JPS6250594B2 - - Google Patents
Info
- Publication number
- JPS6250594B2 JPS6250594B2 JP55081380A JP8138080A JPS6250594B2 JP S6250594 B2 JPS6250594 B2 JP S6250594B2 JP 55081380 A JP55081380 A JP 55081380A JP 8138080 A JP8138080 A JP 8138080A JP S6250594 B2 JPS6250594 B2 JP S6250594B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- sea
- fabric
- island
- cotton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004744 fabric Substances 0.000 claims description 54
- 239000000835 fiber Substances 0.000 claims description 50
- 229920001410 Microfiber Polymers 0.000 claims description 21
- 229920000642 polymer Polymers 0.000 claims description 18
- 229920003043 Cellulose fiber Polymers 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- -1 polyethylene terephthalate Polymers 0.000 description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 description 11
- 239000005020 polyethylene terephthalate Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000002131 composite material Substances 0.000 description 8
- 238000005517 mercerization Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000004043 dyeing Methods 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 238000009998 heat setting Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000985 reactive dye Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009990 desizing Methods 0.000 description 3
- 239000000986 disperse dye Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000009991 scouring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- XMEXYUIRYSLNKT-UHFFFAOYSA-N benzene-1,3-dicarboxylic acid;sodium Chemical compound [Na].OC(=O)C1=CC=CC(C(O)=O)=C1 XMEXYUIRYSLNKT-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 206010035039 Piloerection Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003808 decrease of hair loss Effects 0.000 description 1
- GZCKIUIIYCBICZ-UHFFFAOYSA-L disodium;benzene-1,3-dicarboxylate Chemical group [Na+].[Na+].[O-]C(=O)C1=CC=CC(C([O-])=O)=C1 GZCKIUIIYCBICZ-UHFFFAOYSA-L 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000005371 pilomotor reflex Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Knitting Of Fabric (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Woven Fabrics (AREA)
Description
本発明は極細繊維を含む布帛の製造方法に関す
るものであり、さらに詳しくは極細繊維と他繊維
との混用品で極細繊維が選択的に脱落することの
ない布帛を製造する方法に関するものである。
従来、極細繊維からなる布帛を得るために海島
型繊維からなる布帛を造り、その後海成分を化学
処理により除去して得る手段がある。海成分を除
去すると、繊維間に空隙が生じ繊維間の拘束力が
低下する。特に極細繊維と他繊維との混用品で
は、極細繊維の移動がはげしくなり、目ずれ、も
もけ、毛玉、極端な場合には極細繊維が脱落する
という問題を引き起す。このような現象は、極細
繊維が長繊維よりも短繊維の場合の方がはげし
い。パイル糸が極細繊維で地糸が他の繊維からな
る、ベルベツトやビロード織の場合に、大きな問
題となる。
従来のかかる欠点を回避するために熱セツトに
よる形態固定や毛落ち防止に樹脂加工を試みた。
しかし熱セツトでは欠点を解決するに至らず、
樹脂加工による手段では毛落ち防止効果はあるが
風合いが硬くなり、立毛布帛のナツプが完全に倒
れてしまつたり、又乱れた状態でナツプが固定さ
れて品位が低下するという別な問題が生じ、解決
につながらなかつた。
一方、極細繊維を用いた布帛の染色品は充分な
色相が得にくいという欠点がある。特に濃色を得
るためにはかなりの量の染料を使用しなければな
らない。これは単糸デニールが小さくなればなる
ほど一層加工賃の点から深刻な問題となり、極細
繊維の致命的な欠点であるとさえ言われている。
本発明者らは従来のかかる欠点を回避するため
に鋭意検討した結果、本問題を解決できる布帛の
製造方法を見い出したのである。
すなわち本発明は次の構成を有する。
「少なくとも二種のポリマーからなる海島型繊
維とセルロース系繊維とから布帛を形成し、該海
島型繊維の少なくとも一成分ポリマーを除去する
工程とアルカリ液によりセルロース系繊維をマー
セル化する工程の組合せを施すことを特徴とする
極細繊維を含む布帛の製造方法。」
本発明は、海島型繊維の海成分除去により生ず
る空隙をセルロース系繊維のマーセル化による体
積膨潤により補うことを利用したものである。本
目的のために海島型繊維と混用する繊維を種々検
討した結果、セルロース系繊維以外にはあり得な
いことを見出したものである。セルロース系繊維
をアルカリでマーセル化し膨潤させると、初期の
体積の3〜4倍にもなり、しかも硬くならないと
いう特長を持つている。セルロース系繊維以外に
このような体積膨潤をする繊維は見当らず、合成
繊維でこのような膨潤をする繊維を設計しても、
大抵硬くなるという欠点がある。本発明は以上の
ような木綿の体積膨潤以外に、マーセル化したセ
ルロース系繊維の発色性、吸湿性をもプラスする
ことができるものである。
次に本発明を詳細に説明する。
本発明でいう海島型繊維とは少なくとも2種の
ポリマーからなる繊維で、繊維断面は海成分と島
成分から形成されている。島成分は海成分により
複数に区分され、その状態は規則的または不規則
的であつてもよい。しかも島成分の断面形状は制
約されることなく、また1成分だけとは限らな
い。本発明に適用される主な海島型繊維の断面略
図例を第1図に示す。第1図においてa−1,b
−1,……i−1は海成分であり、a−2,b−
2,……i−2は島成分である。d−2,d−3
はポリマーの異なる島成分を示している。海島型
繊維ポリマーとは例えば次に示すように薬剤に対
して溶解、分解性の異なるポリマーを2種類以上
選択すればよい。すなわちポリエチレンテレフタ
レート、同共重合体(イソフタル酸、イソフタル
酸ソデイウムスルホネートなど)、ポリオキシエ
チレンベンゾエート、ポリブチレンテレフタレー
ト、ナイロン6、ナイロン66、ポリアクリルニト
リル系共重合ポリマー、ポリプロピレン、ポリエ
チレン、ポリビニールアルコール系、ポリウレタ
ン系、ポリスチレンなどがある。以上の中で好ま
しいポリマーの組み合せは海成分ポリマーが島成
分ポリマーに比べ薬剤による溶解性、分解性が大
になるような組み合せか、さらには島成分ポリマ
ーを全く溶解、分解せず海成分ポリマーのみを完
全に溶解させる組み合せが最も好ましい。繊維ポ
リマーの組み合せと海成分ポリマーを溶解除去す
るための薬剤の実用例を次に示すが、本発明はこ
れらに制約されることはない。島成分ポリマーA
がポリエチレンテレフタレートで海成分ポリマー
Bがポリスチレンからなる組み合せの時の適用薬
剤はトリクレン、Aがポリエチレンテレフタレー
トでBがイソフタル酸ソデイウムスルホネート共
重合ポリエチレンテレフタレートからなる組み合
せの時は苛性ソーダ、Aがナイロン6または66で
Bがイソフタル酸ソデイウムスルホネートからな
る組み合せの時は苛性ソーダ、Aがポリエチレン
テレフタレートでBがナイロン−6からなる組み
合せの時はギ酸などで処理する手段がある。海島
型繊維は、長繊維でも短繊維でもよい。
そして本発明に用いるセルロース繊維について
述べる。セルロース繊維として天然繊維では木
綿、麻、再生セルロース繊維としてレーヨン、ア
セテートなどあるが、発明効果、利用価値、耐ア
ルカリ性の点から最も好ましいのは木綿である。
以下セルロース繊維は木綿を代表例として挙げ本
発明を説明する。
次に本発明に適用される布帛について説明す
る。
本発明における布帛とは編物、織物、立毛品な
どの繊維シート状物を指している。そしてその布
帛の構成状態は海島型繊維と木綿ともしくはさら
に他繊維とで形成されたものである。交編織物の
例を挙げると緯糸に海島型繊維を経糸に木綿を打
ち込んだ一重構造織物、表緯糸に海島型複合繊維
を裏緯糸に木綿をそして経糸に木綿もしくは他繊
維を打ち込んだ二重織物、パイル糸に海島型繊維
を地糸に木綿を打ち込んだビロード織物がある。
また編物にはフロントに海島型繊維をバツクに木
綿を用いたものも含まれる。さらには海島型繊維
と木綿とで混紡糸、交撚糸、カバリング糸をつく
り、布帛を形成したものもある。
以上の様にして得た海島型繊維からなる布帛を
薬剤処理により海成分ポリマーを溶解または分解
させ、極細繊維からなる布帛とする。この海成分
除去の前に糊抜き精練、場合によつては熱セツト
を行なうのも良い。立毛化が必要なときは海成分
除去前または海成分除去後に行なうことができ
る。立毛手段はビロード織り、起毛、バフなど
種々あるが本発明はこれに制約されることはな
い。
この様にして得た布帛を次にアルカリ液によつ
てマーセル化を行なう。布帛を構成している木綿
をアルカリ液によつてマーセル化し、布帛を収縮
させかつ木綿を膨潤させて、布帛の形態固定と海
成分除去によつて生じた繊維間の空隙を充填する
ものである。このためのマーセル化の処理条件は
布帛を充分に収縮させ、かつ木綿をより膨潤させ
る条件でなければならない。用いるアルカリ液は
苛性ソーダ、水酸化カリウム、水酸化リチウムな
どのアルカリ金属水酸化物であるが、実用的には
苛性ソーダが良い。濃度は20〜35゜Be′が適正で
あり、35゜Be′以上では効果は変わらない。処理
時の温度は高くなると木綿の膨潤度が低下するた
め15〜20℃の室温で良い。そして処理時間は布帛
に対する浸透性が充分であれば60秒前後でよい。
したがつて連続処理が可能となる。場合によつて
はバツチ式でも構わない。当然作業性および加工
安定性から連続処理が好ましいのは云うに及ばな
い。次に布帛をより収縮させ、木綿を膨潤させる
ためには無緊張で処理することが重要であり、本
発明の効果を高めるための重要な点である。バツ
チ式でマーセル化を行なう時は布帛の巾および長
さ方向ともフリー状態なので問題はないが、連続
式でマーセル化を行なう場合には効果を減じない
ように布帛にかかる張力に注意すべきである。す
なわち木綿が布帛の巾方向に使われている時は布
帛の長さ方向に対して張力を少しかけ気味に処理
し、布帛の巾方向および長さ方向に木綿が形成さ
れている時は長さ方向が無緊張状態になる様に処
理しなければならない。
なおマーセル化は海成分除去後に行なう方が本
発明の効果は大きいが布帛構造がルーズで容易に
収縮できる状態であれば海成分除去前にマーセル
化を行なうのもよい。
この様にして処理した極細繊維からなる布帛を
染色加工を行ない、風合い処理、仕上げセツトし
て製品とする。必要に応じてバフ、シヤーリン
グ、コーテイングなどの適宜施こしてもよい。
以上説明した方法によつて得られた製品は、目
ずれがなく、毛玉になることはなく、立毛品では
毛落ちが少なく、ナツプが緻密な品質良好なもの
である。また木綿をマーセル化することにより染
着性がアツプし、極細繊維の色不足を補うことが
でき、さらには木綿の持つている吸湿性能を布帛
に付与することができる。
次に本発明の実施例を示すが、本発明は何らこ
れらに限定されるものではない。
実施例 1
次に示す220D−24Fの海島型複合繊維を紡糸、
延伸した。
島成分:ポリエチレンテレフタレート
海成分:5−ナトリウムスルホイソフタル酸を5
モル共重合したポリエチレンテレフタレート
島成分と海成分の比率:78:22
島数:13
繊維断面構造:第1図のaに示すもの。
この海島型繊維を表緯糸に、20番木綿糸を裏糸
に、ポリエチレンテレフタレート50D−24Fのブ
レリア加工糸を経糸に用いて、表組織が5枚朱
子、裏組織が2/3ツイルの二重構造織物を得た。
この織物を98℃の精練剤および糊抜き剤を含む
熱水浴中を通し、乾燥後160℃の熱セツトを行な
つた。その後、粒度150メツシユのサンドペーパ
ーを用い、正逆方向に通して4回のバフイング処
理を行なつた。さらに油圧式起毛機に30回通し、
海島複合繊維の長い立毛からなる起毛織物を得
た。
次にこの起毛織物を98℃の濃度3%苛性ソーダ
水溶液中に60分間浸漬して海成分を除去した後、
無緊張状態で25℃の濃度25%苛性ソーダ水溶液中
で60秒間連続処理によるマーセル化を行ない、水
洗、中和した。そしてサーキユラ染色機で分散染
料と反応性染料を用いてブラウン色に染め上げ、
コーミング、仕上げ剤付与、乾燥、仕上げセツト
を行なつた。比較用として裏緯糸にポリエチレン
テレフタレート50D−24Fブレリア加工糸を用
い、他の条件は前記と全く同一の織物を造り、前
記と同じ処理を行なつた。当然綿糸を用いていな
いためにマーセル化処理は行なわず、染色時には
反応性染料は用いていない。
The present invention relates to a method of manufacturing a fabric containing ultrafine fibers, and more particularly to a method of manufacturing a fabric that is a mixture of ultrafine fibers and other fibers and in which the ultrafine fibers do not selectively fall off. Conventionally, in order to obtain fabrics made of ultrafine fibers, there is a method of producing fabrics made of sea-island type fibers and then removing sea components by chemical treatment. When the sea component is removed, voids are created between the fibers and the binding force between the fibers is reduced. Particularly in products that are a mixture of ultrafine fibers and other fibers, the movement of the ultrafine fibers becomes rapid, causing problems such as misalignment, fluffing, pilling, and in extreme cases, the ultrafine fibers falling off. This phenomenon is more severe when the ultrafine fibers are short fibers than long fibers. This becomes a big problem in the case of velvet or velvet fabrics, where the pile yarn is made of ultrafine fibers and the ground yarn is made of other fibers. In order to avoid these conventional drawbacks, we attempted to use resin processing to fix the shape through heat setting and prevent shedding. However, heat setting does not solve the problem,
Resin processing has the effect of preventing shedding, but the texture becomes hard, and other problems arise, such as the naps of the raised fabric falling down completely, or the naps being fixed in a disarrayed state, resulting in a decrease in quality. , which did not lead to a solution. On the other hand, dyed fabrics using ultrafine fibers have the disadvantage that it is difficult to obtain a sufficient hue. Significant amounts of dye must be used to obtain especially deep colors. This becomes a more serious problem in terms of processing costs as the single yarn denier becomes smaller, and is even said to be a fatal drawback of ultrafine fibers. The inventors of the present invention have made extensive studies to avoid these conventional drawbacks, and as a result, have discovered a fabric manufacturing method that can solve this problem. That is, the present invention has the following configuration. ``A fabric is formed from sea-island fibers made of at least two types of polymers and cellulose fibers, and a combination of a step of removing at least one component polymer of the sea-island fibers and a step of mercerizing the cellulose fibers with an alkaline solution. A method for manufacturing a fabric containing ultrafine fibers, characterized in that the present invention utilizes the fact that the voids created by the removal of the sea component from sea-island type fibers are compensated for by volumetric swelling due to mercerization of cellulose fibers. As a result of examining various fibers to be used in combination with the sea-island type fibers for this purpose, we found that it is impossible to use anything other than cellulose fibers. When cellulose fibers are mercerized and swollen with alkali, they become 3 to 4 times their initial volume, yet they do not become hard. There are no fibers other than cellulose fibers that exhibit this kind of volumetric swelling, and even if synthetic fibers are designed that exhibit this kind of swelling,
The disadvantage is that it is often hard. In addition to the above-mentioned volumetric swelling of cotton, the present invention can also add the color development and hygroscopicity of mercerized cellulose fibers. Next, the present invention will be explained in detail. The sea-island type fiber as used in the present invention is a fiber made of at least two types of polymers, and the fiber cross section is formed of a sea component and an island component. The island component is divided into a plurality of parts depending on the sea component, and the state thereof may be regular or irregular. Moreover, the cross-sectional shape of the island component is not restricted and is not limited to only one component. A schematic cross-sectional example of the main sea-island type fibers applied to the present invention is shown in FIG. In Figure 1, a-1, b
-1,...i-1 is the sea component, a-2, b-
2,...i-2 is an island component. d-2, d-3
indicate the different island components of the polymer. The sea-island type fiber polymer may be selected from two or more polymers having different solubility and decomposition properties for drugs, as shown below. Namely, polyethylene terephthalate, its copolymers (isophthalic acid, isophthalic acid sodium sulfonate, etc.), polyoxyethylene benzoate, polybutylene terephthalate, nylon 6, nylon 66, polyacrylonitrile copolymers, polypropylene, polyethylene, polyvinyl. There are alcohol-based, polyurethane-based, polystyrene, etc. Among the above, the preferred combination of polymers is one in which the sea component polymer is more soluble and degradable by drugs than the island component polymer, or a combination in which the island component polymer is not dissolved or decomposed at all and only the sea component polymer is used. A combination that completely dissolves is most preferred. Practical examples of combinations of fiber polymers and agents for dissolving and removing sea component polymers are shown below, but the present invention is not limited thereto. Island component polymer A
When A is polyethylene terephthalate and sea component polymer B is polystyrene, the chemical to be applied is triclene; when A is polyethylene terephthalate and B is a sodium isophthalate sulfonate copolymerized polyethylene terephthalate, caustic soda is used, and A is nylon 6. Alternatively, in 66, when B is a combination of isophthalic acid sodium sulfonate, treatment is performed with caustic soda, and when A is a combination of polyethylene terephthalate and B is nylon-6, treatment is performed with formic acid. The sea-island type fibers may be long fibers or short fibers. Next, the cellulose fibers used in the present invention will be described. Natural fibers such as cotton and hemp are used as cellulose fibers, and rayon and acetate are used as regenerated cellulose fibers, but cotton is the most preferred in terms of inventive effect, utility value, and alkali resistance.
The present invention will be explained below by citing cotton as a representative example of cellulose fiber. Next, the fabric applied to the present invention will be explained. The term "fabric" as used in the present invention refers to fiber sheet-like materials such as knitted fabrics, woven fabrics, and napped products. The fabric is composed of sea-island fibers, cotton, or other fibers. Examples of mixed-knitted fabrics include single-layer fabrics with sea-island composite fibers in the weft and cotton in the warp, double-layer fabrics with sea-island composite fibers in the front weft, cotton in the back weft, and cotton or other fibers in the warp. There is a velvet fabric that has sea-island type fibers in the pile yarn and cotton in the ground yarn.
Knitted fabrics also include those that use cotton on the front and sea-island fibers on the back. Furthermore, there are fabrics made by creating blended yarns, intertwisted yarns, and covering yarns from sea-island fibers and cotton. The fabric made of sea-island type fibers obtained as described above is treated with chemicals to dissolve or decompose the sea component polymer, thereby producing a fabric made of ultrafine fibers. Before removing this sea component, it is also good to perform desizing and scouring and, in some cases, heat setting. When piloerection is required, it can be performed before or after removing the sea component. There are various types of raising means such as velvet weaving, raising, and buffing, but the present invention is not limited thereto. The fabric thus obtained is then mercerized using an alkaline solution. This method mercerizes the cotton that makes up the fabric with an alkaline solution, shrinks the fabric, and swells the cotton to fill the voids between fibers created by fixing the fabric's shape and removing sea components. . The mercerization processing conditions for this purpose must be such that the fabric is sufficiently shrunk and the cotton is further swollen. The alkaline liquid used is an alkali metal hydroxide such as caustic soda, potassium hydroxide, or lithium hydroxide, but caustic soda is preferred for practical use. A concentration of 20 to 35°Be′ is appropriate, and the effect remains the same at 35°Be′ or higher. As the temperature during treatment increases, the degree of swelling of cotton decreases, so a room temperature of 15 to 20°C is sufficient. The treatment time may be around 60 seconds if the permeability to the fabric is sufficient.
Continuous processing is therefore possible. Depending on the case, a batch type may also be used. Needless to say, continuous processing is preferable from the viewpoint of workability and processing stability. Next, in order to further shrink the fabric and swell the cotton, it is important to perform the treatment without tension, which is an important point for enhancing the effects of the present invention. When mercerizing in batches, there is no problem since the fabric is free in both the width and length directions, but when mercerizing in continuous mode, care must be taken to avoid reducing the tension on the fabric so as not to reduce the effect. be. In other words, when cotton is used in the width direction of the fabric, a little tension is applied in the length direction of the fabric, and when cotton is formed in the width and length directions of the fabric, the length is It must be processed so that the direction is in a state of no tension. The effect of the present invention is greater if mercerization is performed after the sea component is removed, but if the fabric structure is loose and can be easily contracted, mercerization may be performed before the sea component is removed. The fabric made of ultrafine fibers treated in this way is dyed, textured, and finished to produce a product. Buffing, shearing, coating, etc. may be applied as appropriate. The products obtained by the method described above are of good quality, with no misalignment, no pilling, little shedding in the case of napped products, and dense naps. Furthermore, by mercerizing cotton, the dyeability is increased, the lack of color in ultrafine fibers can be compensated for, and furthermore, the moisture absorbing properties of cotton can be imparted to the fabric. Next, examples of the present invention will be shown, but the present invention is not limited thereto. Example 1 The following sea-island composite fibers of 220D-24F were spun,
Stretched. Island component: polyethylene terephthalate Sea component: 5-sodium sulfoisophthalic acid
Ratio of molar copolymerized polyethylene terephthalate island component to sea component: 78:22 Number of islands: 13 Fiber cross-sectional structure: As shown in Figure 1 a. This sea-island type fiber is used as the front weft, No. 20 cotton thread is used as the back thread, and polyethylene terephthalate 50D-24F breria processed thread is used as the warp.The front weave is 5-ply satin and the back weave is 2/3 twill. A structural fabric was obtained. This fabric was passed through a hot water bath containing a scouring agent and a desizing agent at 98°C, dried, and then heat set at 160°C. Thereafter, buffing was performed four times using sandpaper with a grain size of 150 mesh in forward and reverse directions. Furthermore, it is passed through a hydraulic brushing machine 30 times.
A raised fabric consisting of long raised sea-island composite fibers was obtained. Next, this raised fabric was immersed in a 3% caustic soda aqueous solution at 98°C for 60 minutes to remove sea components.
Mercerization was performed by continuous treatment for 60 seconds in a 25% aqueous sodium hydroxide solution at 25°C under no tension, followed by washing with water and neutralization. Then, it is dyed brown using disperse dye and reactive dye using a Circular dyeing machine.
Combing, applying finishing agent, drying, and finish setting were performed. For comparison, polyethylene terephthalate 50D-24F processed yarn was used as the back weft, and a fabric was made under the same conditions as above and subjected to the same treatment as above. Naturally, since no cotton yarn is used, no mercerization treatment is performed, and no reactive dyes are used during dyeing.
【表】
得られた製品は比較品に比べ、目ずれのない、
毛落ちの少なくナツプ品位面でもナツプが長く、
緻密で良好なものであつた。しかも裏面に綿のタ
ツチが出ており、肌ざわりの良い起毛織物を得る
ことができた。また色の深みも比較品に比べ大で
あつた。
実施例 2
次に示す75D−10Fの海島型複合繊維を紡糸、
延伸した。
島成分:ポリエチレンテレフタレート
海成分:ポリスチレン
島成分と海成分の比率:60:40
繊維断面構造:第1図のaに示すもの。
島数:13
そしてこの繊維をタテパイル糸に、地タテ糸お
よび地ヨコ糸に12S綿糸を用いて二重ビロード織
機でビロード織りし、カツト長1.5mmのビロード
織物を得た。この織物をリラツクス、糊抜き精練
を行ない、乾燥後160℃熱セツトをして、トリク
レンによつて海成分を除去した。この様にしてパ
イル糸が極細繊維からなるビロード織物を、実施
例1と同じ条件で処理し、ユニエース染色機を用
いて分散染料と反応性染料により紺色に染め上げ
た。
その後、仕上げ剤を付与し、乾燥、仕上げセツ
トを行なつた。比較用として地タテおよび裏ヨコ
糸に50D−17Fのポリエステルウーリー糸を用い
たビロード織物をつくり、前記と全く同じ処理を
行なつた。[Table] The obtained product has no misalignment compared to the comparative product.
The nap is long in terms of nap quality with less hair loss.
It was detailed and of good quality. What's more, the cotton touch was visible on the back side, making it possible to obtain a brushed fabric that felt good against the skin. The depth of color was also greater than that of comparative products. Example 2 The following 75D-10F sea-island composite fiber was spun,
Stretched. Island component: Polyethylene terephthalate Sea component: Polystyrene Ratio of island component to sea component: 60:40 Fiber cross-sectional structure: As shown in Figure 1 a. Number of islands: 13 Then, this fiber was velvet-woven using a double velvet loom using 12S cotton yarn as a vertical pile yarn and a ground warp thread and a ground weft thread to obtain a velvet fabric with a cut length of 1.5 mm. This fabric was relaxed, desized and refined, dried and heated to 160°C, and the sea component was removed using trichlene. In this way, the velvet fabric whose pile yarns were made of ultrafine fibers was treated under the same conditions as in Example 1, and dyed dark blue with a disperse dye and a reactive dye using a UniAce dyeing machine. After that, a finishing agent was applied, and drying and finishing setting were performed. For comparison, a velvet fabric was made using 50D-17F polyester woolly yarn for the ground warp and back weft yarns, and was treated in exactly the same manner as above.
【表】
得られた製品は比較品に比べ、毛落ちが少なく
しかもナツプの緻密性が大で、色の深みのあるも
のであつた。
実施例 3
次に示す海島型複合繊維と綿からなる紡績糸を
緯糸とし、100S綿糸を経糸とする5枚朱子組織
の織物を得た。
海島型複合繊維:1.5d×カツト長38mm
島成分:ポリエチレンテレフタレート
海成分:ポリスチレン
島成分と海成分の比率:60:40
島数:13島
繊維断面図:第1図aに示すもの。
紡績糸:100番双糸
海島型複合繊維と綿の混率:70:30
次に98℃の精練剤および糊抜き剤を含む熱水浴
中を通し、乾燥後160℃の熱セツトを行ない、そ
の後トリクレン浴中を通して海成分ポリスチレン
を溶解除去した。そして実施例1と同条件でマー
セル化処理を行ない、タテヨコ方向に収縮させ
た。続いて180℃熱セツトした後、サーキユラ染
色機で分散染料と反応性染料を用いて紺色に染め
上げた。そして、仕上げ剤付与、乾燥仕上げセツ
トを行なつた。混紡品を緯糸としているためマー
セル化により綿のみ収縮して極細繊維が織物表面
にループを形成し表面タツチの良好なものであつ
た。しかも染色による目ずれはなく、毛落ちの少
ない良好な織物を得ることができた。また品質面
でも極細繊維のヌメリあるタツチがあり、綿との
混紡および交織により、深みのある色相をかもし
だしていた。[Table] Compared to the comparative product, the obtained product had less shedding, a denser nap, and a deeper color. Example 3 A 5-ply satin-woven fabric was obtained in which the following spun yarn made of sea-island composite fiber and cotton was used as the weft and 100S cotton yarn was used as the warp. Sea-island composite fiber: 1.5d x cut length 38mm Island component: polyethylene terephthalate Sea component: polystyrene Ratio of island component to sea component: 60:40 Number of islands: 13 Island fiber cross-sectional view: As shown in Figure 1a. Spun yarn: No. 100 twin yarn Sea-island type composite fiber and cotton blend ratio: 70:30 Next, it is passed through a hot water bath containing a scouring agent and a desizing agent at 98℃, and after drying, it is heat set at 160℃, and then The sea component polystyrene was dissolved and removed by passing it through a trichlene bath. Then, mercerization treatment was performed under the same conditions as in Example 1 to shrink in the vertical and horizontal directions. After heat setting at 180℃, the fabric was dyed dark blue using disperse dyes and reactive dyes using a Circular dyeing machine. Then, a finishing agent was applied and a dry finish was set. Since the blended yarn was used as the weft yarn, only the cotton contracted due to mercerization, and the ultrafine fibers formed loops on the surface of the fabric, resulting in a good surface touch. In addition, there was no misalignment due to dyeing, and a good fabric with little shedding could be obtained. In terms of quality, the ultra-fine fibers had a slimy texture, and by blending and weaving with cotton, they created a deep hue.
第1図は本発明で好ましく用いられる海島型繊
維の断面の例を示す。a−1,b−1,c−1,
d−1,e−1,f−1,g−1,h−1,i−
1は海成分を、a−2,b−2,c−2,d−
2,d−3,e−2,f−2,g−2,h−2,
i−2は島成分を示す。
FIG. 1 shows an example of a cross section of a sea-island type fiber preferably used in the present invention. a-1, b-1, c-1,
d-1, e-1, f-1, g-1, h-1, i-
1 is the sea component, a-2, b-2, c-2, d-
2, d-3, e-2, f-2, g-2, h-2,
i-2 indicates an island component.
Claims (1)
維とセルロース系繊維とから布帛を形成し、該海
島型繊維の少なくとも一成分ポリマーを除去する
工程とアルカリ液によりセルロース系繊維をマー
セル化する工程の組合せを施すことを特徴とする
極細繊維を含む布帛の製造方法。 2 パイル糸が海島型繊維で地糸がセルロース系
繊維からなる布帛を用いることを特徴とする特許
請求の範囲第1項記載の極細繊維を含む布帛の製
造方法。[Claims] 1. Forming a fabric from sea-island fibers made of at least two types of polymers and cellulose fibers, removing at least one component polymer of the sea-island fibers, and mercerizing the cellulose fibers with an alkaline solution. 1. A method for producing a fabric containing ultrafine fibers, which comprises performing a combination of steps for producing ultrafine fibers. 2. A method for producing a fabric containing ultrafine fibers according to claim 1, characterized in that a fabric is used in which the pile yarns are sea-island type fibers and the ground yarns are cellulose fibers.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8138080A JPS5711275A (en) | 1980-06-18 | 1980-06-18 | Production of extremely fine fiber containing cloth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8138080A JPS5711275A (en) | 1980-06-18 | 1980-06-18 | Production of extremely fine fiber containing cloth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5711275A JPS5711275A (en) | 1982-01-20 |
JPS6250594B2 true JPS6250594B2 (en) | 1987-10-26 |
Family
ID=13744686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8138080A Granted JPS5711275A (en) | 1980-06-18 | 1980-06-18 | Production of extremely fine fiber containing cloth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5711275A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0259638U (en) * | 1988-10-25 | 1990-05-01 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040612Y2 (en) * | 1983-04-18 | 1985-12-07 | 東洋紡績株式会社 | knitted fabric |
JPS60215829A (en) * | 1984-04-06 | 1985-10-29 | 東洋紡績株式会社 | Three-layered structural spun yarn |
JPS6257697A (en) * | 1985-09-04 | 1987-03-13 | Meidensha Electric Mfg Co Ltd | Waste water treatment device |
JPS6426780A (en) * | 1987-07-20 | 1989-01-30 | Unitika Ltd | Wrinkle-proof processing of hemp fabric |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536678A (en) * | 1976-07-02 | 1978-01-21 | Teijin Ltd | Buckskinnlike textile |
JPS54138620A (en) * | 1978-03-09 | 1979-10-27 | Toray Ind Inc | Divided polyester composite fibers and their manufacture |
-
1980
- 1980-06-18 JP JP8138080A patent/JPS5711275A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536678A (en) * | 1976-07-02 | 1978-01-21 | Teijin Ltd | Buckskinnlike textile |
JPS54138620A (en) * | 1978-03-09 | 1979-10-27 | Toray Ind Inc | Divided polyester composite fibers and their manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0259638U (en) * | 1988-10-25 | 1990-05-01 |
Also Published As
Publication number | Publication date |
---|---|
JPS5711275A (en) | 1982-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69112492T2 (en) | Process for shrinking denim fabrics. | |
US3766872A (en) | Textured embroidered fabric | |
US3859941A (en) | Textured embroidered fabric | |
JPS6250594B2 (en) | ||
JP3119389B2 (en) | Method for producing polyester woven or knitted fabric | |
JPS6137383B2 (en) | ||
JP3083690B2 (en) | Cut pile fabric | |
KR940010800B1 (en) | Suede fabric making method | |
JP3470514B2 (en) | Method for producing high density bulky fabric | |
JP3418938B2 (en) | Non-twisted silk yarn, method for producing the same, and woven and knitted fabrics using the yarn | |
JPS5834592B2 (en) | Chiyoubikiyu - Nachiyouorimonono Seihou | |
JPH06240569A (en) | Production of napped woven or knit fabric | |
JP2802697B2 (en) | Method for producing fabric having span-like surface change | |
JPS6214670B2 (en) | ||
JPH0711566A (en) | Production of silk-like fabric | |
JPS62199885A (en) | Fiber sheet having opaque pattern and its production | |
JPH0693523A (en) | Spun yarn and production of woven and knit fabric | |
JP2724786B2 (en) | Method for shrinking fabric containing polyamide fiber | |
CN1483878A (en) | Semi-old style processed fabric | |
JPS6122053B2 (en) | ||
JPH0357982B2 (en) | ||
JPS64517B2 (en) | ||
JPH11140771A (en) | Napped woven fabric | |
JP3985613B2 (en) | Nylon short fiber structure and manufacturing method thereof | |
JPH06200469A (en) | Production of peach skin-like woven fabric |