JPS6336555A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6336555A
JPS6336555A JP61178637A JP17863786A JPS6336555A JP S6336555 A JPS6336555 A JP S6336555A JP 61178637 A JP61178637 A JP 61178637A JP 17863786 A JP17863786 A JP 17863786A JP S6336555 A JPS6336555 A JP S6336555A
Authority
JP
Japan
Prior art keywords
type
diffusion region
diffused region
type diffusion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61178637A
Other languages
Japanese (ja)
Inventor
Toshihiro Honma
本間 俊廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61178637A priority Critical patent/JPS6336555A/en
Publication of JPS6336555A publication Critical patent/JPS6336555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a CMOS semiconductor device having a low- contactresistance barrier metal structure at contact parts on a P<+>-type diffused region, by utilizing the difference in thickness of oxide films, implanting P-type impurity ions only in the P<+>-type impurity diffused region by self-alignment, and forming a P<++>-type diffused region in a surface part of the diffused region. CONSTITUTION:Gate insulating films 15 and 15a and gate electrodes 16 and 16a are provided on a semiconductor substrate 11. An N<+> type region 17 and a P<+>-type diffused region 18 are provided at the peripheral part of the substrate 11. An intermediate insulating film 20 is formed on the substrate 11. Contact holes 21 and 21a are provided at places corresponding to the N<+>-type diffused region 17 and the P<+>-type diffused region 18. Then oxidation treatment of the substrate 11 is performed, and thick and thin oxide films 19 and 19a are formed on the N<+>-type diffused region 17 and the P<+>-type diffused region 18. Thereafter, P-type impurity ions 27 are implanted in the P<+>-type diffused region 18 by self-alignment. Then the implanted P-type impurity ions are activated, and a P<++>-type diffused region 18b is formed in the surface of the P<+>-type diffused region 18. Thereafter, interconnection layers 24 and 24a in a barrier metal structure are formed through the contact holes 21 and 21a.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特にバリアメタルを用い九コンタ
クトを有する0MO8の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor device, and particularly to a method for manufacturing an OMO8 having nine contacts using a barrier metal.

〔従来の技術〕[Conventional technology]

従来、浅い接合及び微小コンタクトを有する0MO8に
おいて、AI −S i等のAl系配線からのAlス・
9イク等による不純物拡散領域の突き抜は及び3i析出
によるコンタクト抵抗増加を防ぐ為に、コンタクトでは
例えばAJ−8t/Ti−Wのバリアメタル構造を用い
ていた。以下、第2図に基き従来例を説明する。
Conventionally, in OMO8 with shallow junctions and minute contacts, Al traces from Al-based interconnects such as AI-Si
In order to prevent penetration of the impurity diffusion region by 9-iron etching and an increase in contact resistance due to 3i precipitation, a barrier metal structure of AJ-8t/Ti-W, for example, was used for the contact. Hereinafter, a conventional example will be explained based on FIG.

まず、N型シリコン基板11にPウェル12及びNウェ
ル13を夫々形成し、次に素子分離工程を経てフィール
ド酸化膜14を形成することによシ基板をアクティブ領
域11aとフィールド領域11bとに分離する。次いで
、夫々のアクティブ領域11a上にゲート酸化膜15及
びポリクリコンr−)電極(N型)16を形成する。
First, a P well 12 and an N well 13 are formed on an N-type silicon substrate 11, and then a field oxide film 14 is formed through an element isolation process to separate the substrate into an active region 11a and a field region 11b. do. Next, a gate oxide film 15 and a polycone r-) electrode (N type) 16 are formed on each active region 11a.

しかる後、f−)絶縁膜15及びポリシリコンゲート電
極16をマスクとして、基板にN型不純物及び2世不純
物のイオン注入を行い、夫々のアクティブ領域11aに
?型拡散領域17及びP+型拡散領域18を形成する。
After that, f-) Using the insulating film 15 and the polysilicon gate electrode 16 as a mask, ions of N-type impurities and second-generation impurities are implanted into the substrate into each active region 11a. A type diffusion region 17 and a P+ type diffusion region 18 are formed.

次に中間絶縁膜20を積層し、更に各拡散領域17.1
8及びポリシリコンゲート電極16上に、夫々コンタク
トホール21を形成する。この後、バリアメタル22及
びAj層23から成るバリアメタル構造の配線層24を
形成し、同一基板にNMOS 25とPMOS26とを
作シ込む。
Next, the intermediate insulating film 20 is laminated, and each diffusion region 17.1 is further laminated.
Contact holes 21 are formed on the polysilicon gate electrode 8 and the polysilicon gate electrode 16, respectively. Thereafter, a wiring layer 24 having a barrier metal structure consisting of a barrier metal 22 and an Aj layer 23 is formed, and an NMOS 25 and a PMOS 26 are formed on the same substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来のコンタクト構造では、0
MO8の場合、P型拡散領域上コンタクトにおいてはS
lが析出し易いことと相まって、コンタクト径が111
m口程度になると、コンタクト抵抗が数に97個と非常
に高くなってしまうという問題があった。
However, in the conventional contact structure described above, 0
In the case of MO8, in the contact on the P type diffusion region, S
Coupled with the fact that l is easy to precipitate, the contact diameter is 111
When the number of contacts is about m, there is a problem in that the contact resistance becomes extremely high, 97 contacts in number.

従って1本発明は以上述べた問題を解消し、P+型拡散
領域上コンタクトにてコンタクト抵抗の低いバリアメタ
ル構造を有するCMO8半導体装置の製造方法を提供す
ることを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a CMO8 semiconductor device having a barrier metal structure with a low contact resistance in a contact on a P+ type diffusion region.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はバリアメタル構造を用いた0MO8半導体装置
の製造方法であって、半導体基板上に形成された中間絶
縁膜にてN+m及びP+型拡散領域に対応する個所を含
む複数の個所にコンタクトホールを開孔し九後、酸化処
理を施し、しかる後にN”!拡散領域とP+型拡散領域
とに形成された酸化膜の膜厚差を利用してp+am散領
域にのみセルファラインでP型不純物をイオン注入し、
その表面部にP 型拡散領域を形成するようにしたもの
である。
The present invention is a method for manufacturing an 0MO8 semiconductor device using a barrier metal structure, in which contact holes are formed at a plurality of locations including locations corresponding to N+m and P+ type diffusion regions in an intermediate insulating film formed on a semiconductor substrate. After nine holes have been opened, oxidation treatment is performed, and then P-type impurities are added to only the p+am diffusion region using a self-line, using the difference in the thickness of the oxide film formed between the N''! diffusion region and the P+ type diffusion region. ion implantation,
A P type diffusion region is formed in the surface portion.

〔作 用〕[For production]

本発明は以上のように、P型拡散領域の表面部にのみセ
ルファラインで不純物濃度の高いP 型拡散領域を形成
するようにしている。この為、コンタクトホールを通し
てバリアメタル構造の配線層全形成する場合、PW拡散
領域とのコンタクト部ではキャリアが通シ易くなるので
、コンタクト抵抗を低減できる。また弐面部での高不純
物濃度効果から、A!スパイク等を抑制できる。
As described above, in the present invention, a P type diffusion region with a high impurity concentration is formed by self-line only on the surface portion of the P type diffusion region. Therefore, when the entire wiring layer of the barrier metal structure is formed through the contact hole, carriers can easily pass through the contact portion with the PW diffusion region, so that the contact resistance can be reduced. Also, due to the high impurity concentration effect on the second side, A! Spikes, etc. can be suppressed.

〔実施例〕〔Example〕

以下、第1図に基き本発明の一実施例を詳細に説明する
。なお、第2図との同一または相当個所には詞−符号ま
たは相当符号を付し、その説明を省略する。
Hereinafter, one embodiment of the present invention will be described in detail based on FIG. Incidentally, the same or equivalent parts as in FIG. 2 are given numerals or equivalent numerals, and their explanations are omitted.

まずwc1図(a)は、N型シリコン基板から成る半導
体基板11に素子分離を行った後、ゲート絶縁膜15,
15a、N型ポリシリコンから成るゲート電極(ポリシ
リコンf−)電極)16,16a。
First, in Figure 1 (a) of wc1, after element isolation is performed on a semiconductor substrate 11 made of an N-type silicon substrate, a gate insulating film 15,
15a, gate electrode (polysilicon f-) electrode) 16, 16a made of N-type polysilicon;

!型拡散領域17.P+型拡散領域18、中間絶縁[2
0を夫々形成し、更にこの中間絶縁膜20の所定個所に
コンタクトホール21,21aを穿った状態を示してい
る。図中、ll&はアクティブ領域、11 btiフィ
ールド領域、12はPウェル。
! Mold diffusion region 17. P+ type diffusion region 18, intermediate insulation [2
0 is formed, respectively, and contact holes 21 and 21a are further formed at predetermined locations in this intermediate insulating film 20. In the figure, ll& is an active region, 11 is a bti field region, and 12 is a P well.

131’iNウエル、また14はフィールド酸化膜であ
る。
131'iN well, and 14 is a field oxide film.

次に@111(b)の如く、酸化処理を施して基板の各
コンタクトホール21,21a位置に酸化gE19゜1
9aを夫々形成する。ここでNMO8形成予定領域にお
いては、N+型拡散領域17及びポリシリコンff−)
電極16の不純物濃度は2×10〜5×10 1ulK
  と、PMO8形成予定領域でのP型拡散領域18の
不純物濃度5×lO〜lXl0 m  に比べて高くな
っている。この為、酸化処理を施すとこの不純物濃度差
によシ、?型拡散領域17及びプリシリコン?−)電極
16上のコンタクトホール21位置く形成される酸化膜
19は300〜500A程度、一方PW拡散領域18上
のコンタクトホール27a位置に形成される酸化膜19
aは100〜200A程度となシ膜厚差を有することと
なる。
Next, as shown in @111(b), oxidation treatment is performed to oxidize gE19°1 at each contact hole 21, 21a position of the substrate.
9a are formed respectively. Here, in the area where NMO8 is planned to be formed, N+ type diffusion region 17 and polysilicon ff-)
The impurity concentration of the electrode 16 is 2×10 to 5×10 1ulK
This is higher than the impurity concentration of 5×1O to 1X10 m in the P-type diffusion region 18 in the region where the PMO 8 is planned to be formed. For this reason, if oxidation treatment is applied, this difference in impurity concentration will be avoided. Mold diffusion region 17 and pre-silicon? -) The oxide film 19 formed at the contact hole 21 position on the electrode 16 has a thickness of about 300 to 500A, while the oxide film 19 formed at the contact hole 27a position on the PW diffusion region 18
a has a film thickness difference of about 100 to 200A.

なお、PMO8形成予定領域のポリシリコンゲート電極
(N凰)16a上には、NMO8形成予定領域の場合と
同様の膜厚の厚い酸化膜19が形成される。
Note that a thick oxide film 19 similar to that in the NMO8 formation region is formed on the polysilicon gate electrode (N-o) 16a in the PMO8 formation region.

しかる後、P型不純物イオンとしてBF227を、例え
ば20〜40 KeV程度の低加速エネルギーを以って
イオン注入する。この時、酸化膜19.19aの膜厚差
によ、D、NMO8形成予定領域の?型拡散領域17及
びポリシリコンff−)電極16中にはP温不純物イオ
ンは注入されず、PMO8形成予定領域のP型拡散領域
18のコンタクトホール21a位置にのみイオン注入さ
れ、P 型不純物層1g&が形成される。
Thereafter, BF227 ions are implanted as P-type impurity ions with a low acceleration energy of, for example, about 20 to 40 KeV. At this time, due to the difference in the thickness of the oxide films 19 and 19a, the area D and NMO8 are planned to be formed. P-type impurity ions are not implanted into the type diffusion region 17 and the polysilicon ff-) electrode 16, but are implanted only at the contact hole 21a position of the P-type diffusion region 18 in the PMO 8 formation area, and the P-type impurity layer 1g& is formed.

次いで第1図(e)に示すように、アニール処理を施し
てイオン注入しfcP型不純物を活性化させることによ
シ、P型拡散領域工8の表面近傍にP″−1型拡散領域
18b’に形成する。この後、酸化膜19゜19aを除
去した後、コンタクトホール21,21aを通してバリ
アメタル22.22&及びA1層から成る金属層23,
23aとで構成されるバリアメタル構造の配線層24 
; 22+23 、24a;22a+23aを夫々形成
し、同一基板にNMO825とPMO826とを作シ込
む。
Next, as shown in FIG. 1(e), by performing an annealing treatment and ion implantation to activate the fcP type impurity, a P''-1 type diffusion region 18b is formed near the surface of the P type diffusion region 8. After that, after removing the oxide film 19.degree. 19a, the barrier metal 22, 22& and the metal layer 23, which is made of the A1 layer, are formed through the contact holes 21, 21a.
23a and a wiring layer 24 having a barrier metal structure.
22+23, 24a; 22a+23a are formed, respectively, and NMO 825 and PMO 826 are formed on the same substrate.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明し九ように1本発明によればP+型拡
散領域の表面部にのみセルファラインでP++型拡散領
域を形成するようにしている為1M スノ々イク等に強
いバリアメタル構造の配線層を形成きるのでCMO8半
導体装置の高性能化及び高信頼度化を実現することがで
きるという効果がある。
As described above in detail, according to the present invention, the P++ type diffusion region is formed only on the surface of the P+ type diffusion region by self-line, so that the barrier metal structure is resistant to 1M snow leakage, etc. Since wiring layers can be formed, there is an effect that higher performance and higher reliability of the CMO8 semiconductor device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する工程断面図、@2
図は従来例を説明する要部断面図である。 11・・・半導体基板(N型クリコン基板)、Ila・
・・アクティブ領域、12−・・Pウェル、13・・・
Nウェル、15,15a−・・ゲート絶縁膜、1611
6a・・・r−ト電極(N型ポリシリコン)、17・・
・N型拡散領域、18・・・PW拡散領域、18a・・
・P 型不純物層、18b・・・P 型拡散領域、19
.19a・・・酸化膜、20・・・中間絶縁膜、21,
21a・・・コンタクトホール、22,22a・・・バ
リアメタル。 23 、23 &−・・金属層(AJ)、 24 、2
4 a−・・配線層、25−・NMO8,26・・・P
MO8,27・・・ P型不純物イオン(BF2)。
Fig. 1 is a process cross-sectional view explaining one embodiment of the present invention, @2
The figure is a sectional view of a main part explaining a conventional example. 11... Semiconductor substrate (N-type crystal substrate), Ila.
...Active region, 12-...P well, 13...
N well, 15, 15a--gate insulating film, 1611
6a...r-to electrode (N-type polysilicon), 17...
・N type diffusion region, 18...PW diffusion region, 18a...
・P type impurity layer, 18b...P type diffusion region, 19
.. 19a... Oxide film, 20... Intermediate insulating film, 21,
21a... Contact hole, 22, 22a... Barrier metal. 23, 23 &--metal layer (AJ), 24, 2
4 a-... wiring layer, 25-...NMO8, 26...P
MO8,27... P-type impurity ion (BF2).

Claims (1)

【特許請求の範囲】[Claims] (1)(a)ゲート絶縁膜とゲート電極、及びそれらの
周辺部にN^+型拡散領域とP^+型拡散領域とを有す
る半導体基板上に中間絶縁膜を形成すると共に、少なく
とも上記N^+型拡散領域と上記P^+型拡散領域に対
応する個所にコンタクトホールを開孔する工程と、 (b)基板に酸化処理を施して、少なくとも上記N^+
型拡散領域及び上記P^+型拡散領域上に夫々厚目及び
薄目の酸化膜を形成し、しかる後に上記P^+型拡散領
域にセルフアラインでP型不純物をイオン注入する工程
と、 (c)上記イオン注入されたP型不純物を活性化して、
上記P^+型拡散領域の表面部にP^+^+型拡散領域
を形成し、この後上記コンタクトホールを通してバリア
メタル構造の配線層を形成する工程とを含むことを特徴
とする半導体装置の製造方法。
(1) (a) An intermediate insulating film is formed on a semiconductor substrate having a gate insulating film, a gate electrode, and an N^+ type diffusion region and a P^+ type diffusion region in their peripheral areas, and at least the above N^+ type diffusion region is formed on the semiconductor substrate. (b) performing oxidation treatment on the substrate to form at least the above N^+ type diffusion region;
forming thick and thin oxide films on the P^+ type diffusion region and the P^+ type diffusion region, respectively, and then ion-implanting P type impurities into the P^+ type diffusion region in a self-aligned manner; ) Activating the ion-implanted P-type impurity,
A semiconductor device comprising the steps of: forming a P^+^+ type diffusion region on a surface portion of the P^+ type diffusion region, and then forming a wiring layer having a barrier metal structure through the contact hole. Production method.
JP61178637A 1986-07-31 1986-07-31 Manufacture of semiconductor device Pending JPS6336555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178637A JPS6336555A (en) 1986-07-31 1986-07-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178637A JPS6336555A (en) 1986-07-31 1986-07-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6336555A true JPS6336555A (en) 1988-02-17

Family

ID=16051938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178637A Pending JPS6336555A (en) 1986-07-31 1986-07-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6336555A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274454A (en) * 1988-04-26 1989-11-02 Seiko Epson Corp Semiconductor and manufacture thereof
JPH01312868A (en) * 1988-06-10 1989-12-18 Fujitsu Ltd Manufacture of semiconductor device
JPH02208961A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH1056065A (en) * 1997-06-02 1998-02-24 Seiko Epson Corp Semiconductor device and manufacturing method thereof
US5904519A (en) * 1996-06-20 1999-05-18 Nec Corporation Method of manufacturing Bi-CMOS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274454A (en) * 1988-04-26 1989-11-02 Seiko Epson Corp Semiconductor and manufacture thereof
JPH01312868A (en) * 1988-06-10 1989-12-18 Fujitsu Ltd Manufacture of semiconductor device
JPH02208961A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Manufacture of semiconductor device
US5904519A (en) * 1996-06-20 1999-05-18 Nec Corporation Method of manufacturing Bi-CMOS
JPH1056065A (en) * 1997-06-02 1998-02-24 Seiko Epson Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR940009360B1 (en) Semiconductor device and manufacturing method thereof
JPH0426542B2 (en)
JPH0653168A (en) Manufacture of titanium silicide contact
JPH08213479A (en) Manufacture of mis transistor and semiconductor device
JPS6245708B2 (en)
JPS6336555A (en) Manufacture of semiconductor device
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPS61182267A (en) Manufacture of semiconductor device
EP0712152B1 (en) Method of manufacturing a semiconductor device
JP2550691B2 (en) Method for manufacturing semiconductor device
JPH06295983A (en) Semiconductor device and its manufacture
JPS621276A (en) Mos type semiconductor device
JPH07161826A (en) Manufacture of semiconductor device
JPH0685178A (en) Semiconductor integrated circuit device
JPS61287160A (en) Manufacture of mos type semiconductor device
JP2720509B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH06132523A (en) Manufacture of mos transistor
JP2720592B2 (en) Method for manufacturing semiconductor device
JP2828644B2 (en) Method for manufacturing semiconductor integrated circuit
JPS60134469A (en) Manufacture of semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPH0379080A (en) High breakdown strength mos transistor
JPH0897292A (en) Production of mos transistor and complementary mos transistor
JPH08288399A (en) Manufacture of cmos semiconductor device
JPS62181459A (en) Manufacture of semiconductor device