而に印加されるヘテ面電界は、第1のガード
リングのそれよシも小さい。従って第2のガードリング
降伏電圧は。
Since the second guard ring covers the first guard ring, the breakdown voltage of the guard ring is determined by the second guard ring. Since the second guard ring is located shallower than the first guard ring, InP /InGaA
The hetero plane electric field applied to the a hetero field is also smaller than that of the first guard ring. Therefore, the second guard ring breakdown voltage is:

第1のガードリングのそれよシも高くなり、受光領域で
のキャリア増倍を充分に行わせる事が可能となる〇 (実施例) 以下、第2図、第3図と同様、Ink/ InGaAs
へテロ接合APDについて実施例を用いて説明するが、
他ノへテロ接合、例えば、A/GaAs/GaAs、 
A/Ga8b/Ga8b等についても全く同様であるこ
とは容易に理解させる。第1図は本発明による受光素子
の一実施例である。n〜InP基根上に、 n−InP
バッファ層2を1μm厚に、3〜5X10  cm  
キャリア濃度のn−−Ino。53GaO047As層
3を3.5μm厚に、波長1.3μm相当のInGaA
sP層3′を0.1〜0.3μm厚に、1〜2×101
613キャリア濃度のn−In’P層4を1.5〜2.
5μm厚に、l 〜5XlOcrtt  キャリア濃度
のn−−InPn種層を1.5〜2.0μm厚に順次形
成した後、第1のガードリング5′及び第2のガードリ
ング5“をベリリウムのイオン注入によって形成した0
第1のガードリングは100 kV加速で5 X 10
 ” 3−−2ドース量、第2のガードリングは70に
■加速で3×lOα ドース量のベリリウムを注入し、
しかる後、700℃20分間の活性化熱処理を行って、
傾斜型r H接合を形成した。しかる彼、カドミニウム
を570℃の温度で20分間熱拡散し、所望の深さに接
合が位置する受光領域のpn接合5を形成した。以下、
プラズマ堆積法によるs開表面保護膜6及び、電極79
8を形成し、受光素子を完成させた。
The height of the first guard ring also becomes higher, making it possible to sufficiently multiply carriers in the light receiving region.
The heterozygous APD will be explained using an example.
Other heterojunctions, such as A/GaAs/GaAs,
It is easy to understand that the same holds true for A/Ga8b/Ga8b, etc. FIG. 1 shows an embodiment of a light receiving element according to the present invention. n-InP on the n-InP base
Buffer layer 2 is 1 μm thick, 3~5×10 cm
Carrier concentration n--Ino. The 53GaO047As layer 3 has a thickness of 3.5 μm, and the InGaA layer has a wavelength of 1.3 μm.
The sP layer 3' has a thickness of 0.1 to 0.3 μm and is 1 to 2 × 101
The n-In'P layer 4 has a carrier concentration of 1.5 to 2.613.
After successively forming an n--InPn seed layer with a carrier concentration of 1.5 to 2.0 μm to a thickness of 5 μm, the first guard ring 5′ and the second guard ring 5″ are coated with beryllium ions. 0 formed by injection
The first guard ring is 5 x 10 at 100 kV acceleration.
” 3--2 dose, the second guard ring is injected with 3 x lOα dose of beryllium at 70° ■ acceleration,
After that, activation heat treatment was performed at 700°C for 20 minutes,
A tilted rH junction was formed. However, he thermally diffused cadmium at a temperature of 570° C. for 20 minutes to form a pn junction 5 in the light receiving region where the junction was located at a desired depth. below,
S-open surface protection film 6 and electrode 79 by plasma deposition method
8 was formed to complete the light receiving element.

尚、上記の例ではガードリングを形成してからp+n接
合を形成しているが、この逆、すなわち、p+n接合を
形成した後、ガードリングを形成してもよい。要は、ガ
ードリングをベリリウムのイオン注入工程を2回行って
2つのガードリングを形成することが、本発明のポイン
トである。p+n接ν飄 合形成前にガードリングを形成するが、後に形成するか
その順序は本質的な問題ではないから、その順序はどち
らでもよいのである。
In the above example, the p+n junction is formed after the guard ring is formed, but the guard ring may be formed in the opposite manner, that is, after the p+n junction is formed. The key point of the present invention is to perform the beryllium ion implantation process twice to form two guard rings. Although the guard ring is formed before the formation of the p+n junction v-metal, it is not essential whether it is formed afterwards or in which order, so either order is acceptable.

第1のガードリングのみを形成した時のガードリング降
伏電圧は約120■であシ、第2のガードリングも併せ
て形成した時のガードリング降伏電圧は約150■であ
って、本発明の効果を実現した。
The guard ring breakdown voltage when only the first guard ring is formed is about 120 µ, and the guard ring breakdown voltage when the second guard ring is also formed is about 150 µ, and the guard ring breakdown voltage when only the first guard ring is formed is about 150 µ. achieved the effect.

更に、本発明によって作製したInk/ InGaAs
ヘテ口接合APDの増倍特性は第4図に示す如くであり
、ガードリング部よりも、受光領域における充分なるキ
ャリア増倍が実現された。この時の最大増倍率は40〜
60倍であり、従来のlθ倍程度に比較して著しい改善
がみられた。
Furthermore, Ink/InGaAs produced according to the present invention
The multiplication characteristics of the heterojunction APD are as shown in FIG. 4, and more sufficient carrier multiplication was achieved in the light-receiving region than in the guard ring portion. The maximum multiplication factor at this time is 40~
60 times, which is a significant improvement compared to the conventional lθ times.

(発明の効果) 以上、本発明によれば、ガードリング降伏電圧を従来よ
シも高くできるため、受光領域におけるキャリア増倍を
充分に行うことができるという利点を有している。
(Effects of the Invention) As described above, according to the present invention, the guard ring breakdown voltage can be made higher than that of the conventional method, so that carrier multiplication in the light-receiving region can be sufficiently performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により作られたヘテロ接合APDの例
を示す図であり、第2図、第3図は、従1は半導体基板
、2は1と同種の半導体バッファ層、3は禁制帯幅の小
さい元吸収層、3′は3と4との中間の禁制帯幅を有す
る半導体層、4は禁制帯幅の大きいアバ2ンシ増倍層、
4′は4と同種で4よりもキャリア濃度の低い半導体層
、5は受光領域のpn接合、5′、5“は各々傾斜型p
n接合を有する第1のガードリング、第2のガードリン
グである。5a、5’aは接合曲率部、5bは接合平坦
部、6は表面保護膜、7,8は各々plttE極。 n側電極である〇 代疏人弁理士 白眉  晋 51図 第2図 鴨3図 粥4図 1こつ、ユノ
FIG. 1 is a diagram showing an example of a heterojunction APD made according to the present invention, and in FIGS. 2 and 3, subordinate 1 is a semiconductor substrate, 2 is a semiconductor buffer layer of the same type as 1, and 3 is a prohibited 3' is a semiconductor layer with a narrow band width between 3 and 4; 4 is an aberration multiplication layer with a large band gap;
4' is a semiconductor layer of the same type as 4 and has a lower carrier concentration than 4, 5 is a pn junction in the light receiving region, and 5' and 5'' are each a sloped p-n junction.
They are a first guard ring and a second guard ring having an n-junction. 5a and 5'a are joint curvature parts, 5b is a joint flat part, 6 is a surface protective film, and 7 and 8 are respective plttE electrodes. The n-side electrode is a patent attorney who is a patent attorney.

Claims (1)

【特許請求の範囲】[Claims] 少なくともE_g_1なる禁制帯幅を有する光吸収層と
E_g_2(ただし、E_g_2>E_g_1)なる禁
制帯幅を有するアバランシ増倍層を積層する工程と、該
アバランシ増倍層中に選択的にp^+n接合を設ける工
程とを少なくとも備えている半導体受光素子の製造方法
において、p^+n接合の周縁部にV_1なる加速電圧
で、かつD_1なる注入量のベリリウムイオンを注入し
て第1の傾斜型pn接合を設ける工程、及び該第1の傾
斜型pn接合の周縁にV_2(ただしV_2<V_1)
なる加速電圧で、かつD_2(ただしD_2<D_1)
なる注入量のベリリウムイオンを注入して第2の傾斜型
pn接合を設ける工程を具備することを特徴とするIII
−V族半導体受光素子の製造方法。
A step of laminating a light absorption layer having a forbidden band width of at least E_g_1 and an avalanche multiplication layer having a forbidden band width of E_g_2 (however, E_g_2>E_g_1), and selectively forming a p^+n junction in the avalanche multiplication layer. In the method of manufacturing a semiconductor light-receiving device, the first graded pn junction is formed by implanting beryllium ions into the peripheral edge of the p^+n junction at an acceleration voltage of V_1 and an implantation amount of D_1. and V_2 (however, V_2<V_1) at the periphery of the first inclined p-n junction.
and D_2 (however, D_2<D_1)
III, characterized by comprising a step of implanting beryllium ions in an implantation amount to form a second graded pn junction.
- A method for manufacturing a group V semiconductor light-receiving element.
JP59223230A 1984-03-22 1984-10-24 Method for manufacturing group III-V semiconductor light receiving element Expired - Lifetime JPH06105795B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59223230A JPH06105795B2 (en) 1984-10-24 1984-10-24 Method for manufacturing group III-V semiconductor light receiving element
US06/713,669 US4651187A (en) 1984-03-22 1985-03-19 Avalanche photodiode
DE8585103299T DE3567128D1 (en) 1984-03-22 1985-03-21 Avalanche photodiode and its manufacturing method
CA000477076A CA1261450A (en) 1984-03-22 1985-03-21 Avalanche photodiode with double guard ring
EP85103299A EP0159544B1 (en) 1984-03-22 1985-03-21 Avalanche photodiode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223230A JPH06105795B2 (en) 1984-10-24 1984-10-24 Method for manufacturing group III-V semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPS61101085A true JPS61101085A (en) 1986-05-19
JPH06105795B2 JPH06105795B2 (en) 1994-12-21

Family

ID=16794829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223230A Expired - Lifetime JPH06105795B2 (en) 1984-03-22 1984-10-24 Method for manufacturing group III-V semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JPH06105795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797371A (en) * 1987-02-26 1989-01-10 Kabushiki Kaisha Toshiba Method for forming an impurity region in semiconductor devices by out-diffusion
JPS6414975A (en) * 1987-07-08 1989-01-19 Nec Corp Semiconductor photodetector
JPH036946A (en) * 1989-06-02 1991-01-14 Toho Gas Co Ltd Intelligent head end for broad band multi-channel lan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101278A (en) * 1978-01-26 1979-08-09 Nec Corp Manufacture for semiconductor device
JPS54102876A (en) * 1978-01-30 1979-08-13 Mitsubishi Electric Corp Manufacture for planer type semiconductor device
JPS5830164A (en) * 1981-08-17 1983-02-22 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and manufacture thereof
JPS58157177A (en) * 1982-03-15 1983-09-19 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101278A (en) * 1978-01-26 1979-08-09 Nec Corp Manufacture for semiconductor device
JPS54102876A (en) * 1978-01-30 1979-08-13 Mitsubishi Electric Corp Manufacture for planer type semiconductor device
JPS5830164A (en) * 1981-08-17 1983-02-22 Nippon Telegr & Teleph Corp <Ntt> Avalanche photodiode and manufacture thereof
JPS58157177A (en) * 1982-03-15 1983-09-19 Fujitsu Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797371A (en) * 1987-02-26 1989-01-10 Kabushiki Kaisha Toshiba Method for forming an impurity region in semiconductor devices by out-diffusion
JPS6414975A (en) * 1987-07-08 1989-01-19 Nec Corp Semiconductor photodetector
JPH036946A (en) * 1989-06-02 1991-01-14 Toho Gas Co Ltd Intelligent head end for broad band multi-channel lan

Also Published As

Publication number Publication date
JPH06105795B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4651187A (en) Avalanche photodiode
JPH0824199B2 (en) Manufacturing method of semiconductor light receiving element
JPS5854685A (en) Avalanche photodiode and manufacture thereof
JPS6058686A (en) Photodetector and method of producing same
JPS63955B2 (en)
JPS61101085A (en) Manufacture of group iii-v semiconductor light-receiving element
JPS60198786A (en) Semiconductor photo receiving element
JPS61191082A (en) Semiconductor light receiving element
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JP3055030B2 (en) Manufacturing method of avalanche photodiode
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
KR970006610B1 (en) Buried mesa avalanche photodiode and method of manufacturing the same
JP2766761B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS63198382A (en) Semiconductor photodetector and its manufacture
JP2002141547A (en) Semiconductor photodetector
JPS61267376A (en) Semiconductor device
JPH02296379A (en) Avalanche photodiode
JPH02246172A (en) Manufacture of photodetector
JP2001007378A (en) Semiconductor light receiving device, and manufacture thereof
JPS61204988A (en) Semiconductor light receiving element
JPS60173880A (en) Semiconductor photodetector and manufacture thereof
JPS59177977A (en) Semiconductor photo detector
JPH0362977A (en) Long wavelength avalanche photodiode
JP2995751B2 (en) Semiconductor light receiving element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term