JPS60173880A - Semiconductor photodetector and manufacture thereof - Google Patents

Semiconductor photodetector and manufacture thereof

Info

Publication number
JPS60173880A
JPS60173880A JP59029728A JP2972884A JPS60173880A JP S60173880 A JPS60173880 A JP S60173880A JP 59029728 A JP59029728 A JP 59029728A JP 2972884 A JP2972884 A JP 2972884A JP S60173880 A JPS60173880 A JP S60173880A
Authority
JP
Japan
Prior art keywords
layer
junction
light
avalanche
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59029728A
Other languages
Japanese (ja)
Inventor
Toshitaka Torikai
俊敬 鳥飼
Masaru Niwa
丹羽 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59029728A priority Critical patent/JPS60173880A/en
Publication of JPS60173880A publication Critical patent/JPS60173880A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Abstract

PURPOSE:To obtain the titled element showing the distribution of uniform sensitivity of a light receiving region and having lower noise by a method wherein a high concentration layer having the same conductivity type as that of an optical absorption layer and an avalanche multiplication layer is selectively provided between the light receiving region of a P-N junction and interface between the optical absorption layer and the avalanche multiplication layer at a distance of more than specific away from the position of the P-N junction. CONSTITUTION:The position of highest concentration of the high concentration layer 12 is 0.5mum or more away from the position of the P-N junction. For example, after an N-InP buffer layer 2, an N<-> InGaAs layer 3, and an N<-> InP layer 4a the first avalanche multiplication layer are successively grown on an N<+> InP substrate 1, Si ions are selectively implanted to the light receiving region. The layer 3 is formed into a thickness of 4mum at a carrier concentration of 3X10<15>cm<-3>, and the layer 4a to a thickness of 0.5mum at a carrier concentration of 3X10<15>cm<-3>. Thereafter, the second N<-> InP layer 4b are grown to 2.5mum at a carrier concentration of 3X10<15>cm<-3>; further, the P-N junction is formed by Mg ion implantation. The position of P-N junction at this time is about 1mum away from the position of highest concentration of the high concentration layer 12. Next, a guard ring 11 is formed by Be ion implantation.

Description

【発明の詳細な説明】 (1) 技術分野 本発明は半導体受光素子およびその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a semiconductor photodetector and a method for manufacturing the same.

(2)従来技術とその問題点 半導体受光素子の分野においては、低暗電流化、高受信
感度を実現するために禁制帯幅の狭い半導体層で光を吸
収させ、光吸収によって生じたキャリアの一方だけを禁
制帯幅の大きい半導体層へ注入してアバランシ増倍を生
じさせる構造が用いられている。その−例として、現在
光ファイバー通信用に開発の進められているInP/I
nGaAsへテロ構造を用いた半導体受光素子の断面図
を第1図に示す。n“−InP基板基板上にn −I 
n Pバラフッ層2、n −−I n Q、、4.r’
+ G a il’;1−Ji As /IJ 3、n
 ”−I n P J% 4 k lF次影形成た後、
熱拡散もしくはイオン注入によりp型導電領域5を設け
てpn接合を形成している。6は表面保護を兼ねた反射
防止膜で、7,8は各々p IItl電極、n側電極で
ある。かかる構造においてはt極7−8間に逆バイアス
電圧全印加し、窒乏層をInGaAs J脅3まで伸ば
すことによって禁制帯幅の狭いInGaAs J脅3で
光を吸収させ、光吸収によって発生した正孔キャリアを
禁制帯幅の大きいInP基板1内に設けたpn接合−ま
で輸送してアバランシ増倍を生じさせている。すなわち
禁制帯幅の大きいInP基板1で電圧降伏が支配される
ために、低暗電流が実現でき、従って低雑音でかつ島受
信感度がM侍できる。
(2) Prior art and its problems In the field of semiconductor photodetectors, in order to achieve low dark current and high receiving sensitivity, light is absorbed by a semiconductor layer with a narrow forbidden band, and carriers generated by light absorption are A structure is used in which only one side is injected into a semiconductor layer with a large forbidden band width to cause avalanche multiplication. As an example, InP/I, which is currently being developed for optical fiber communications,
FIG. 1 shows a cross-sectional view of a semiconductor light receiving element using an nGaAs heterostructure. n”-InP substrate n −I on the substrate
n P barrier layer 2, n --I n Q, 4. r'
+ Ga il'; 1-Ji As /IJ 3, n
”-I n P J % 4 k IF After the second shadow formation,
A p-type conductive region 5 is provided by thermal diffusion or ion implantation to form a pn junction. 6 is an antireflection film that also serves as surface protection, and 7 and 8 are a pIItl electrode and an n-side electrode, respectively. In such a structure, by applying a full reverse bias voltage between the t-poles 7 and 8 and extending the nitrogen depletion layer to the InGaAs layer 3, light is absorbed by the InGaAs layer 3, which has a narrow forbidden band width, and the light is generated by light absorption. Hole carriers are transported to a pn junction provided in the InP substrate 1 having a large forbidden band width, thereby causing avalanche multiplication. That is, since the voltage breakdown is dominated by the InP substrate 1 having a large forbidden band width, a low dark current can be realized, and therefore low noise and an island reception sensitivity of M can be achieved.

しかしながら、第1図に示した構造においては、pn接
合周辺領域9、あるいは表面に露出するpn接合周辺領
域10において電界集中による電圧降伏が生じるために
、均−増倍層Jli を示す良好な受光感度が得られ難
いという欠点を有しているGこれを克服するために、第
2図に示すように、In1)アバランシ層4 f n−
InP%%4’とn−I n P J脅40の2層に分
割しかつ、受光周辺部に傾斜型接合をイコするガードリ
ング11を設ける構造が用いられている。かかる第2図
の構造においては、受光領域のn−InPn種層におい
て優先的に電圧降下を生じさせ、ガードリング領域の降
伏電圧よ−りも小さい降伏電圧を期待するものである。
However, in the structure shown in FIG. 1, voltage breakdown occurs due to electric field concentration in the pn junction peripheral region 9 or the pn junction peripheral region 10 exposed on the surface, so that good light reception exhibiting the uniform multiplier layer Jli is caused. In order to overcome this drawback that it is difficult to obtain sensitivity, as shown in FIG.
A structure is used in which the device is divided into two layers, InP%%4' and n-InPJ layer 40, and a guard ring 11 is provided in the light receiving peripheral area to provide an inclined junction. In the structure shown in FIG. 2, a voltage drop is preferentially caused in the n-InPn seed layer in the light-receiving region, and a breakdown voltage smaller than that in the guard ring region is expected.

しかし、受光領域の降伏電圧とガードリング領域の降伏
電圧との差は10〜20V程度であシ、pn接合周辺部
の増倍全光分に抑制するには至っていない。更に、過剰
雑音指数は10倍の増倍率において8〜9d13であり
、充分低いとは答えない。
However, the difference between the breakdown voltage of the light-receiving region and the breakdown voltage of the guard ring region is only about 10 to 20 V, and it is not possible to suppress the total amount of light multiplied around the pn junction. Furthermore, the excess noise figure is 8 to 9d13 at a multiplication factor of 10, which is not considered sufficiently low.

(3)発明の目的 従って本発明の目的は、従来のかかる欠点を除き均一な
受光領域の感度分布全示しかつより低雑音の半導体受光
素子およびその製造方法を提供することである。
(3) Aim of the Invention Accordingly, an object of the present invention is to provide a semiconductor light-receiving element that eliminates the above-mentioned drawbacks of the conventional semiconductor light-receiving element, exhibits a uniform sensitivity distribution in the light-receiving area, and has lower noise, and a method for manufacturing the same.

(4)発明の構成 本発明は、前述のpn接合の受光領域でかつ光吸収層と
アバランシ増倍層との界面と、前記pn接合との中間に
光吸収層かつアバランシ増倍層と同じ導電型を有する高
濃度層が選択的に設けられていることを特徴とする半導
体受光素子であり、さらに該高濃度層の最高濃度位置が
前記pn接合位置から少なくとも0.5μm以上離れて
いることを特徴とする半導体受光素子である。さらに、
前記アバランシ増倍層を少なくとも2回以上に分けて形
成する工程を有し、かつ第1回目に形成する第1のアバ
ランシ増倍層の厚さが少なくとも高濃度層を形成する注
入イオンの投射飛程よりも厚くなるように第1のアバラ
ンシ増倍層を形成することを特徴とする上記半導体受光
素子の製造方法である。
(4) Structure of the Invention The present invention provides a light absorption layer and an avalanche multiplication layer having the same conductivity as the avalanche multiplication layer in the light receiving region of the pn junction and between the interface between the light absorption layer and the avalanche multiplication layer and the pn junction. A semiconductor light-receiving element characterized in that a high concentration layer having a mold is selectively provided, and the highest concentration position of the high concentration layer is at least 0.5 μm or more away from the pn junction position. This is a characteristic semiconductor light receiving element. moreover,
The step of forming the avalanche multiplication layer in at least two steps or more, and the projection flight of implanted ions such that the thickness of the first avalanche multiplication layer formed in the first step is at least that of a high concentration layer. The method for manufacturing the semiconductor light-receiving device is characterized in that the first avalanche multiplication layer is formed so as to be thicker than the thickness of the first avalanche multiplication layer.

(5)実施例 以下、本発明をInP/InGaAsヘテロ構造受光素
子の実施例について説明するが、他の半導体材料につい
ても全く同様の効果であることは容易に理解される。第
3図は本発明による実施例である0図中の1〜8の名称
は、第1図の従来構造の場合と同一である。】2は本発
明による選択的に受光領域に形成された高濃度層である
。該高濃度層は表面から数μm深い領域に位置するため
に、投射飛程が1μm以下であるイオン注入法で表面か
らイオンを打ち込んで形成することは困難であシ、従っ
て本発明の製造方法によって形成した。 n+−InP
基板1の上に、n−InPバッファ層2、n−InGa
AsN3、第1のアバランシ増倍層であるn−InP 
4aを順次成長した後、選択的に受光領域にSiイオン
を注入した。n−InGaAs層3は3×1o15CI
n−3キャリア濃度で4pm、 n”−InP/酋4 
aは3X1015α キャリア濃度で0.5μmの厚さ
に形成した。 S rイオンは] 50 kV 加速テ
1.5 X 1 o12.−2注入した。
(5) Example The present invention will be described below with reference to an example of an InP/InGaAs heterostructure light-receiving element, but it is easily understood that the same effect can be obtained with other semiconductor materials. FIG. 3 shows an embodiment according to the present invention. The names 1 to 8 in FIG. 0 are the same as in the conventional structure shown in FIG. 2 is a high concentration layer selectively formed in the light receiving area according to the present invention. Since the high concentration layer is located in a region several μm deep from the surface, it is difficult to form it by implanting ions from the surface using an ion implantation method with a projection range of 1 μm or less. Therefore, the manufacturing method of the present invention Formed by. n+-InP
On the substrate 1, an n-InP buffer layer 2, an n-InGa
AsN3, n-InP which is the first avalanche multiplication layer
After sequentially growing 4a, Si ions were selectively implanted into the light receiving region. n-InGaAs layer 3 is 3×1o15CI
n-3 carrier concentration of 4 pm, n”-InP/4
A was formed to have a carrier concentration of 3×10 15 α and a thickness of 0.5 μm. Sr ions are] 50 kV acceleration te 1.5 X 1 o 12. -2 injected.

このときのSiイオンの投射飛程は0.13μmであり
、n−InPn種層はそれ以上の厚さく0.5μm)に
設定している。しかる後、第2回目のn−InPn種層
を3X10 cm キャリア濃度で2.5μm成長し、
さらにMgイオン’e150kV加速でI X 10 
”cm−2注入してpn接合を形成した。このときのp
n接合位置は高濃度層12の最高濃度位置から約1μm
離してい、る。次いで、Beイオン’1z100kV加
速で5×+013Cn1−2注入してガードリング12
を形成した。
The projection range of the Si ions at this time is 0.13 μm, and the thickness of the n-InPn seed layer is set to be greater than that (0.5 μm). After that, a second n-InPn seed layer was grown to 2.5 μm with a carrier concentration of 3×10 cm.
Furthermore, Mg ion 'e150kV acceleration
"cm-2 was implanted to form a pn junction. At this time, p
The n-junction position is approximately 1 μm from the highest concentration position of the high concentration layer 12.
I'm away from you. Next, 5×+013Cn1-2 was implanted with Be ion '1z accelerated at 100kV to form the guard ring 12.
was formed.

(6)発明の作用効果 このようにして作製された本発明による受光素子は、受
光領域の降伏電圧が約95Vであり、ガードリングの降
伏電圧が約150Vであった。 すなわち従来の降伏電
圧差10〜20Vよりも大きい降伏電圧差が得られ、均
一な増倍光感度分布を示した。さらに、本発明による素
子の過剰雑音指数は約7.3dBであり、従来の8〜9
dBよりも低いことが明らかであった。この理由は、高
濃度層をpn接合から離して形成することによってpn
接合部の最高電界強度を従来よシも低くすることができ
は、受光領域のpn接合からInk−InGaAs界面
までの距離を2μmにして、S1注入した高濃度層の付
層がInGaAs層中にあるときは、空乏層幅が低下し
て充分な量子効率を得ることができない。また、高濃度
層がpn接合に近づくと雑音指数が従来よシも高くなる
0すなわち、高濃度層がpn接合から0.5μm以上離
れてInP層中にあるとき従来よシも低雑音になること
が本発明者によって確認された。高濃度層をpn接合位
階から0.5μm以上離せば、従来よりも低雑音になる
ととは注入量、キャリア濃度等の条件を変化させた場合
についても適用できた0以上、本発明の半導体受光素子
によれに:、低雑音でかつ、均一な増倍光感度分布を得
ることができるという利点ヲ有する。
(6) Effects of the Invention In the light-receiving element of the present invention manufactured in this way, the breakdown voltage of the light-receiving region was about 95V, and the breakdown voltage of the guard ring was about 150V. That is, a breakdown voltage difference larger than the conventional breakdown voltage difference of 10 to 20 V was obtained, and a uniform multiplication photosensitivity distribution was exhibited. Furthermore, the excess noise figure of the device according to the present invention is about 7.3 dB, compared to 8 to 9 dB of the conventional device.
It was clear that it was lower than dB. The reason for this is that by forming the high concentration layer away from the pn junction,
The maximum electric field strength at the junction can be made lower than before, by setting the distance from the pn junction in the light-receiving region to the Ink-InGaAs interface to 2 μm, so that the high concentration layer injected with S1 is added to the InGaAs layer. In some cases, the depletion layer width decreases and sufficient quantum efficiency cannot be obtained. In addition, when the high concentration layer approaches the pn junction, the noise figure becomes higher than before. In other words, when the high concentration layer is located in the InP layer at a distance of 0.5 μm or more from the pn junction, the noise becomes lower than before. This was confirmed by the inventor. If the high concentration layer is separated by 0.5 μm or more from the pn junction level, the noise will be lower than that of the conventional one. Depending on the device, it has the advantage of being able to obtain low noise and a uniform multiplication light sensitivity distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の半導体素子の積層構造層の位置
を変えたときの降伏電圧、空乏層幅、過剰雑音指数を示
す図である。第1図から第3図において、lは半導体基
板、2は1と同種の半導体バッフγ層、3は禁制帯幅の
小さい光吸収層、4は禁制帯幅の大きいアバランシ層、
4’、4’t4 a。 4bは4と同一の半導体層、5は4層内に形成したpn
接合、6は表面保護膜、7はp側側L8はn Ill!
l電極、9はpn接合周辺領域lOは表面に露出するp
n接合周辺部、11はカードリング、12は高濃度不純
物イオン注入層である〇 代理人弁理士 内原 7へ オ 1 口 71−2 図 ′173 図
FIGS. 1 and 2 are diagrams showing the breakdown voltage, depletion layer width, and excess noise figure when the positions of the laminated structure layers of a conventional semiconductor device are changed. 1 to 3, l is a semiconductor substrate, 2 is a semiconductor buffer γ layer of the same type as 1, 3 is a light absorption layer with a small forbidden band width, 4 is an avalanche layer with a large forbidden band width,
4', 4't4 a. 4b is the same semiconductor layer as 4, and 5 is a pn formed within the 4th layer.
Junction, 6 is surface protective film, 7 is p side L8 is n Ill!
9 is a pn junction peripheral region IO is a p electrode exposed on the surface.
The peripheral part of the n-junction, 11 is a card ring, and 12 is a high-concentration impurity ion implantation layer. 〇Representative Patent Attorney Uchihara 7 Heo 1 Kuchi 71-2 Figure '173 Figure

Claims (1)

【特許請求の範囲】 1 少なくともE なる禁制帯幅を有する光吸収1 層と稲、(ただし8g2 > Dg、 )なる禁制帯幅
を有するアバランシ増倍層を有し、該アバランシ増倍層
中に選択的にpn接合を形成した半導体受光素子におい
て、前記pn接合の受光領域でかつ、光吸収層とアバラ
ンシ増倍層との界面と前記pn接合との中間に光吸収層
かつアバランシ増倍層と同じ導電ffi’r有する高濃
度層が前記pn接合位置から少なくとも05μn〕以上
離れて選択的に設けられていることを特徴とする半導体
受光素子。 ” Eg+なる禁制帯幅を有する光吸収層を形成する工
程と、この光吸収層上にE (E>E )g2 g2 
g+ なる禁制帯幅を有するアバランシ増倍層を形成する工程
と、アバ2ンシ増倍層中にpn接合を形成する工程とを
少なくとも具備する半導体受光素子の製造方法において
、前記アバランシ増倍層を、少なくとも2回以上に分け
て形成する工程と、第1回目のアバランシ増倍層形成後
に、この第1回目に形成されたアバランシ増倍層にアバ
ランシ増倍層と同じ導布、型の高濃度層を選択的に形成
する工程とを有することを特徴とする半導体受光素子の
製造方法。
[Scope of Claims] 1 A light absorbing layer having a forbidden band width of at least E and an avalanche multiplication layer having a forbidden band width of (where 8g2 >Dg); In a semiconductor light-receiving element in which a p-n junction is selectively formed, a light-absorbing layer and an avalanche multiplier layer are provided in the light-receiving region of the p-n junction and between the interface between the light-absorbing layer and the avalanche multiplier layer and the p-n junction. 1. A semiconductor light-receiving device characterized in that a high concentration layer having the same conductivity ffi'r is selectively provided at a distance of at least 05 μn from the pn junction position. ” A step of forming a light absorption layer having a forbidden band width of Eg+, and a step of forming a light absorption layer having a forbidden band width of E
A method for manufacturing a semiconductor light-receiving device, which comprises at least the steps of forming an avalanche multiplication layer having a forbidden band width of g+, and forming a pn junction in the avalanche multiplication layer. , a step of forming the avalanche multiplier layer in at least two or more steps, and after forming the avalanche multiplier layer in the first step, the avalanche multiplier layer formed in the first step is coated with a high concentration of the same conductive fabric and mold as the avalanche multiplier layer. 1. A method for manufacturing a semiconductor light-receiving element, comprising a step of selectively forming layers.
JP59029728A 1984-02-20 1984-02-20 Semiconductor photodetector and manufacture thereof Pending JPS60173880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59029728A JPS60173880A (en) 1984-02-20 1984-02-20 Semiconductor photodetector and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59029728A JPS60173880A (en) 1984-02-20 1984-02-20 Semiconductor photodetector and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60173880A true JPS60173880A (en) 1985-09-07

Family

ID=12284159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59029728A Pending JPS60173880A (en) 1984-02-20 1984-02-20 Semiconductor photodetector and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60173880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285477A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Photosemiconductor device
FR2618257A1 (en) * 1987-07-17 1989-01-20 Rca Inc PHOTODIODE AT AVALANCHE.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198667A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Light receiving element
JPS58206178A (en) * 1982-05-27 1983-12-01 Fujitsu Ltd Manufacture of semiconductor light-receiving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198667A (en) * 1981-06-01 1982-12-06 Fujitsu Ltd Light receiving element
JPS58206178A (en) * 1982-05-27 1983-12-01 Fujitsu Ltd Manufacture of semiconductor light-receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285477A (en) * 1985-10-09 1987-04-18 Hitachi Ltd Photosemiconductor device
FR2618257A1 (en) * 1987-07-17 1989-01-20 Rca Inc PHOTODIODE AT AVALANCHE.

Similar Documents

Publication Publication Date Title
US4651187A (en) Avalanche photodiode
US3508126A (en) Semiconductor photodiode with p-n junction spaced from heterojunction
EP0156156A1 (en) Avalanche photodiodes
US7187013B2 (en) Avalanche photodiode
JPH05160426A (en) Semiconductor light receiving element
CA2050435C (en) Photo-sensing device
US4974061A (en) Planar type heterostructure avalanche photodiode
US4816890A (en) Optoelectronic device
JPS6222546B2 (en)
JPS60173880A (en) Semiconductor photodetector and manufacture thereof
JPH0513798A (en) Semiconductor photodetection device
JPS61170079A (en) Semiconductor light-receiving element
JP2763352B2 (en) Semiconductor light receiving element
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JPS60198786A (en) Semiconductor photo receiving element
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPS61101084A (en) Manufacture of compound semiconductor light-receiving element
JPS63142683A (en) Avalanche photodiode
JP3055030B2 (en) Manufacturing method of avalanche photodiode
JPS61101085A (en) Manufacture of group iii-v semiconductor light-receiving element
JPS59136980A (en) Semiconductor photo detector
JPH0196968A (en) Infrared ray detector
JPH02228080A (en) Semiconductor photodetector
JPH041740Y2 (en)
JPS59177977A (en) Semiconductor photo detector