JPH09223805A - Semiconductor waveguide type light receiver - Google Patents

Semiconductor waveguide type light receiver

Info

Publication number
JPH09223805A
JPH09223805A JP8029154A JP2915496A JPH09223805A JP H09223805 A JPH09223805 A JP H09223805A JP 8029154 A JP8029154 A JP 8029154A JP 2915496 A JP2915496 A JP 2915496A JP H09223805 A JPH09223805 A JP H09223805A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
light
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8029154A
Other languages
Japanese (ja)
Other versions
JP3276836B2 (en
Inventor
Kazutoshi Kato
和利 加藤
Masahiro Yuda
正宏 湯田
Atsuo Koumae
篤郎 幸前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP02915496A priority Critical patent/JP3276836B2/en
Publication of JPH09223805A publication Critical patent/JPH09223805A/en
Application granted granted Critical
Publication of JP3276836B2 publication Critical patent/JP3276836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the structure of a light receiver and reduce its cost, by providing in it first to third semiconductor layers to form in a portion of the third semiconductor layer a diffusion region ranging from its surface to a predetermined depth place and having a different conduction type from the first to third semiconductor layers, and by exposing to the outside as its light incidence end the extending one-surfaces of both the diffusion region and the second semiconductor layer in its depth direction. SOLUTION: On a semi-insulation InP substrate 101, an n-type InGaAsP layer 102 of a first semiconductor layer, an n-type InGaAsP light absorbing layer 103 (absorption layer) of a second semiconductor layer with a longer absorption end wavelength and a larger refractivity than the first semiconductor layer, and an n-type InGaAsP layer 104 (n type layer) of a third semiconductor layer with a shorter absorption end wavelength and a smaller refractivity than the absorption layer 103 are provided. In the n-type layer 104, a Zn diffusion region 105 with a larger thickness than the n-type layer 104 is also diffused partially into the absorption layer 103. exposing the light incidence end of a light receiver to the outside. Also, n-and p-type electrodes 106, 107 are formed respectively on the n-type layer 104 and Zn diffusion region 105.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体内にPIN
構造を有する半導体受光素子に係り、特に不純物拡散に
より形成した半導体導波路型受光器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a semiconductor light receiving element having a structure, and particularly to a semiconductor waveguide type light receiver formed by impurity diffusion.

【0002】[0002]

【従来の技術】図3は、従来の半導体導波路型受光器を
例示する。すなわち301は半絶縁性InP基板、30
2は厚さ0.6μmでバンドギャップ波長1.3μmの
n型InGaAsP層、303は厚さ0.6μmのn型
低キャリア濃度InGaAs光吸収層、304は厚さ
0.6μmでバンドギャップ波長1.3μmのp型In
GaAsP層、305は厚さ0.5μmのp型InP
層、306はn型オーミック電極、307はp型オーミ
ック電極である。(K.Kato他、「A high-efficiency50
GHz InGaAs ultimode waveguide photodetector」IEEE
Lournal of QuantumElectronics 第28巻第12号27
28頁1992年)。この図3の例では、波長1.55
μmの光を劈開端面より入射させ、各層302,30
3,304,305からなる光導波路内を導波させる。
このとき、光は、光吸収層303にて吸収され電子とホ
ールに変換され、いわゆる光電変換が行なわれる。この
光電変換によって生じた電子及びホールは、電極30
6,307間すなわちpn接合に印加された逆バイアス
電圧によって生じる電界にて、それぞれn型およびp型
の半導体層側に走行するので、信号電流として素子外部
に取り出されることになる。
2. Description of the Related Art FIG. 3 illustrates a conventional semiconductor waveguide type optical receiver. That is, 301 is a semi-insulating InP substrate, 30
2 is an n-type InGaAsP layer having a thickness of 0.6 μm and a bandgap wavelength of 1.3 μm, 303 is an n-type low carrier concentration InGaAs light absorption layer having a thickness of 0.6 μm, 304 is a thickness of 0.6 μm and a bandgap wavelength is 1 0.3 μm p-type In
GaAsP layer, 305 is 0.5 μm thick p-type InP
A layer, 306 is an n-type ohmic electrode, and 307 is a p-type ohmic electrode. (K.Kato et al., "A high-efficiency 50
GHz InGaAs ultimode waveguide photo detector '' IEEE
Lournal of Quantum Electronics Vol. 28, No. 12, 27
28, 1992). In the example of FIG. 3, a wavelength of 1.55
Light of μm is made incident from the cleaved end face, and each layer 302, 30
The inside of the optical waveguide consisting of 3, 304 and 305 is guided.
At this time, light is absorbed by the light absorption layer 303 and converted into electrons and holes, and so-called photoelectric conversion is performed. Electrons and holes generated by this photoelectric conversion are generated by the electrode 30.
6, 307, that is, in the electric field generated by the reverse bias voltage applied to the pn junction, they travel to the n-type and p-type semiconductor layer sides, respectively, and are taken out as a signal current to the outside of the element.

【0003】[0003]

【発明が解決しようとする課題】上述のような半導体導
波路型受光器にて高周波光信号を受光しようとする場
合、信号の周波数に十分応答するように半導体導波路型
受光素子のCR時定数を十分小さくする必要がある。具
体的には容量Cを小さくする必要がある。一例として5
0Ω系で5GHzの光信号を受信する場合には、0.6
PF以下の容量としなければならない、等である。今、
吸収層303の厚さが1μm程度である通常の半導体導
波路型受光素子の場合、容量を前述のように0.6PF
以下にするためにはpn接合面積を4000μm2 以下
に抑える必要がある。このため、図3に示すように半導
体層をpn接合面以下まで掘り下げた構造としいわゆる
ハイメサ状に加工して余分な容量を除去し、4000μ
2 以下の面積としている。したがって、従来の半導体
導波路型受光器の製造には、ハイメサ状の加工やハイメ
サ状の電極形成などが必要となり、工程数が多く難易度
の高い技術が必要となる。
When attempting to receive a high-frequency optical signal with the semiconductor waveguide type photodetector as described above, the CR time constant of the semiconductor waveguide type photodetector is made to sufficiently respond to the frequency of the signal. Needs to be small enough. Specifically, it is necessary to reduce the capacitance C. 5 as an example
When receiving a 5 GHz optical signal in the 0Ω system, 0.6
The capacity must be less than or equal to PF. now,
In the case of an ordinary semiconductor waveguide type light receiving element in which the thickness of the absorption layer 303 is about 1 μm, the capacitance is 0.6 PF as described above.
In order to make it below, it is necessary to suppress the pn junction area to 4000 μm 2 or less. Therefore, as shown in FIG. 3, the semiconductor layer is dug down to the pn junction surface or less so that it is processed into a so-called high-mesa shape to remove excess capacitance, and 4000 μm is removed.
The area is less than or equal to m 2 . Therefore, manufacturing of a conventional semiconductor waveguide type optical receiver requires high-mesa processing, high-mesa electrode formation, and the like, and requires a technique with a large number of steps and high difficulty.

【0004】本発明は、上述の問題に鑑み、工程数が多
く難易度の高いハイメサに係る構造とせず、構造が簡単
で低コストの半導体導波路型受光器の提供を目的とす
る。
In view of the above problems, it is an object of the present invention to provide a semiconductor waveguide type photodetector having a simple structure and a low cost, not a structure related to a high mesa having a large number of steps and a high degree of difficulty.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項とする。 (1)第1の半導体層と、この第1の半導体層よりも光
の吸収端波長が長く屈折率の大きな第2の半導体層と、
この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、を有する半導体導波路型受光
器において、上記第3の半導体層の一部に表面から所定
深さにわたり他の領域とは異なる導電形の拡散領域を形
成し、この拡散領域及び上記第2の半導体層の一面を深
さ方向に光入射端として露出させた、ことを特徴とす
る。 (2)半導体基板と、この半導体基板よりも光の吸収端
波長が長く屈折率の大きな第2の半導体層と、この第2
の半導体層より光の吸収端波長が短く屈折率の小さな第
3の半導体層と、を有する半導体導波路型受光器におい
て、上記第3の半導体層の一部に表面から所定深さにわ
たり他の領域とは異なる導電形の拡散領域を形成し、こ
の拡散領域及び上記第2の半導体層の一面を深さ方向に
光入射端として露出させた、ことを特徴とする。 (3)上記(1)又は(2)において、拡散領域は光入
射端から光の進行方向に沿って次第に拡がるように形成
したことを特徴とする。 (4)上記(1)又は(2)において、第3の半導体層
表面からの拡散深さは、第2の半導体層の一部にまで達
することを特徴とする。
The present invention which achieves the above-mentioned object is defined as the following invention. (1) a first semiconductor layer, and a second semiconductor layer having a longer light absorption edge wavelength and a larger refractive index than the first semiconductor layer,
In a semiconductor waveguide type optical receiver having a third semiconductor layer having a shorter absorption edge wavelength of light and a smaller refractive index than the second semiconductor layer, a part of the third semiconductor layer has a predetermined depth from the surface. A diffusion region having a conductivity type different from that of the other regions is formed over the entire surface, and the diffusion region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction. (2) A semiconductor substrate, a second semiconductor layer having a longer absorption edge wavelength of light and a larger refractive index than the semiconductor substrate, and the second semiconductor layer.
A third semiconductor layer having a shorter absorption edge wavelength of light and a smaller refractive index than that of the semiconductor layer, a part of the third semiconductor layer is covered with a third semiconductor layer over a predetermined depth from the surface. A diffusion region having a conductivity type different from that of the region is formed, and the diffusion region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction. (3) In the above (1) or (2), the diffusion region is formed so as to gradually expand from the light incident end along the traveling direction of light. (4) In the above (1) or (2), the diffusion depth from the surface of the third semiconductor layer reaches a part of the second semiconductor layer.

【0006】不純物拡散により形成されたpn接合にて
スラブ型の光導波路を形成しているので、接合容量を低
減でき、しかも製造に当り簡単かつ低コストになる。
Since the slab type optical waveguide is formed by the pn junction formed by the impurity diffusion, the junction capacitance can be reduced and the manufacturing is simple and the cost is low.

【0007】[0007]

【発明の実施の形態】ここで、図1,図2を参照して発
明の実施の形態につき述べる。pn接合の不純物拡散に
よりその面積を限定してやれば接合容量は低減できる。
本発明はこの思想を前提として導電路型受光器を得るも
のである。図1において、101は半絶縁性InP基
板、102は厚さ2μmでバンドギャップ波長1.2μ
mのn型InGaAsP層、103は厚さ3μmでバン
ドギャップ波長1.4μmのn型低キャリア濃度InG
aAsP光吸収層、104は厚さ2μmでバンドギャッ
プ波長1.2μmのn型低キャリア濃度InGaAsP
層である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the invention will now be described with reference to FIGS. The junction capacitance can be reduced by limiting the area of the pn junction by diffusing impurities.
The present invention is based on this idea to obtain a conductive path type optical receiver. In FIG. 1, 101 is a semi-insulating InP substrate, 102 is a thickness of 2 μm, and the bandgap wavelength is 1.2 μm.
m is an n-type InGaAsP layer, 103 is a 3 μm thick n-type low carrier concentration InG having a band gap wavelength of 1.4 μm.
aAsP light absorption layer 104, n-type low carrier concentration InGaAsP having a thickness of 2 μm and a band gap wavelength of 1.2 μm
It is a layer.

【0008】この層104には、Zn拡散領域105が
部分的に形成されている。この領域は接合容量が一定値
以下例えば前述の4000μm2 以下となる面積に形成
され接合容量が低減される。この場合、Zn拡散として
はその拡散部分を限定して行なうことは容易にできる。
また、Zn拡散領域105は一例として光入射端にて2
0μm、奥行き100μm、奥幅50μmに形成され、
導波光の広がりに応じて徐々に光の進行方向に沿って広
げてある。光の変換効率が極めて良好となることによ
る。更に、Zn拡散領域105の深さは、表面(上面)
より3μmとしてn型層104の厚さ2μm以上で吸収
層103にも一部拡散する深さとなっている。この拡散
の深さは好適な値があり、光吸収にて生じた電子やホー
ルが深過ぎる場合速度が速くなって応答悪くなり、また
浅過ぎる場合接合面までの距離が長過ぎるので、これら
を勘案して決定される。製造に当っては、拡散領域端面
より光を入射させるいわゆるスラブ型導波路であるた
め、層102,103,104を含めた基板101を劈
開し、又はエッチングすることになるが、この場合の入
射端面、殊に吸収層103やZn拡散領域105端面の
状態としては光入射にとり良好である。なお、上述では
Zn拡散を述べたが、Be拡散等他の物質の拡散も当て
はめることができる。図において、106はn型オーミ
ック電極、107はp型オーミック電極である。
A Zn diffusion region 105 is partially formed in this layer 104. This region is formed in an area where the junction capacitance is a certain value or less, for example, 4000 μm 2 or less, and the junction capacitance is reduced. In this case, Zn diffusion can be easily performed by limiting the diffusion portion.
Further, the Zn diffusion region 105 is, for example, 2 at the light incident end.
0 μm, depth 100 μm, depth 50 μm,
The light is gradually expanded along the traveling direction of the light according to the spread of the guided light. This is because the light conversion efficiency becomes extremely good. Further, the depth of the Zn diffusion region 105 is the surface (upper surface).
Therefore, when the thickness of the n-type layer 104 is 2 μm or more, the depth is such that it partially diffuses into the absorption layer 103. There is a suitable value for the depth of this diffusion, and if the electrons and holes generated by light absorption are too deep, the speed increases and the response becomes poor, and if it is too shallow, the distance to the junction surface is too long. It is decided in consideration. In manufacturing, since it is a so-called slab type waveguide in which light is incident from the end face of the diffusion region, the substrate 101 including the layers 102, 103 and 104 is cleaved or etched. The state of the end face, particularly the end face of the absorption layer 103 and the Zn diffusion region 105, is good for light incidence. Although Zn diffusion has been described above, diffusion of other substances such as Be diffusion can also be applied. In the figure, 106 is an n-type ohmic electrode and 107 is a p-type ohmic electrode.

【0009】図2は、第2例の構造を示す。図2におい
て、201は半絶縁性InP基板、203は厚さ3μm
でバンドギャップ波長1.4μmのn型低キャリア濃度
InGaAsP光吸収層、204は厚さ2μmでバンド
ギャップ波長1.2μmのn型低キャリア濃度InGa
AsP層、205は図1と同様の深さ3μm、長さ10
0μmのZn拡散領域で幅は光入射端で20μmであ
り、光の進行方向に沿って徐々に50μmまで広がって
いる。206はn型オーミック電極、207はp型オー
ミック電極である。
FIG. 2 shows the structure of the second example. In FIG. 2, 201 is a semi-insulating InP substrate, and 203 is a thickness of 3 μm.
And an n-type low carrier concentration InGaAsP light absorption layer having a bandgap wavelength of 1.4 μm, and an n-type low carrier concentration InGa 204 having a bandgap wavelength of 1.2 μm and a thickness of 2 μm.
AsP layer, 205 has a depth of 3 μm and a length of 10 as in FIG.
The width of the Zn diffusion region of 0 μm is 20 μm at the light incident end, and gradually widens to 50 μm along the light traveling direction. 206 is an n-type ohmic electrode and 207 is a p-type ohmic electrode.

【0010】図1及び図2に示す半導体導波路型受光素
子は吸収層103及び203をコア層とする光導波路構
造であり、入射光の広がりに応じて拡散領域が広がって
おり、波長1.3μmの光はすべてpn接合領域で吸収
されて光信号として取り出すことができる。ちなみに、
本例でのpn接合面積はZn拡散面積に等しく3500
μm2 となって5GHz程度の光信号の受信が十分可能
となる。また、本例では半導体基板として半絶縁性もし
くは導電性いずれの基板を用いても同様の効果を期待で
きる。また、一方の電極を半導体基板の裏面に形成して
も同様の効果が期待できる。
The semiconductor waveguide type light receiving element shown in FIGS. 1 and 2 has an optical waveguide structure in which the absorption layers 103 and 203 are used as core layers, and the diffusion region is widened according to the spread of incident light. All the light of 3 μm is absorbed in the pn junction region and can be extracted as an optical signal. By the way,
The pn junction area in this example is equal to the Zn diffusion area and is 3500
It becomes μm 2 and it becomes possible to sufficiently receive an optical signal of about 5 GHz. In this example, the same effect can be expected even if a semi-insulating or conductive substrate is used as the semiconductor substrate. Further, the same effect can be expected by forming one electrode on the back surface of the semiconductor substrate.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば、
半導体導波路型受光素子のpn接合を不純物拡散により
形成するため、ハイメサ加工をしなくても接合容量を低
減することができ、構造が簡略で低コストな半導体導波
路型受光器を実現することができる。
As described above, according to the present invention,
Since the pn junction of the semiconductor waveguide type light receiving element is formed by impurity diffusion, the junction capacitance can be reduced without high mesa processing, and a semiconductor waveguide type optical receiver having a simple structure and low cost can be realized. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例を示す構造図。FIG. 1 is a structural diagram showing an example of an embodiment of the present invention.

【図2】本発明の実施の形態の他の例を示す構造図。FIG. 2 is a structural diagram showing another example of the embodiment of the present invention.

【図3】従来例の構造図。FIG. 3 is a structural view of a conventional example.

【符号の説明】[Explanation of symbols]

101,201 InP基板 102 n型InGaAsP層 103,203 光吸収層 104,204 n型InGaAsP層 105,205 拡散領域 101, 201 InP substrate 102 n-type InGaAsP layer 103, 203 Light absorption layer 104, 204 n-type InGaAsP layer 105, 205 Diffusion region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の半導体層と、 この第1の半導体層よりも光の吸収端波長が長く屈折率
の大きな第2の半導体層と、 この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、 を有する半導体導波路型受光器において、 上記第3の半導体層の一部に表面から所定深さにわたり
他の領域とは異なる導電形の拡散領域を形成し、 この拡散領域及び上記第2の半導体層の一面を深さ方向
に光入射端として露出させた、 ことを特徴とする半導体導波路型受光器。
1. A first semiconductor layer, a second semiconductor layer having a longer light absorption edge wavelength than that of the first semiconductor layer and a large refractive index, and a light absorption edge wavelength of light from this second semiconductor layer. A third semiconductor layer having a short length and a small refractive index, and a diffusion region having a conductivity type different from other regions over a predetermined depth from the surface in a part of the third semiconductor layer. And the one surface of the second semiconductor layer is exposed as a light incident end in the depth direction.
【請求項2】 半導体基板と、 この半導体基板よりも光の吸収端波長が長く屈折率の大
きな第2の半導体層と、 この第2の半導体層より光の吸収端波長が短く屈折率の
小さな第3の半導体層と、 を有する半導体導波路型受光器において、 上記第3の半導体層の一部に表面から所定深さにわたり
他の領域とは異なる導電形の拡散領域を形成し、 この拡散領域及び上記第2の半導体層の一面を深さ方向
に光入射端として露出させた、 ことを特徴とする半導体導波路型受光器。
2. A semiconductor substrate, a second semiconductor layer having a longer absorption edge wavelength of light and a larger refractive index than this semiconductor substrate, and a shorter absorption edge wavelength of light and a smaller refractive index than this second semiconductor layer. In a semiconductor waveguide type optical receiver having a third semiconductor layer, a diffusion region having a conductivity type different from that of other regions is formed in a part of the third semiconductor layer from a surface to a predetermined depth. A semiconductor waveguide type optical receiver characterized in that a region and one surface of the second semiconductor layer are exposed as a light incident end in the depth direction.
【請求項3】 拡散領域は光入射端から光の進行方向に
沿って次第に拡がるように形成したことを特徴とする請
求項1又は2記載の半導体導波路型受光器。
3. The semiconductor waveguide type photodetector according to claim 1, wherein the diffusion region is formed so as to gradually expand from the light incident end along the light traveling direction.
【請求項4】 第3の半導体層表面からの拡散深さは、
第2の半導体層の一部にまで達することを特徴とする請
求項1又は2記載の半導体導波路型受光器。
4. The diffusion depth from the surface of the third semiconductor layer is
The semiconductor waveguide type optical receiver according to claim 1 or 2, which reaches a part of the second semiconductor layer.
JP02915496A 1996-02-16 1996-02-16 Semiconductor waveguide receiver Expired - Lifetime JP3276836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02915496A JP3276836B2 (en) 1996-02-16 1996-02-16 Semiconductor waveguide receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02915496A JP3276836B2 (en) 1996-02-16 1996-02-16 Semiconductor waveguide receiver

Publications (2)

Publication Number Publication Date
JPH09223805A true JPH09223805A (en) 1997-08-26
JP3276836B2 JP3276836B2 (en) 2002-04-22

Family

ID=12268356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02915496A Expired - Lifetime JP3276836B2 (en) 1996-02-16 1996-02-16 Semiconductor waveguide receiver

Country Status (1)

Country Link
JP (1) JP3276836B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967661A2 (en) * 1998-05-22 1999-12-29 Lucent Technologies Inc. Edge receptive photodetector devices
JP2001189468A (en) * 2000-01-05 2001-07-10 Sumitomo Electric Ind Ltd Optical module
JP2001223369A (en) * 2000-02-09 2001-08-17 Opnext Japan Inc End face incident waveguide type semiconductor photodetector and light receiving module using the same
JP2009224371A (en) * 2008-03-13 2009-10-01 Nec Corp End face incident type light receiving element, and optical coupling method and optical coupling structure thereof
JP2012199373A (en) * 2011-03-22 2012-10-18 Fujitsu Ltd Light receiving device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646923B2 (en) 2010-09-03 2014-12-24 矢崎総業株式会社 Vehicle display device and vehicle display system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967661A2 (en) * 1998-05-22 1999-12-29 Lucent Technologies Inc. Edge receptive photodetector devices
EP0967661A3 (en) * 1998-05-22 2000-04-26 Lucent Technologies Inc. Edge receptive photodetector devices
JP2001189468A (en) * 2000-01-05 2001-07-10 Sumitomo Electric Ind Ltd Optical module
JP2001223369A (en) * 2000-02-09 2001-08-17 Opnext Japan Inc End face incident waveguide type semiconductor photodetector and light receiving module using the same
JP2009224371A (en) * 2008-03-13 2009-10-01 Nec Corp End face incident type light receiving element, and optical coupling method and optical coupling structure thereof
JP2012199373A (en) * 2011-03-22 2012-10-18 Fujitsu Ltd Light receiving device

Also Published As

Publication number Publication date
JP3276836B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
JP3141847B2 (en) Avalanche photodiode
JP2748914B2 (en) Semiconductor device for photodetection
JPH09223805A (en) Semiconductor waveguide type light receiver
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
JP2633234B2 (en) Optical semiconductor device
JP3138199B2 (en) Semiconductor waveguide type light receiving element and method of manufacturing the same
JP3708758B2 (en) Semiconductor photo detector
JP3739273B2 (en) Semiconductor photodetector
JP3224192B2 (en) Semiconductor waveguide receiver
JP3030394B2 (en) Semiconductor light receiving element
JPH0272679A (en) Semiconductor photodetector having optical waveguide
JP4284781B2 (en) MSM type photodiode
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2711052B2 (en) Semiconductor waveguide photodetector
JP3247599B2 (en) Semiconductor light receiving element and method of manufacturing the same
JPH0437591B2 (en)
JP2766761B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2685703B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2005086028A (en) Semiconductor light receiver
JPS6130085A (en) Photoconductivity detecting element
JP3538061B2 (en) Semiconductor light receiving element and method of manufacturing the same
JP2991555B2 (en) Semiconductor light receiving element
JPH09153636A (en) Semiconductor photo detector
JPH02253666A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term