JPS6342031B2 - - Google Patents

Info

Publication number
JPS6342031B2
JPS6342031B2 JP13523279A JP13523279A JPS6342031B2 JP S6342031 B2 JPS6342031 B2 JP S6342031B2 JP 13523279 A JP13523279 A JP 13523279A JP 13523279 A JP13523279 A JP 13523279A JP S6342031 B2 JPS6342031 B2 JP S6342031B2
Authority
JP
Japan
Prior art keywords
water
fabric
repellent
oil
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13523279A
Other languages
Japanese (ja)
Other versions
JPS5663071A (en
Inventor
Kazuyoshi Okamoto
Naosuke Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13523279A priority Critical patent/JPS5663071A/en
Publication of JPS5663071A publication Critical patent/JPS5663071A/en
Publication of JPS6342031B2 publication Critical patent/JPS6342031B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新しい素材構成をもつ傘地に関するも
のである。 本発明は、従来の撥水、撥油性を必要とする縫
製品においては、撥水、撥油効果が不十分である
とか、柔軟性に欠けごわごわするとか、引裂き強
度がひくいとか、重い、通気性が悪い、撥水、撥
油効果が長もちしない、摩耗しやすいとかの諸欠
点があつた。具体的には、傘地が挙げられる。 本発明は、これらの欠点をそれぞれ用途に応じ
てそれぞれ改良したものを提供することを目的と
するものである。 本発明者らは、これら従来の縫製品における欠
点の基本的な所を鋭意検討した結果、遂に本発明
に到達したものである。 その骨子は特許請求の範囲に記載のとおりであ
る。 更に詳細に説明する。 本発明者らは、従来の欠点は、撥水、撥油剤不
良、織編構造不良、繊維素材不良、樹脂加工方法
不良以外にも原因があると考え、徹底的に追求し
た。その中の1つに繊維の太さがあつた。しかし
乍ら、本発明者らの別の発明に係る超極細繊維を
用いて織物をつくり、これにインクや、染液を落
下させ、これを従来デニール(1〜10d)使いの
ものと比較したところ、従来のものは、滴下跡が
あまり大きく広がらないのに対し、超極細繊維使
いのものは、跡が大きく広がつた。水をはじくど
ころか大きく吸いとり紙、やロ紙のように広がつ
た。 これからして、明らかに撥水用途には、全く不
向きだと考えられた。この広がる原因は、一般に
言う毛細管現象のためであると考えられる。 本発明はかかる否定的な知見にも拘らず、優れ
た効果を見出したものである。 第1図は超極細繊維使いの織物の例であり、第
2図は普通デニール使いの織物の断面の例であ
る。これを撥水処理しなければ、上記の現象を呈
するが、フツ素系撥水、撥油剤で処理するとこの
様子は一変する。この現象を理解しやすくするた
めにモデルとして第3図にこの様子を示す。普通
水の中にガラス管を、大、小、それぞれ入れる
と、細い毛細管の方は高く上り、太い管は低い。
これに対して管の内面を撥水加工しておくと、細
い方が水を逆におし下げているかのごとくに今ま
でと違つた様子を示す。これで、超極細繊維使い
であつても、優れた撥水性を示すことが明らかで
あろう。同じく撥油剤を付与した時は優れた撥油
性を示すのである。布帛においては繊維が細けれ
ば単位重量あたりの表面積が大きくなるから表面
積に比例して撥水、撥油性が大きくなるだけと単
純に考えがちだが、実際にはそれにより期待され
るよりもはるかに大きな効果がある。 というのは、繊維の曲げに対する抵抗はその直
径の4乗に比例するため、極細繊維は極端に曲が
りやすく、その集合体は容易に変形して略最密充
填される。しかも外力による屈曲等の変形に対し
ても、構成繊維が別の密充填配置に円滑に移動
し、繊維間に大きな空間のできることはまれであ
る。通常漏水は撥水布の最大空間を通じて起るの
であるから、単に空間サイズの平均値が小さいだ
けでなく、空間サイズの分布が極めて小さい超極
細繊維において通常予想されるよりはるかに大き
な撥水、撥油性が発揮されることはこれらのこと
から理解できる。 本発明で言うフツ素系撥水、撥油剤の代表的な
ものはパーフルオロアルキル基を側鎖に有する含
フツ素重合体で、従来から公知ないし周知のもの
が広く適用できる。例えば次のような単量体の重
合体や共重合体が一般的である。 (R1は水素あるいはメチル基、R2はメチル基
あるいはエチル基を示す。nは3〜21の整数) これらのフツ素系撥水剤は一般にエマルジヨン
として各種市販されており、それを希釈して希帛
に付与するのが普通である。 上記のようなフツ素系撥水、撥油剤は、不思議
にも、撥水、撥油効果が使用して劣つて来ても、
熱処理によつてかなり回復するようである。超極
細繊維使いと言つても、十分緻密な織り目(編み
目)とすることが必要であつて、それぞれの最密
組織の80%以上が好ましい。できる限り密に織編
し上げるのが良い。超極細繊維使いとすると次の
ような特徴も生まれてくる。(同一目付でくらべ
て) (1) 柔らかい。 (2) しわになつてもすぐとれやすい。 (3) 引裂きにくい。 (4) うすくしやすいので、軽いものができる。 (5) ゴム引きや、樹脂付与しなくとも、かなりの
撥水,撥油性を示すので、通気性の悪さを軽減
し、撥水効果が長もちし、摩耗しがたいという
新しい評価結果も出ている。しかし、特筆すべ
きことは折れまげのはげしい所では、抜群の耐
久性を発揮することである。 以下具体例を示しつつ、図について説明する。 織物例 A タテ糸:ナイロン66 40D―36f (D:トータルデニール) (f:フイラメント数) 単糸デニール 40/36=1.111d 織り密度 170本/in ヨコ糸:ナイロン66(96部)を36本の島として
2エチルヘキシルアクリレートスチレ
ン共重合体を海として有する高分子相
互配列体繊維(海島型繊維) 60D―
15f 島単糸デニール 60/15×1/36×96/100= 0.107d 織り密度 118本/in 織物例B (比較用) タテ糸:ナイロン66 47D―34f 織り密度 168本/in ヨコ糸:ナイロン66 73D―34f 織り密度 120本/in 織物例 C タテ糸:ナイロン66 40D―34f 織り密度 169本/in ヨコ糸:ナイロン6(96部)を36本の島として
海は2―エチルヘキシルアクリレート
スチレン共重合体を海として有する高
分子相互配列体繊維 60D―15f 織り密度 119本/in 織物の処理 (イ) 脱糊:NaOH 2.5g/ 80℃ (ロ) 湯水洗:十分に (ハ) 脱海成分:新しいトリクロールエチレンで4
回十分に洗う。 (ニ) セツト:160―180℃ これをアクセロレーター(3000回/min)で評
価した。(ペーパーAA―80番)
The present invention relates to an umbrella fabric having a new material composition. The present invention aims to solve the problems of conventional sewn products that require water and oil repellency, such as insufficient water and oil repellency, lack of flexibility and stiffness, low tear strength, heavy weight, and air permeability. It had various disadvantages such as poor properties, poor water and oil repellency, and easy wear. A specific example is umbrella land. The object of the present invention is to provide a device that improves these drawbacks depending on the intended use. The inventors of the present invention have finally arrived at the present invention after intensively studying the fundamental drawbacks of these conventional sewn products. The gist of the invention is as described in the claims. This will be explained in more detail. The present inventors thought that the causes of the conventional drawbacks were not only caused by defects in water repellency and oil repellent, defects in weaving and knitting structure, defects in fiber materials, and defects in resin processing methods, and investigated them thoroughly. One of them was the thickness of the fibers. However, a fabric was made using ultrafine fibers according to another invention by the present inventors, and ink and dye liquid were dropped onto it, and the results were compared with fabrics made using conventional denier (1 to 10 d) fabrics. However, with the conventional product, the drip marks did not spread out very much, but with the product using ultra-fine fibers, the marks spread out considerably. Instead of repelling water, it spread out like blotting paper. From this, it is clear that it is completely unsuitable for water repellent applications. The cause of this spread is thought to be the generally-called capillary phenomenon. The present invention has discovered excellent effects despite such negative findings. Fig. 1 shows an example of a fabric made of ultra-fine fibers, and Fig. 2 shows an example of a cross section of a fabric made of normal denier. If it is not treated to make it water repellent, it will exhibit the above phenomenon, but if it is treated with a fluorine-based water and oil repellent, this situation will change completely. In order to make it easier to understand this phenomenon, this situation is shown in FIG. 3 as a model. If you put a large and a small glass tube into normal water, the thin capillary will rise higher and the thicker will rise lower.
On the other hand, if the inner surface of the tube is treated to be water-repellent, it will look different than before, as if the thinner side is repelling water. It is clear from this that even though it uses ultrafine fibers, it exhibits excellent water repellency. Similarly, when an oil repellent is applied, it exhibits excellent oil repellency. When it comes to fabrics, we tend to simply think that the thinner the fibers, the larger the surface area per unit weight, so the water and oil repellency increases in proportion to the surface area, but in reality, it is far more effective than expected. It has a big effect. This is because the resistance to bending of fibers is proportional to the fourth power of their diameter, so ultrafine fibers are extremely bendable, and their aggregates are easily deformed and become almost close-packed. Furthermore, even when subjected to deformation such as bending due to external force, the constituent fibers smoothly move to another tightly packed arrangement, and it is rare that large spaces are created between the fibers. Normally, water leakage occurs through the largest space in a water-repellent fabric, so not only is the average space size small, but the water repellency is much greater than would normally be expected for an ultra-fine fiber with an extremely small space size distribution. It can be understood from these facts that oil repellency is exhibited. A typical example of the fluorine-based water and oil repellent mentioned in the present invention is a fluorine-containing polymer having a perfluoroalkyl group in its side chain, and conventionally known or well-known ones can be widely applied. For example, polymers and copolymers of the following monomers are common. (R 1 is hydrogen or a methyl group, R 2 is a methyl group or an ethyl group. n is an integer from 3 to 21) These fluorine-based water repellents are generally commercially available as emulsions, which can be diluted. It is usually given to rare items. The fluorine-based water and oil repellents mentioned above, strangely, even though their water and oil repellent effects become inferior with use,
It appears to be considerably recovered by heat treatment. Even though ultra-fine fibers are used, it is necessary to have a sufficiently dense weave (knit stitch), and preferably 80% or more of each close-packed structure. It is best to weave it as densely as possible. Using ultra-fine fibers brings the following characteristics. (Compared with the same weight) (1) Soft. (2) Even if it wrinkles, it is easy to remove. (3) Not easy to tear. (4) It is easy to thin, so you can make lightweight items. (5) Even without rubberizing or adding resin, it exhibits considerable water and oil repellency, so new evaluation results have shown that it reduces poor breathability, has a long-lasting water repellent effect, and is resistant to wear. There is. However, what is noteworthy is that it exhibits outstanding durability in areas with severe bending. The figures will be explained below while showing specific examples. Fabric example A Warp yarn: Nylon 66 40D-36f (D: total denier) (f: number of filaments) Single yarn denier 40/36=1.111d Weaving density 170 pieces/in Weft yarn: 36 pieces of nylon 66 (96 parts) Polymer mutual array fiber (sea-island type fiber) with 2-ethylhexyl acrylate styrene copolymer as the sea as islands (sea-island type fiber) 60D-
15f Island single yarn denier 60/15 x 1/36 x 96/100 = 0.107d Weaving density 118 threads/in Fabric example B (for comparison) Warp thread: Nylon 66 47D-34f Weaving density 168 threads/in Weft thread: Nylon 66 73D-34f Weaving density 120 threads/in Fabric example C Warp thread: Nylon 66 40D-34f Weaving density 169 threads/in Weft thread: 36 islands made of nylon 6 (96 parts) and the sea is 2-ethylhexyl acrylate styrene. Polymer mutual array fiber with polymer as a sea 60D-15f Weaving density 119 fibers/in Fabric treatment (a) Desizing: NaOH 2.5g/80℃ (b) Washing with hot water: Thoroughly (c) Sea removing component :4 with new trichlorethylene
Wash thoroughly twice. (d) Set: 160-180°C This was evaluated using an accelerator (3000 times/min). (Paper AA-No. 80)

【表】【table】

〔撥水,撥油処理〕[Water repellent, oil repellent treatment]

A,B及びCを黒色に酸性染料で染めてから、
撥水,撥油処理を実施した。 撥水,撥油剤はアサヒガードAG―710(旭硝子
(株)固形分18%minimumとカタログ表示、エマル
ジヨン)の水希釈液5%を用いた。 布A,Cをデツプし、軽くマングルで絞り、90
℃ 5分,150℃ 3分処理した。 これらの布帛A,B,Cを用いて撥水性の試験
をした。すなわち、これらの布帛を約30cm角と
し、水約500gを包みこみ1時間放置した。その
結果、本発明品A及びCは全く水漏れがしなかつ
たが、比較品Bはポタポタと水漏れした。本発明
品は依然としてフニヤフニヤ,タラタラとした傾
向をもち、例えば、雨傘地としてみても、傘の折
り目もぴたりと決まらず、ややたたみにくい傾向
はあつたが、逆に折り目からの水もれ、撥水性の
低下、うす破れが起り難く、長期に使用しても撥
水性が低下せず、使用後すぐに折りたたんでしま
うことができた(折りたたみ傘をカバンに入れて
しまう時抜群の便利さを発揮)。 以上は、ヨコ糸のみの超極細繊維使いの例であ
つたが、タテ糸のみ、タテヨコ両方も良好で、効
果はタテヨコ両方が最もよく、織り易さではヨコ
糸のみが良い。 次に編物の例を挙げて説明する。 編物例 D 裏組織用の糸としてポリエチレンテレフタレー
トの50D−24f高収縮糸を用い、表組織用の糸と
して島成分としてポリエチレンテレフタレート、
海成分として5−ナトリウムスルホイソフタル酸
8.0wt%を含む共重合ポリエチレンテレフタレー
トを用い、島本数16本、島/海比率が80/20の
62D−18fの海島型高分子相互配列体繊維を用い
た。 上記2種のフイラメント糸を用い、32ゲージの
タテ編み機により、トリコツトサテンに編成し
た。このときの裏地組織は1/1デンビー編、表
地組織は1/3コード編とした。 この編地を95℃の熱水中で収縮処理し、ついで
160℃、3分の乾熱処理を施し、収縮させた。こ
のときの収縮率はタテ方向12.5%、ヨコ方向22.5
%で、面積収縮率としては32.2%であつた。 ついでこの編地を苛性ソーダー(NaOH)の
15g/の95〜98℃水溶液中で20分間浸漬撹拌処
理し、表組織用の糸の海成分である5−ナトリウ
ムスルホイソフタル酸8.0wt%を含む共重合ポリ
エチレンテレフタレートを溶解除去し極細化処理
を行つた。 つぎに、撥水、撥油処理を実施した。撥水、撥
油剤としてはアサヒガードAG−710、アサヒガ
ードAG−740(旭硝子(株)製)を下記の濃度で処理
液を調合した。 アサヒガードAG−710 30g/ アサヒガードAG−740 120g/ 計 150g/ この処理液に極細化した編地を浸漬し、その後
ゴムマングルで圧力2Kg/cm2でニツプした。つい
で90℃で乾燥した後、180℃の乾燥処理を30秒施
した。 撥水、撥油処理した編地を傘地とした雨傘をつ
くつた。この傘は超撥水性があり、折目のところ
の屈曲部も極細糸であるために耐久性に優れた傘
であつた。 編物例 E 表地用の糸として島成分ナイロン6、海成分ポ
リスチレン、島本数16本、島/海比率85/15の75
デニール18フイラメントの糸を用い、裏地用の糸
としてポリウレタン弾性糸の40デニールの糸を用
い、34インチ、28ゲージの丸編機を用い、編組織
を天竺の交編品を編成した。 この生成りを160/170℃のピンテンター乾燥機
でセツトを行なつた後、トリクロルエチレンで5
回洗浄し、表地用の糸の海成分を溶解除去し、表
地用糸の極細化処理を行なつた。 この編地はタテ、ヨコに伸縮性のある緻密な編
み目の編地となつた。 つぎに酸性染料を用い、ベージユ色に染色し
た。染色後乾燥した編地に下記する撥水、撥油剤
で処理し、超撥水性のある編地とした。 アサヒガードAG−710 30g/ アサヒガードAG−740 120g/ 計 150g/ いずれも旭硝子(株)性の撥水、撥油剤を用いた。
撥水、撥油処理は上記処理液に浸漬し、ついでゴ
ムマングルで2Kg/cm2の圧力で絞液し、90℃の乾
燥機で乾燥した後、180℃の乾熱で30秒間セツト
処理をした。 この編地は緻密な編み目の伸縮性のあるもので
あり、傘地として用いたところ、非常に良い撥水
効果を示し、しかも極細糸を用いているため傘の
折り目の耐久性に優れたものであつた。 編物の比較例 編物例Eで用いた編地を撥水、撥油処理しない
で傘地に用いたところ、傘地として一番重要な撥
水効果が全くなく、逆に極細糸を用いているため
に、毛細管現象により水を良く吸うものとなり、
傘地として用いるには不向きであることがわかつ
た。超極細繊維の作り方には左右されないが複合
繊維から誘導される十分延伸された超極細糸が最
も好ましい。デニールは0.3以下で、就中、0.15
デニール〜0.001デニールのものが特に好ましい。
強度は5g/d以上が好ましく、特に6〜9g/
dが良い。素材として各種のポリアミド系,ポリ
エステル系,ポリオレフイン系,ポリアクリル
系,ポリビニール化合物系,ポリウレタン系,ポ
リフツソ化合物系がある。複合繊維から誘導され
るものとしては、剥離型のもの、島海型のものな
どがある。島海型のときは、島残存比率が90%以
上であるものが特に好ましい。同じ織り編み物で
も、それだけ密度のつまつたものがつくりうるか
らである。目のつまつた織編物にしておくと、目
詰めための樹脂が、不必要で、或いは少なくてす
み、それだけ耐久性やコストの点で有利である。
本発明では、撥水,撥油処理液がよく全体に浸み
込み、それだけ均一にして良好なものとなるだけ
でなく、加工処理もし易い。染色は撥水,撥油処
理する前にすませておくことが好ましい。 ポリエステルの時、分散染料で染めた時は、撥
水,撥油剤の乾燥ヒートセツトのとき、堅牢度を
悪化させるので、例えばいきなり150℃で乾燥す
るのではなく、90℃の低温で十分に乾燥してか
ら、熱処理することが好ましい。2段以上で行な
うことがこの場合の秘訣の1つである。撥水,撥
油剤は、フツソ系の撥水剤が特に好ましい。超極
細繊維使い布は保水性が高いので(撥水前)、撥
水処理するときに、高濃度で処理しても十分しみ
こみ、かつ、極めて大きい繊維表面積全体にわた
つて撥水,撥油剤を分散付与することができる。 更に超極細繊維使い布帛は、表面が相対的に非
常にフラツトに仕上るので、撥水,撥油性付与に
特に好ましい結果を与えている。 就中、この布帛を(熱)プレス処理、カレンダ
ー処理して、表面を平滑化したり、おしつぶして
組織内の密度を上げることは、最も好ましい。ま
た、超極細繊維使い織編物は、細いから、これに
極めて順応しやすい特性をもつていると言える。
このプレス処理された状態を保持するため、樹脂
(ポリウレタン,ゴム類,ビニール樹脂など)を
含浸或いはコーテイング付与することも好ましく
実施できる。耐水圧を上げたいときは、この手段
が用いられる。次に具体的形態を図でもつて説明
する。各々の効果は、従来その点が特に劣つてい
たのを改良したのである。 第4図は雨傘の1例である。本発明の構成を採
ると軽くて、柔らかく、おりたたみ易く、持ち運
び便利で、すぐに水が切れ、油汚れしにくく、耐
屈曲、耐摩耗性に優れている。 なお、本発明で言う縫製品とは単に針を用いて
縫つたものに限らず接着縫製品も含む広義のもの
である。接着縫製品においても本発明の効果が発
揮できることは当然だからである。
After dyeing A, B and C black with acid dye,
Water and oil repellent treatment was carried out. The water and oil repellent is Asahi Guard AG-710 (Asahi Glass
A 5% water-diluted solution of Emulsion, manufactured by Co., Ltd. (displayed in the catalog with a solid content of 18% minimum) was used. Dip cloth A and C, squeeze lightly with a mangle, 90
℃ for 5 minutes and 150℃ for 3 minutes. A water repellency test was conducted using these fabrics A, B, and C. That is, these fabrics were made into approximately 30 cm squares, wrapped in approximately 500 g of water, and left for 1 hour. As a result, the products A and C of the present invention did not leak water at all, but the comparative product B leaked water drippingly. The product of the present invention still had a tendency to become squishy and loose, and for example, even when viewed as an umbrella fabric, the folds of the umbrella did not line up perfectly and were somewhat difficult to fold. It is resistant to deterioration in water resistance and slight tearing, does not lose its water repellency even after long-term use, and can be folded immediately after use (excellent convenience when putting a folding umbrella in a bag). ). The above was an example of using ultra-fine fibers using only weft yarns, but both warp yarns and both warp and weft yarns are also good, both warp yarns have the best effect, and in terms of ease of weaving, only weft yarns are good. Next, an example of knitted fabric will be explained. Knitting example D 50D-24f high shrinkage yarn of polyethylene terephthalate was used as the yarn for the back fabric, and polyethylene terephthalate was used as the island component for the yarn for the surface fabric.
5-sodium sulfoisophthalic acid as a sea component
Using copolymerized polyethylene terephthalate containing 8.0wt%, the number of islands is 16, and the island/sea ratio is 80/20.
A 62D-18f sea-island polymer mutual array fiber was used. Using the above two types of filament yarns, a tricot satin was knitted using a 32 gauge warp knitting machine. At this time, the lining weave was 1/1 Denby knit, and the outer weave was 1/3 cord knit. This knitted fabric was shrink-treated in hot water at 95℃, and then
Dry heat treatment was performed at 160°C for 3 minutes to cause shrinkage. The shrinkage rate at this time is 12.5% in the vertical direction and 22.5% in the horizontal direction.
%, and the area shrinkage rate was 32.2%. Next, this knitted fabric was treated with caustic soda (NaOH).
The yarn was immersed and stirred for 20 minutes in a 95-98℃ aqueous solution containing 15 g/g of yarn for 20 minutes to dissolve and remove the copolymerized polyethylene terephthalate containing 8.0 wt% of 5-sodium sulfoisophthalate, which is the sea component of the thread for the surface texture, and to perform ultrafine treatment. I went. Next, water and oil repellent treatments were carried out. A treatment solution was prepared using Asahi Guard AG-710 and Asahi Guard AG-740 (manufactured by Asahi Glass Co., Ltd.) as water and oil repellents at the following concentrations. Asahi Guard AG-710 30g/Asahi Guard AG-740 120g/Total 150g/The ultrafine knitted fabric was immersed in this treatment solution, and then nipped with a rubber mangle at a pressure of 2 kg/cm 2 . Then, after drying at 90°C, a drying treatment at 180°C was performed for 30 seconds. We created an umbrella using a knitted fabric that was treated to be water and oil repellent. This umbrella was super water-repellent, and the bends at the folds were made of ultra-fine thread, making it extremely durable. Knitting example E As the outer thread, island component nylon 6, sea component polystyrene, number of islands 16, island/sea ratio 75 with 85/15
Using 18-denier filament yarn and 40-denier polyurethane elastic yarn as the lining yarn, a 34-inch, 28-gauge circular knitting machine was used to knit a jersey cross-knitted product. After setting this product in a pin tenter dryer at 160/170℃,
It was washed twice to dissolve and remove the sea components of the yarn for the outer fabric, and the yarn for the outer fabric was subjected to ultra-fine treatment. This knitted fabric has dense stitches that are stretchable both vertically and horizontally. Next, it was dyed beige using an acid dye. The knitted fabric dried after dyeing was treated with the water and oil repellent described below to obtain a super water-repellent knitted fabric. Asahi Guard AG-710 30g/Asahi Guard AG-740 120g/Total 150g/A water and oil repellent made by Asahi Glass Co., Ltd. was used in both cases.
For water and oil repellency treatment, the material was immersed in the above treatment solution, then squeezed with a rubber mangle at a pressure of 2 kg/cm 2 , dried in a dryer at 90°C, and then subjected to a setting treatment at 180°C dry heat for 30 seconds. . This knitted fabric has tight stitches and is stretchable, and when used as umbrella fabric, it has a very good water repellent effect, and because it uses ultra-fine yarn, it has excellent durability at the folds of the umbrella. It was hot. Comparative Example of Knitted Fabric When the knitted fabric used in Knitted Fabric Example E was used as an umbrella fabric without water-repellent or oil-repellent treatment, it did not have any water-repellent effect, which is the most important effect for umbrella fabric, and on the contrary, ultra-fine yarn was used. Therefore, it absorbs water well due to capillary action,
It was found that it was unsuitable for use as umbrella ground. Although it does not depend on how the ultrafine fibers are made, fully drawn ultrafine yarns derived from composite fibers are most preferred. Denier is less than 0.3, especially 0.15
Denier to 0.001 denier is particularly preferred.
The strength is preferably 5 g/d or more, particularly 6 to 9 g/d.
d is good. Materials include various polyamides, polyesters, polyolefins, polyacrylics, polyvinyl compounds, polyurethanes, and polyfuso compounds. Examples of fibers derived from composite fibers include exfoliation type fibers and island sea type fibers. When it is an island-sea type, it is particularly preferable to have an island remaining ratio of 90% or more. This is because even the same woven or knitted material can be made with even greater density. If the fabric is made of a woven or knitted fabric with a tight weave, resin for closing the stitches is unnecessary or can be reduced, which is advantageous in terms of durability and cost.
In the present invention, the water-repellent and oil-repellent treatment liquid permeates the entire surface well, which not only makes it uniform and good, but also facilitates processing. It is preferable to finish dyeing before applying water and oil repellent treatment. When polyester is dyed with disperse dyes, the fastness deteriorates during the dry heat setting of water and oil repellents, so instead of drying at 150°C all at once, for example, dry thoroughly at a low temperature of 90°C. After that, it is preferable to perform heat treatment. One of the secrets in this case is to perform it in two or more stages. As the water and oil repellent, a fluorine-based water repellent is particularly preferable. Fabrics using ultra-fine fibers have high water retention properties (before water repellency), so when applying water repellent treatment, even if treated at high concentrations, it will penetrate sufficiently and the water and oil repellent agent will be applied over the entire extremely large surface area of the fibers. Can be distributed. Furthermore, since the surface of the fabric made of ultrafine fibers is relatively flat, it gives particularly favorable results in imparting water and oil repellency. Among these, it is most preferable to subject the fabric to (thermal) press treatment or calender treatment to smooth the surface or crush it to increase the density within the tissue. Furthermore, since woven or knitted fabrics using ultra-fine fibers are thin, it can be said that they have the characteristic of being extremely adaptable.
In order to maintain this pressed state, it is also preferable to impregnate or coat with a resin (polyurethane, rubber, vinyl resin, etc.). This method is used when you want to increase water pressure resistance. Next, a specific form will be explained using figures. Each effect is an improvement on something that was particularly poor in the past. Figure 4 shows an example of an umbrella. The structure of the present invention is light, soft, easy to fold, convenient to carry, drains water quickly, is resistant to oil stains, and has excellent bending and abrasion resistance. Note that the sewn product referred to in the present invention is not limited to those simply sewn with a needle, but has a broad meaning that includes adhesive sewn products. This is because it is natural that the effects of the present invention can be exhibited also in adhesively sewn products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、超極細繊維使い織物の断面の1例、
第2図は、従来デニール使い織物の断面の1例、
第3図は、超極細繊維使い布帛の撥水,撥油処理
による特別の効果を、毛細管現象で説明するため
のモデル図、第4図は雨傘の1例、である。
Figure 1 shows an example of a cross section of a fabric using ultra-fine fibers.
Figure 2 shows an example of a cross section of a conventional denier fabric.
FIG. 3 is a model diagram for explaining the special effect of water-repellent and oil-repellent treatment of a fabric using ultra-fine fibers using capillary phenomena, and FIG. 4 is an example of an umbrella.

Claims (1)

【特許請求の範囲】[Claims] 1 0.3デニール以下の超極細繊維を用いた十分
に緻密な織編物を少なくとも一部に有する傘地に
おいて、該超極細繊維の表面がフツ素系撥水、撥
油処理剤で表面処理されていることを特徴とする
超極細繊維布帛使いの撥水、撥油性傘地。
1 Umbrella fabric having at least a portion of a sufficiently dense woven or knitted fabric using ultrafine fibers of 0.3 denier or less, the surface of the ultrafine fibers being surface-treated with a fluorine-based water and oil repellent treatment agent. A water- and oil-repellent umbrella fabric made from ultra-fine fiber fabric.
JP13523279A 1979-10-22 1979-10-22 Water and oil pepellent woven product using extremely fine fiber fabric Granted JPS5663071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13523279A JPS5663071A (en) 1979-10-22 1979-10-22 Water and oil pepellent woven product using extremely fine fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13523279A JPS5663071A (en) 1979-10-22 1979-10-22 Water and oil pepellent woven product using extremely fine fiber fabric

Publications (2)

Publication Number Publication Date
JPS5663071A JPS5663071A (en) 1981-05-29
JPS6342031B2 true JPS6342031B2 (en) 1988-08-19

Family

ID=15146892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13523279A Granted JPS5663071A (en) 1979-10-22 1979-10-22 Water and oil pepellent woven product using extremely fine fiber fabric

Country Status (1)

Country Link
JP (1) JPS5663071A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876569A (en) * 1981-10-28 1983-05-09 カネボウ株式会社 Production of high density fabric
JPS58186663A (en) * 1982-04-26 1983-10-31 帝人株式会社 Production of low air permeable fabric
EP0092938B1 (en) 1982-04-26 1986-08-27 Teijin Limited Process for the preparation of woven fabrics of low air permeability
JPS6040612Y2 (en) * 1983-04-18 1985-12-07 東洋紡績株式会社 knitted fabric
JPS6039438A (en) * 1983-08-12 1985-03-01 帝人株式会社 High density water repellent cloth
JPS59204941A (en) * 1983-05-04 1984-11-20 帝人株式会社 High density water repellent cloth
JPS6081363A (en) * 1983-10-13 1985-05-09 帝人株式会社 Production of bulky fabric
JPS6257982A (en) * 1985-03-11 1987-03-13 カネボウ株式会社 Production of fabric excellent in opacity
JP4814699B2 (en) * 2006-06-14 2011-11-16 株式会社竹中工務店 Cleaning method of fluororesin film surface

Also Published As

Publication number Publication date
JPS5663071A (en) 1981-05-29

Similar Documents

Publication Publication Date Title
JP4926210B2 (en) Textile processing method
JP5596081B2 (en) Stretch coated fabric and method for producing the same
DE69112492T2 (en) Process for shrinking denim fabrics.
US5604012A (en) Hollow fiber fabric and process for producing the same
JPS6342031B2 (en)
JP2006052505A (en) High-density woven fabric and method for producing the same
JPS646311B2 (en)
JPS6250594B2 (en)
KR102569123B1 (en) Process Of Producing Environmental Friendly Down-Proof Fabrics Using Non-Circular Cross-Section Recycled Nylon Yarn
KR102463941B1 (en) Manufacturing method of water-repellent blended fabric
JP4605616B2 (en) Brushed fabric
JPH08291473A (en) Composite material, its production and moisture-permeable waterproofing cloth made thereof
JPS59125507A (en) Cloth for bag
JPH0512466B2 (en)
KR19990009820A (en) Multi-tone Artificial Leather
JP2724785B2 (en) Heat setting method of fabric containing polyamide fiber and polyester fiber
KR100211219B1 (en) Polyester mixed yarn of different shrinkage
JPS59228070A (en) Hydrophilic cloth containing flat fiber
JPH02191702A (en) Cloth for lining
JPS62191543A (en) Special raised pile fabric
JP2020029628A (en) Linen cloth
KR20240128784A (en) Super absorbent towel fabric woven with terry files using microfiber
JPS61289104A (en) Production of clothing
JP2010222752A (en) Fabric structure
JP2006037266A (en) Woven fabric having surface appearance with new feeling, and wrinkle finished woven fabric