JPS6345860A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6345860A
JPS6345860A JP19080386A JP19080386A JPS6345860A JP S6345860 A JPS6345860 A JP S6345860A JP 19080386 A JP19080386 A JP 19080386A JP 19080386 A JP19080386 A JP 19080386A JP S6345860 A JPS6345860 A JP S6345860A
Authority
JP
Japan
Prior art keywords
oxide film
conductivity type
region
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19080386A
Other languages
Japanese (ja)
Inventor
Masayuki Minowa
箕輪 政幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19080386A priority Critical patent/JPS6345860A/en
Publication of JPS6345860A publication Critical patent/JPS6345860A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high-withstand voltage transistor which shows no flucturation in its characteristics by a method wherein inverse conductivity type impurity layers and high-concentration inverse conductivity type impurity layers are each formed in the surface of a substrate using a lower electrode and an upper electrode, each consisting of a poly Si layer, as masks. CONSTITUTION:A field oxide film 2, by which an element forming region 3 is isolated, is formed on a p-type semiconductor substrate 1 and thereafter an oxide film 4 is formed on this region 3. Then, a first poly Si layer is formed on the whole surface and a lower electrode 5 is formed by patterning. Then, after n<-> regions 8 are formed in the above region 3 using the lower electrode 5 as a mask, an oxide film 6 is formed on the electrode 5. Then, an upper electrode 7 consisting of a second poly Si layer is formed. Then, an N-type impurity is implanted using the upper electrode 7 as a mask and n<+> regions 9 for constituting a source and a drain are formed in the element forming region 3. Subsequently, after an oxide film is formed on the surface of the upper electrode 7, a wiring 10 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に不揮発性メ
モリに用いられる高耐圧トランジスタを有する半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a high breakdown voltage transistor used in a nonvolatile memory.

〔従来の技術〕[Conventional technology]

従来、この種の高耐圧トランジスタを有する半導体装置
は第3図〜第6図に示すように構成されていた。
Conventionally, semiconductor devices having this type of high voltage transistor have been constructed as shown in FIGS. 3 to 6.

すなわち、第3図に示すように、酸化膜4を介してP型
半導体基板1上に形成された多結晶シリコンからなるゲ
ート電極5Aをマスクとし、エネルギーの異なるイオン
注入法により不純物をイオン注入し、半導体基板表面に
N−型領域8とN+型領領域9を形成する二重拡散トレ
イン構造のものや、第4図及び第5図に示すように、ゲ
ート電lF!5Aをマスクとしてイオン注入しN−型領
域8を形成したのち、ソース・ドレ、イン形成用のマス
ク、例えば酸化膜4A又はアルミニウムPA12をマス
クとしてイオン注入しN+型領領域9形成するL D 
D (lightly doped drain)構造
のもの、更に第6図に示したように配線用のコンタクト
孔を利用してN+型領領域9形成するコンタクト方式と
呼ばれる構造のものが知られていた。
That is, as shown in FIG. 3, using a gate electrode 5A made of polycrystalline silicon formed on a P-type semiconductor substrate 1 through an oxide film 4 as a mask, impurity ions are implanted using ion implantation methods with different energies. , a double diffusion train structure in which an N- type region 8 and an N+ type region 9 are formed on the surface of the semiconductor substrate, and as shown in FIGS. 4 and 5, the gate voltage IF! After ion implantation using 5A as a mask to form N- type region 8, ion implantation is performed using source/drain and in-formation masks such as oxide film 4A or aluminum PA12 as a mask to form N+ type region 9.
A D (lightly doped drain) structure and a structure called a contact method in which an N+ type region 9 is formed using a contact hole for wiring as shown in FIG. 6 are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の構造を有する半導体装置においては次の
ような問題点がある。
The semiconductor device having the conventional structure described above has the following problems.

まず、第3図と第4図に示した構造では、横方向におけ
るN−型領域の距離が広く取れないため特に、不揮発性
メモリ用の高耐圧トランジスタとしての耐圧がないとい
う欠点がある。
First, the structures shown in FIGS. 3 and 4 have a disadvantage in that they do not have a breakdown voltage that can be used as a high breakdown voltage transistor for a nonvolatile memory because the distance between the N-type regions in the lateral direction cannot be wide.

また、第5図に示した例では、ソース・ドレイン用不純
物のイオン注入時にホトレジストをマスクに用いると、
ホトレジストが固まり、剥離性が悪くなる為通常アルミ
ニウム等をマスクに用いるが、拡散層へのダメージ防止
の為エツチングはウェットで行なう必要がある。この時
、マスクとして用いられる金属膜のオーバエッチのされ
方により、N−型領域の横方向の距離が異なる為、ロッ
トにより特性が変動するという欠点がある。
In addition, in the example shown in FIG. 5, if a photoresist is used as a mask during ion implantation of source/drain impurities,
Aluminum or the like is usually used as a mask because the photoresist hardens and becomes difficult to remove, but etching must be performed wet to prevent damage to the diffusion layer. At this time, the lateral distance of the N-type region varies depending on how the metal film used as a mask is overetched, so there is a drawback that the characteristics vary depending on the lot.

更に、第6図に示した方法では、高耐圧トランジスタと
それ以外のトランジスタのソース・ドレインの形成工程
が異なる為、工程が複雑になるという欠点がある。
Furthermore, the method shown in FIG. 6 has the disadvantage that the process is complicated because the steps for forming the sources and drains of the high voltage transistor and other transistors are different.

本発明の目的は、特性の変動が少なく、製造工程が簡単
な高耐圧トランジスタを有する半導体装置の製造方法を
提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device having a high breakdown voltage transistor with less variation in characteristics and a simple manufacturing process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型半導体基板
上に素子形成領域を分離するフィールド酸化膜を形成す
る工程と、前記素子形成領域上に酸化膜を介して第1の
多結晶シリコン層からなる下層電極を形成する工程と、
前記下層電極をマスクとして逆導電型不純物をイオン注
入し前記素子形成領域に低濃度の逆導電型不純物領域を
形成する工程と、前記下層電極表面に酸化膜を形成した
のち全面に第2の多結晶シリコン層を形成し、パターニ
ングして前記下層電極及び前記低濃度の逆導電型領域の
一部とを覆う上層電極を形成する工程と、前記上層電極
をマスクとして逆導電型不純物をイオン注入し前記素子
形成領域に高濃度の逆導電型不純物領域を形成する工程
とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of: - forming a field oxide film for separating an element formation region on a conductive type semiconductor substrate; and forming a first polycrystalline silicon layer on the element formation region via an oxide film. a step of forming a lower layer electrode consisting of;
A step of ion-implanting a reverse conductivity type impurity using the lower layer electrode as a mask to form a low concentration reverse conductivity type impurity region in the element formation region, and forming an oxide film on the surface of the lower layer electrode, and then depositing a second polyimide film on the entire surface. forming a crystalline silicon layer and patterning it to form an upper layer electrode covering the lower electrode and a part of the low concentration opposite conductivity type region; and ion-implanting opposite conductivity type impurities using the upper layer electrode as a mask. forming a highly concentrated opposite conductivity type impurity region in the element formation region.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(c)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(c) are cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the present invention.

まず、第1図(a)に示すようにP型半導体基板1上に
遷択酸化法により、素子形成領域3を分離するフィール
ド酸化膜2を形成する。次に、この素子形成領域3上に
酸化膜4を形成したのち全面に第1の多結晶シリコン層
を形成したのちパターニングし、第1の多結晶シリコン
からなる下層電極5を形成する。
First, as shown in FIG. 1(a), a field oxide film 2 is formed on a P-type semiconductor substrate 1 by selective oxidation to separate element formation regions 3. As shown in FIG. Next, an oxide film 4 is formed on this element formation region 3, and then a first polycrystalline silicon layer is formed on the entire surface and patterned to form a lower electrode 5 made of the first polycrystalline silicon.

次に、第1図(b)に示すように、下層電極5をマスク
としてN型不純物をイオン注入し、素子形成領域3にN
−型領域8を形成する。続いて、熱酸化法により、下層
電極5表面に酸化膜6を形成したのち全面に第2の多結
晶シリコン層を形成し、ドライエツチング法によりパタ
ーニングして下層電極5及びN−型領域8の一部を覆う
上層電極7を形成する。
Next, as shown in FIG. 1(b), N-type impurities are ion-implanted into the element formation region 3 using the lower electrode 5 as a mask.
- forming the mold region 8; Next, an oxide film 6 is formed on the surface of the lower electrode 5 by a thermal oxidation method, and then a second polycrystalline silicon layer is formed on the entire surface, and patterned by a dry etching method to form the lower electrode 5 and the N-type region 8. An upper layer electrode 7 is formed to cover a portion.

次に、第1図(c)に示すように、上層電極7をマスク
としてN型不純物をイオン注入し、素子形成領域3にソ
ース・ドレインを構成するN+型領領域9形成する。続
いて上層電極7表面に酸化膜を形成したのちN+型領領
域9上酸化膜4にコンタクト孔を形成する。以下、全面
にアルミニウム膜を形成したのちパターニングし配線1
oを形成することによりトランジスタが完成する。
Next, as shown in FIG. 1(c), N type impurity ions are implanted using the upper layer electrode 7 as a mask to form N+ type regions 9 constituting sources and drains in the element forming region 3. Subsequently, an oxide film is formed on the surface of the upper electrode 7, and then a contact hole is formed in the oxide film 4 above the N+ type region 9. Below, after forming an aluminum film on the entire surface, it is patterned and wiring 1
The transistor is completed by forming .

尚、ゲート配線11は、第2図の平面図に示すように、
下層電極5に接続し、上層電極7は浮遊状態にしておく
Note that the gate wiring 11 is, as shown in the plan view of FIG.
It is connected to the lower layer electrode 5, and the upper layer electrode 7 is left in a floating state.

このように本実施例によれば、第1図(b)に示したよ
うに、N+型領領域9形成するためのマスクとしての上
層電極7は、多結晶シリコン層がら形成されるため、ド
ライエツチング法により精度良くパターニングすること
ができる。従って、従来のアルミニウムを用いた場合の
ように、オーバーエツチングがないため、特性の変動が
なく、更に、N1型領域9の幅の狭いトランジスタを形
成できる。
According to this embodiment, as shown in FIG. 1(b), the upper layer electrode 7 serving as a mask for forming the N+ type region 9 is formed from a polycrystalline silicon layer, so it is not dry. Patterning can be performed with high precision using the etching method. Therefore, since there is no over-etching unlike in the case of using conventional aluminum, there is no variation in characteristics, and furthermore, a transistor with a narrow width of the N1 type region 9 can be formed.

尚、上記実施例においてはNチャネルトランジスタの場
合について説明したが、Pチャネルトランジスタの場合
であっても同様である。
In the above embodiment, the case of an N-channel transistor has been described, but the same applies to the case of a P-channel transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多結晶シリコンからなる
下層電極をマスクとして一導電型半導体基板表面に低濃
度の逆導電型不純物領域を形成し、次で酸化膜を介して
下層電極と低濃度の逆導電型不純物領域の一部とを覆っ
て形成された多結晶シリコンからなる上層電極をマスク
として、高濃度の逆導電型不純物領域を形成することに
より、特性の変動が少く製造工程が簡単な高耐圧トラン
ジスタを有する半導体装置が得られるという効果がある
As explained above, in the present invention, a low concentration impurity region of the opposite conductivity type is formed on the surface of a semiconductor substrate of one conductivity type using a lower layer electrode made of polycrystalline silicon as a mask, and then a low concentration impurity region is formed between the lower layer electrode and the lower layer electrode through an oxide film. By using the upper layer electrode made of polycrystalline silicon, which is formed to cover a portion of the opposite conductivity type impurity region as a mask, to form a highly concentrated opposite conductivity type impurity region, there is little variation in characteristics and the manufacturing process is simplified. This has the effect that a semiconductor device having a high breakdown voltage transistor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図は第
1図(c)の平面図、第3図〜第6図は従来の半導体装
置を説明するための断面図である。 1・・・P型半導体基板、2・・・フィールド酸化膜、
3・・・素子形成領域、4・・・酸化膜、5・・・下層
電極、5A・・・ゲート電極、6・・・酸化膜、7・・
・上層電極、8・・・N−型領域、9・・・N+型領領
域10・・・配線、11・・・ゲート配線、12・・・
アルミニウム膜。 第2図 第6図
1(a) to 1(C) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, FIG. 2 is a plan view of FIG. 1(c), and FIGS. 3 to 3. FIG. 6 is a cross-sectional view for explaining a conventional semiconductor device. 1... P-type semiconductor substrate, 2... Field oxide film,
3... Element formation region, 4... Oxide film, 5... Lower layer electrode, 5A... Gate electrode, 6... Oxide film, 7...
- Upper layer electrode, 8... N- type region, 9... N+ type region 10... Wiring, 11... Gate wiring, 12...
Aluminum membrane. Figure 2 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板上に素子形成領域を分離するフィ
ールド酸化膜を形成する工程と、前記素子形成領域上に
酸化膜を介して第1の多結晶シリコン層からなる下層電
極を形成する工程と、前記下層電極をマスクとして逆導
電型不純物をイオン注入し前記素子形成領域に低濃度の
逆導電型不純物領域を形成する工程と、前記下層電極表
面に酸化膜を形成したのち全面に第2の多結晶シリコン
層を形成し、パターニングして前記下層電極及び前記低
濃度の逆導電型領域の一部とを覆う上層電極を形成する
工程と、前記上層電極をマスクとして逆導電型不純物を
イオン注入し前記素子形成領域に高濃度の逆導電型不純
物領域を形成する工程とを含むことを特徴とする半導体
装置の製造方法。
a step of forming a field oxide film separating an element formation region on a semiconductor substrate of one conductivity type; a step of forming a lower electrode made of a first polycrystalline silicon layer on the element formation region via an oxide film; A step of ion-implanting a reverse conductivity type impurity using the lower layer electrode as a mask to form a low concentration reverse conductivity type impurity region in the element formation region, and forming an oxide film on the surface of the lower layer electrode, and then depositing a second polyimide film on the entire surface. forming a crystalline silicon layer and patterning it to form an upper layer electrode covering the lower electrode and a part of the low concentration opposite conductivity type region; and ion-implanting opposite conductivity type impurities using the upper layer electrode as a mask. A method for manufacturing a semiconductor device, comprising the step of forming a highly concentrated opposite conductivity type impurity region in the element formation region.
JP19080386A 1986-08-13 1986-08-13 Manufacture of semiconductor device Pending JPS6345860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19080386A JPS6345860A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19080386A JPS6345860A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6345860A true JPS6345860A (en) 1988-02-26

Family

ID=16264002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19080386A Pending JPS6345860A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6345860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888191B2 (en) 2000-11-27 2005-05-03 Sharp Kabushiki Kaisha Semiconductor device and fabrication process therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888191B2 (en) 2000-11-27 2005-05-03 Sharp Kabushiki Kaisha Semiconductor device and fabrication process therefor

Similar Documents

Publication Publication Date Title
JPH0355984B2 (en)
KR980006510A (en) Manufacturing Method of Semiconductor Device
JPS59121976A (en) Semiconductor device
JPH077773B2 (en) Method for manufacturing semiconductor device
KR100232197B1 (en) Method of manufacturing semiconductor device
JPH05283687A (en) Production of semiconductor element
JPS6345860A (en) Manufacture of semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPH08181223A (en) Manufacture of semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
JPS63128626A (en) Method of forming contact of semiconductor integrated circuit device
JPH0113230B2 (en)
JPS6244862B2 (en)
JPH03136348A (en) Manufacture of non-volatile memory element
JPH03171671A (en) Semiconductor device and manufacture thereof
JPS63117470A (en) Mos-type semiconductor device and manufacture thereof
JPS59195869A (en) Manufacture of semiconductor device
JPH03233974A (en) Manufacture of nonvolatile semiconductor memory
JPH065754B2 (en) Semiconductor device
JPH0422345B2 (en)
JPH10189471A (en) Manufacture of semiconductor device
JPS6244700B2 (en)
JPS5986254A (en) Semiconductor device and manufacture thereof
JPH04250668A (en) Semiconductor device and manufacture thereof
JPH0582066B2 (en)