JPH09223805A - Semiconductor waveguide type light receiver - Google Patents
Semiconductor waveguide type light receiverInfo
- Publication number
- JPH09223805A JPH09223805A JP8029154A JP2915496A JPH09223805A JP H09223805 A JPH09223805 A JP H09223805A JP 8029154 A JP8029154 A JP 8029154A JP 2915496 A JP2915496 A JP 2915496A JP H09223805 A JPH09223805 A JP H09223805A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- semiconductor
- light
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Light Receiving Elements (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体内にPIN
構造を有する半導体受光素子に係り、特に不純物拡散に
より形成した半導体導波路型受光器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a semiconductor light receiving element having a structure, and particularly to a semiconductor waveguide type light receiver formed by impurity diffusion.
【0002】[0002]
【従来の技術】図3は、従来の半導体導波路型受光器を
例示する。すなわち301は半絶縁性InP基板、30
2は厚さ0.6μmでバンドギャップ波長1.3μmの
n型InGaAsP層、303は厚さ0.6μmのn型
低キャリア濃度InGaAs光吸収層、304は厚さ
0.6μmでバンドギャップ波長1.3μmのp型In
GaAsP層、305は厚さ0.5μmのp型InP
層、306はn型オーミック電極、307はp型オーミ
ック電極である。(K.Kato他、「A high-efficiency50
GHz InGaAs ultimode waveguide photodetector」IEEE
Lournal of QuantumElectronics 第28巻第12号27
28頁1992年)。この図3の例では、波長1.55
μmの光を劈開端面より入射させ、各層302,30
3,304,305からなる光導波路内を導波させる。
このとき、光は、光吸収層303にて吸収され電子とホ
ールに変換され、いわゆる光電変換が行なわれる。この
光電変換によって生じた電子及びホールは、電極30
6,307間すなわちpn接合に印加された逆バイアス
電圧によって生じる電界にて、それぞれn型およびp型
の半導体層側に走行するので、信号電流として素子外部
に取り出されることになる。2. Description of the Related Art FIG. 3 illustrates a conventional semiconductor waveguide type optical receiver. That is, 301 is a semi-insulating InP substrate, 30
2 is an n-type InGaAsP layer having a thickness of 0.6 μm and a bandgap wavelength of 1.3 μm, 303 is an n-type low carrier concentration InGaAs light absorption layer having a thickness of 0.6 μm, 304 is a thickness of 0.6 μm and a bandgap wavelength is 1 0.3 μm p-type In
GaAsP layer, 305 is 0.5 μm thick p-type InP
A layer, 306 is an n-type ohmic electrode, and 307 is a p-type ohmic electrode. (K.Kato et al., "A high-efficiency 50
GHz InGaAs ultimode waveguide photo detector '' IEEE
Lournal of Quantum Electronics Vol. 28, No. 12, 27
28, 1992). In the example of FIG. 3, a wavelength of 1.55
Light of μm is made incident from the cleaved end face, and each layer 302, 30
The inside of the optical waveguide consisting of 3, 304 and 305 is guided.
At this time, light is absorbed by the light absorption layer 303 and converted into electrons and holes, and so-called photoelectric conversion is performed. Electrons and holes generated by this photoelectric conversion are generated by the electrode 30.
6, 307, that is, in the electric field generated by the reverse bias voltage applied to the pn junction, they travel to the n-type and p-type semiconductor layer sides, respectively, and are taken out as a signal current to the outside of the element.
【0003】[0003]
【発明が解決しようとする課題】上述のような半導体導
波路型受光器にて高周波光信号を受光しようとする場
合、信号の周波数に十分応答するように半導体導波路型
受光素子のCR時定数を十分小さくする必要がある。具
体的には容量Cを小さくする必要がある。一例として5
0Ω系で5GHzの光信号を受信する場合には、0.6
PF以下の容量としなければならない、等である。今、
吸収層303の厚さが1μm程度である通常の半導体導
波路型受光素子の場合、容量を前述のように0.6PF
以下にするためにはpn接合面積を4000μm2 以下
に抑える必要がある。このため、図3に示すように半導
体層をpn接合面以下まで掘り下げた構造としいわゆる
ハイメサ状に加工して余分な容量を除去し、4000μ
m2 以下の面積としている。したがって、従来の半導体
導波路型受光器の製造には、ハイメサ状の加工やハイメ
サ状の電極形成などが必要となり、工程数が多く難易度
の高い技術が必要となる。When attempting to receive a high-frequency optical signal with the semiconductor waveguide type photodetector as described above, the CR time constant of the semiconductor waveguide type photodetector is made to sufficiently respond to the frequency of the signal. Needs to be small enough. Specifically, it is necessary to reduce the capacitance C. 5 as an example
When receiving a 5 GHz optical signal in the 0Ω system, 0.6
The capacity must be less than or equal to PF. now,
In the case of an ordinary semiconductor waveguide type light receiving element in which the thickness of the absorption layer 303 is about 1 μm, the capacitance is 0.6 PF as described above.
In order to make it below, it is necessary to suppress the pn junction area to 4000 μm 2 or less. Therefore, as shown in FIG. 3, the semiconductor layer is dug down to the pn junction surface or less so that it is processed into a so-called high-mesa shape to remove excess capacitance, and 4000 μm is removed.
The area is less than or equal to m 2 . Therefore, manufacturing of a conventional semiconductor waveguide type optical receiver requires high-mesa processing, high-mesa electrode formation, and the like, and requires a technique with a large number of steps and high difficulty.
【0004】本発明は、上述の問題に鑑み、工程数が多
く難易度の高いハイメサに係る構造とせず、構造が簡単
で低コストの半導体導波路型受光器の提供を目的とす
る。In view of the above problems, it is an object of the present invention to provide a semiconductor waveguide type photodetector having a simple structure and a low cost, not a structure related to a high mesa having a large number of steps and a high degree of difficulty.
【0005】[0005]
【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項とする。 (1)第1の半導体層と、この第1の半導体層よりも光
の吸収端波長が長く屈折率の大きな第2の半導体層と、
この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、を有する半導体導波路型受光
器において、上記第3の半導体層の一部に表面から所定
深さにわたり他の領域とは異なる導電形の拡散領域を形
成し、この拡散領域及び上記第2の半導体層の一面を深
さ方向に光入射端として露出させた、ことを特徴とす
る。 (2)半導体基板と、この半導体基板よりも光の吸収端
波長が長く屈折率の大きな第2の半導体層と、この第2
の半導体層より光の吸収端波長が短く屈折率の小さな第
3の半導体層と、を有する半導体導波路型受光器におい
て、上記第3の半導体層の一部に表面から所定深さにわ
たり他の領域とは異なる導電形の拡散領域を形成し、こ
の拡散領域及び上記第2の半導体層の一面を深さ方向に
光入射端として露出させた、ことを特徴とする。 (3)上記(1)又は(2)において、拡散領域は光入
射端から光の進行方向に沿って次第に拡がるように形成
したことを特徴とする。 (4)上記(1)又は(2)において、第3の半導体層
表面からの拡散深さは、第2の半導体層の一部にまで達
することを特徴とする。The present invention which achieves the above-mentioned object is defined as the following invention. (1) a first semiconductor layer, and a second semiconductor layer having a longer light absorption edge wavelength and a larger refractive index than the first semiconductor layer,
In a semiconductor waveguide type optical receiver having a third semiconductor layer having a shorter absorption edge wavelength of light and a smaller refractive index than the second semiconductor layer, a part of the third semiconductor layer has a predetermined depth from the surface. A diffusion region having a conductivity type different from that of the other regions is formed over the entire surface, and the diffusion region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction. (2) A semiconductor substrate, a second semiconductor layer having a longer absorption edge wavelength of light and a larger refractive index than the semiconductor substrate, and the second semiconductor layer.
A third semiconductor layer having a shorter absorption edge wavelength of light and a smaller refractive index than that of the semiconductor layer, a part of the third semiconductor layer is covered with a third semiconductor layer over a predetermined depth from the surface. A diffusion region having a conductivity type different from that of the region is formed, and the diffusion region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction. (3) In the above (1) or (2), the diffusion region is formed so as to gradually expand from the light incident end along the traveling direction of light. (4) In the above (1) or (2), the diffusion depth from the surface of the third semiconductor layer reaches a part of the second semiconductor layer.
【0006】不純物拡散により形成されたpn接合にて
スラブ型の光導波路を形成しているので、接合容量を低
減でき、しかも製造に当り簡単かつ低コストになる。Since the slab type optical waveguide is formed by the pn junction formed by the impurity diffusion, the junction capacitance can be reduced and the manufacturing is simple and the cost is low.
【0007】[0007]
【発明の実施の形態】ここで、図1,図2を参照して発
明の実施の形態につき述べる。pn接合の不純物拡散に
よりその面積を限定してやれば接合容量は低減できる。
本発明はこの思想を前提として導電路型受光器を得るも
のである。図1において、101は半絶縁性InP基
板、102は厚さ2μmでバンドギャップ波長1.2μ
mのn型InGaAsP層、103は厚さ3μmでバン
ドギャップ波長1.4μmのn型低キャリア濃度InG
aAsP光吸収層、104は厚さ2μmでバンドギャッ
プ波長1.2μmのn型低キャリア濃度InGaAsP
層である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the invention will now be described with reference to FIGS. The junction capacitance can be reduced by limiting the area of the pn junction by diffusing impurities.
The present invention is based on this idea to obtain a conductive path type optical receiver. In FIG. 1, 101 is a semi-insulating InP substrate, 102 is a thickness of 2 μm, and the bandgap wavelength is 1.2 μm.
m is an n-type InGaAsP layer, 103 is a 3 μm thick n-type low carrier concentration InG having a band gap wavelength of 1.4 μm.
aAsP light absorption layer 104, n-type low carrier concentration InGaAsP having a thickness of 2 μm and a band gap wavelength of 1.2 μm
It is a layer.
【0008】この層104には、Zn拡散領域105が
部分的に形成されている。この領域は接合容量が一定値
以下例えば前述の4000μm2 以下となる面積に形成
され接合容量が低減される。この場合、Zn拡散として
はその拡散部分を限定して行なうことは容易にできる。
また、Zn拡散領域105は一例として光入射端にて2
0μm、奥行き100μm、奥幅50μmに形成され、
導波光の広がりに応じて徐々に光の進行方向に沿って広
げてある。光の変換効率が極めて良好となることによ
る。更に、Zn拡散領域105の深さは、表面(上面)
より3μmとしてn型層104の厚さ2μm以上で吸収
層103にも一部拡散する深さとなっている。この拡散
の深さは好適な値があり、光吸収にて生じた電子やホー
ルが深過ぎる場合速度が速くなって応答悪くなり、また
浅過ぎる場合接合面までの距離が長過ぎるので、これら
を勘案して決定される。製造に当っては、拡散領域端面
より光を入射させるいわゆるスラブ型導波路であるた
め、層102,103,104を含めた基板101を劈
開し、又はエッチングすることになるが、この場合の入
射端面、殊に吸収層103やZn拡散領域105端面の
状態としては光入射にとり良好である。なお、上述では
Zn拡散を述べたが、Be拡散等他の物質の拡散も当て
はめることができる。図において、106はn型オーミ
ック電極、107はp型オーミック電極である。A Zn diffusion region 105 is partially formed in this layer 104. This region is formed in an area where the junction capacitance is a certain value or less, for example, 4000 μm 2 or less, and the junction capacitance is reduced. In this case, Zn diffusion can be easily performed by limiting the diffusion portion.
Further, the Zn diffusion region 105 is, for example, 2 at the light incident end.
0 μm, depth 100 μm, depth 50 μm,
The light is gradually expanded along the traveling direction of the light according to the spread of the guided light. This is because the light conversion efficiency becomes extremely good. Further, the depth of the Zn diffusion region 105 is the surface (upper surface).
Therefore, when the thickness of the n-type layer 104 is 2 μm or more, the depth is such that it partially diffuses into the absorption layer 103. There is a suitable value for the depth of this diffusion, and if the electrons and holes generated by light absorption are too deep, the speed increases and the response becomes poor, and if it is too shallow, the distance to the junction surface is too long. It is decided in consideration. In manufacturing, since it is a so-called slab type waveguide in which light is incident from the end face of the diffusion region, the substrate 101 including the layers 102, 103 and 104 is cleaved or etched. The state of the end face, particularly the end face of the absorption layer 103 and the Zn diffusion region 105, is good for light incidence. Although Zn diffusion has been described above, diffusion of other substances such as Be diffusion can also be applied. In the figure, 106 is an n-type ohmic electrode and 107 is a p-type ohmic electrode.
【0009】図2は、第2例の構造を示す。図2におい
て、201は半絶縁性InP基板、203は厚さ3μm
でバンドギャップ波長1.4μmのn型低キャリア濃度
InGaAsP光吸収層、204は厚さ2μmでバンド
ギャップ波長1.2μmのn型低キャリア濃度InGa
AsP層、205は図1と同様の深さ3μm、長さ10
0μmのZn拡散領域で幅は光入射端で20μmであ
り、光の進行方向に沿って徐々に50μmまで広がって
いる。206はn型オーミック電極、207はp型オー
ミック電極である。FIG. 2 shows the structure of the second example. In FIG. 2, 201 is a semi-insulating InP substrate, and 203 is a thickness of 3 μm.
And an n-type low carrier concentration InGaAsP light absorption layer having a bandgap wavelength of 1.4 μm, and an n-type low carrier concentration InGa 204 having a bandgap wavelength of 1.2 μm and a thickness of 2 μm.
AsP layer, 205 has a depth of 3 μm and a length of 10 as in FIG.
The width of the Zn diffusion region of 0 μm is 20 μm at the light incident end, and gradually widens to 50 μm along the light traveling direction. 206 is an n-type ohmic electrode and 207 is a p-type ohmic electrode.
【0010】図1及び図2に示す半導体導波路型受光素
子は吸収層103及び203をコア層とする光導波路構
造であり、入射光の広がりに応じて拡散領域が広がって
おり、波長1.3μmの光はすべてpn接合領域で吸収
されて光信号として取り出すことができる。ちなみに、
本例でのpn接合面積はZn拡散面積に等しく3500
μm2 となって5GHz程度の光信号の受信が十分可能
となる。また、本例では半導体基板として半絶縁性もし
くは導電性いずれの基板を用いても同様の効果を期待で
きる。また、一方の電極を半導体基板の裏面に形成して
も同様の効果が期待できる。The semiconductor waveguide type light receiving element shown in FIGS. 1 and 2 has an optical waveguide structure in which the absorption layers 103 and 203 are used as core layers, and the diffusion region is widened according to the spread of incident light. All the light of 3 μm is absorbed in the pn junction region and can be extracted as an optical signal. By the way,
The pn junction area in this example is equal to the Zn diffusion area and is 3500
It becomes μm 2 and it becomes possible to sufficiently receive an optical signal of about 5 GHz. In this example, the same effect can be expected even if a semi-insulating or conductive substrate is used as the semiconductor substrate. Further, the same effect can be expected by forming one electrode on the back surface of the semiconductor substrate.
【0011】[0011]
【発明の効果】以上説明したように、本発明によれば、
半導体導波路型受光素子のpn接合を不純物拡散により
形成するため、ハイメサ加工をしなくても接合容量を低
減することができ、構造が簡略で低コストな半導体導波
路型受光器を実現することができる。As described above, according to the present invention,
Since the pn junction of the semiconductor waveguide type light receiving element is formed by impurity diffusion, the junction capacitance can be reduced without high mesa processing, and a semiconductor waveguide type optical receiver having a simple structure and low cost can be realized. You can
【図1】本発明の実施の形態の一例を示す構造図。FIG. 1 is a structural diagram showing an example of an embodiment of the present invention.
【図2】本発明の実施の形態の他の例を示す構造図。FIG. 2 is a structural diagram showing another example of the embodiment of the present invention.
【図3】従来例の構造図。FIG. 3 is a structural view of a conventional example.
101,201 InP基板 102 n型InGaAsP層 103,203 光吸収層 104,204 n型InGaAsP層 105,205 拡散領域 101, 201 InP substrate 102 n-type InGaAsP layer 103, 203 Light absorption layer 104, 204 n-type InGaAsP layer 105, 205 Diffusion region
Claims (4)
の大きな第2の半導体層と、 この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、 を有する半導体導波路型受光器において、 上記第3の半導体層の一部に表面から所定深さにわたり
他の領域とは異なる導電形の拡散領域を形成し、 この拡散領域及び上記第2の半導体層の一面を深さ方向
に光入射端として露出させた、 ことを特徴とする半導体導波路型受光器。1. A first semiconductor layer, a second semiconductor layer having a longer light absorption edge wavelength than that of the first semiconductor layer and a large refractive index, and a light absorption edge wavelength of light from this second semiconductor layer. A third semiconductor layer having a short length and a small refractive index, and a diffusion region having a conductivity type different from other regions over a predetermined depth from the surface in a part of the third semiconductor layer. And the one surface of the second semiconductor layer is exposed as a light incident end in the depth direction.
きな第2の半導体層と、 この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、 を有する半導体導波路型受光器において、 上記第3の半導体層の一部に表面から所定深さにわたり
他の領域とは異なる導電形の拡散領域を形成し、 この拡散領域及び上記第2の半導体層の一面を深さ方向
に光入射端として露出させた、 ことを特徴とする半導体導波路型受光器。2. A semiconductor substrate, a second semiconductor layer having a longer absorption edge wavelength of light and a larger refractive index than this semiconductor substrate, and a shorter absorption edge wavelength of light and a smaller refractive index than this second semiconductor layer. In a semiconductor waveguide type optical receiver having a third semiconductor layer, a diffusion region having a conductivity type different from that of other regions is formed in a part of the third semiconductor layer from a surface to a predetermined depth. A semiconductor waveguide type optical receiver characterized in that a region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction.
沿って次第に拡がるように形成したことを特徴とする請
求項1又は2記載の半導体導波路型受光器。3. The semiconductor waveguide type photodetector according to claim 1, wherein the diffusion region is formed so as to gradually expand from the light incident end along the light traveling direction.
第2の半導体層の一部にまで達することを特徴とする請
求項1又は2記載の半導体導波路型受光器。4. The diffusion depth from the surface of the third semiconductor layer is
The semiconductor waveguide type optical receiver according to claim 1 or 2, which reaches a part of the second semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02915496A JP3276836B2 (en) | 1996-02-16 | 1996-02-16 | Semiconductor waveguide receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02915496A JP3276836B2 (en) | 1996-02-16 | 1996-02-16 | Semiconductor waveguide receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09223805A true JPH09223805A (en) | 1997-08-26 |
JP3276836B2 JP3276836B2 (en) | 2002-04-22 |
Family
ID=12268356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02915496A Expired - Lifetime JP3276836B2 (en) | 1996-02-16 | 1996-02-16 | Semiconductor waveguide receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3276836B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967661A2 (en) * | 1998-05-22 | 1999-12-29 | Lucent Technologies Inc. | Edge receptive photodetector devices |
JP2001189468A (en) * | 2000-01-05 | 2001-07-10 | Sumitomo Electric Ind Ltd | Optical module |
JP2001223369A (en) * | 2000-02-09 | 2001-08-17 | Opnext Japan Inc | End face incident waveguide type semiconductor photodetector and light receiving module using the same |
JP2009224371A (en) * | 2008-03-13 | 2009-10-01 | Nec Corp | End face incident type light receiving element, and optical coupling method and optical coupling structure thereof |
JP2012199373A (en) * | 2011-03-22 | 2012-10-18 | Fujitsu Ltd | Light receiving device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5646923B2 (en) | 2010-09-03 | 2014-12-24 | 矢崎総業株式会社 | Vehicle display device and vehicle display system |
-
1996
- 1996-02-16 JP JP02915496A patent/JP3276836B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967661A2 (en) * | 1998-05-22 | 1999-12-29 | Lucent Technologies Inc. | Edge receptive photodetector devices |
EP0967661A3 (en) * | 1998-05-22 | 2000-04-26 | Lucent Technologies Inc. | Edge receptive photodetector devices |
JP2001189468A (en) * | 2000-01-05 | 2001-07-10 | Sumitomo Electric Ind Ltd | Optical module |
JP2001223369A (en) * | 2000-02-09 | 2001-08-17 | Opnext Japan Inc | End face incident waveguide type semiconductor photodetector and light receiving module using the same |
JP2009224371A (en) * | 2008-03-13 | 2009-10-01 | Nec Corp | End face incident type light receiving element, and optical coupling method and optical coupling structure thereof |
JP2012199373A (en) * | 2011-03-22 | 2012-10-18 | Fujitsu Ltd | Light receiving device |
Also Published As
Publication number | Publication date |
---|---|
JP3276836B2 (en) | 2002-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3141847B2 (en) | Avalanche photodiode | |
JP2748914B2 (en) | Semiconductor device for photodetection | |
JPH09223805A (en) | Semiconductor waveguide type light receiver | |
JPH09283786A (en) | Waveguide-type semiconductor light-receiving element and its manufacture method | |
JP2633234B2 (en) | Optical semiconductor device | |
JP3138199B2 (en) | Semiconductor waveguide type light receiving element and method of manufacturing the same | |
JP3708758B2 (en) | Semiconductor photo detector | |
JP3739273B2 (en) | Semiconductor photodetector | |
JP3224192B2 (en) | Semiconductor waveguide receiver | |
JP3030394B2 (en) | Semiconductor light receiving element | |
JPH0272679A (en) | Semiconductor photodetector having optical waveguide | |
JP4284781B2 (en) | MSM type photodiode | |
JP2742358B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
JP2711055B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
JP2711052B2 (en) | Semiconductor waveguide photodetector | |
JP3247599B2 (en) | Semiconductor light receiving element and method of manufacturing the same | |
JPH0437591B2 (en) | ||
JP2766761B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
JP2685703B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
JP2005086028A (en) | Semiconductor light receiver | |
JPS6130085A (en) | Photoconductivity detecting element | |
JP3538061B2 (en) | Semiconductor light receiving element and method of manufacturing the same | |
JP2991555B2 (en) | Semiconductor light receiving element | |
JPH09153636A (en) | Semiconductor photo detector | |
JPH02253666A (en) | Semiconductor photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20011002 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090208 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100208 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |