JP2720592B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2720592B2
JP2720592B2 JP2254454A JP25445490A JP2720592B2 JP 2720592 B2 JP2720592 B2 JP 2720592B2 JP 2254454 A JP2254454 A JP 2254454A JP 25445490 A JP25445490 A JP 25445490A JP 2720592 B2 JP2720592 B2 JP 2720592B2
Authority
JP
Japan
Prior art keywords
contact hole
type impurity
forming
polycrystalline
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2254454A
Other languages
Japanese (ja)
Other versions
JPH04132226A (en
Inventor
淳司 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2254454A priority Critical patent/JP2720592B2/en
Publication of JPH04132226A publication Critical patent/JPH04132226A/en
Application granted granted Critical
Publication of JP2720592B2 publication Critical patent/JP2720592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に金属配線
の形成方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a metal wiring.

〔従来の技術〕[Conventional technology]

従来、半導体装置の金属配線としては、アルミニウム
を主成分とする金属が用いられている。最近の半導体装
置の集積度の向上にともない金属配線も微細化され、ス
トレスマイグレーションによる断線が問題となってきて
いる。アルミニウムを主成分とした金属配線を用いた従
来技術について第2図を用いて説明する。第2図(a)
〜(e)は従来の半導体装置の金属配線形成方法を説明
するための工程順に配置した半導体チップの断面図であ
る。
2. Description of the Related Art Conventionally, a metal containing aluminum as a main component has been used as a metal wiring of a semiconductor device. With the recent improvement in the degree of integration of semiconductor devices, metal wiring has also been miniaturized, and disconnection due to stress migration has become a problem. A conventional technique using a metal wiring containing aluminum as a main component will be described with reference to FIG. Fig. 2 (a)
FIGS. 1E to 1E are cross-sectional views of semiconductor chips arranged in the order of steps for explaining a conventional method of forming a metal wiring of a semiconductor device.

まず第2図(a)に示すように、P型シリコン基板1
上にトランジスタ等の機能素子としてN型不純物層2,フ
ィールド酸化シリコン膜4,酸化シリコン膜5等を形成
後、公知のCVD技術を用い厚さ0.8μmの酸化シリコン膜
3を成長させる。次に第2図(b)に示すように、機能
素子間の接続の為コンタクト孔6を開孔し、全面に多結
晶シリコン膜7を400〜500Åの厚さに成長させる。
First, as shown in FIG.
After forming an N-type impurity layer 2, a field silicon oxide film 4, a silicon oxide film 5 and the like as functional elements such as transistors thereon, a 0.8 μm thick silicon oxide film 3 is grown by using a known CVD technique. Next, as shown in FIG. 2 (b), a contact hole 6 is opened for connection between functional elements, and a polycrystalline silicon film 7 is grown to a thickness of 400 to 500 ° over the entire surface.

次に第2図(c)に示すように、イオン注入技術を用
いてN型不純物としてリンを70keVの加速エネルギーで
基板上全面に導入し、コンタクト孔内にN型不純物層8
を形成する。次で800〜1000℃の熱処理を行なう。
Next, as shown in FIG. 2 (c), phosphorus is introduced as an N-type impurity over the entire surface of the substrate at an acceleration energy of 70 keV using an ion implantation technique, and an N-type impurity layer 8 is formed in the contact hole.
To form Next, heat treatment at 800 to 1000 ° C. is performed.

次に第2図(d)に示すように、アルミニウム膜0.8
μmの厚さに被着後、公知のホトエッチングの技術を用
いてアルミニウム配線10に整形し、コンタクト孔6内で
のN型不純物層2とアルミニウム配線10の接触抵抗を下
げる為350〜450℃での熱処理を行なう。この時通常第2
図(e)に示すように、多結晶シリコン膜7はアルミニ
ウム配線10と反応してなくなる。
Next, as shown in FIG.
After being deposited to a thickness of .mu.m, it is shaped into an aluminum wiring 10 using a known photo-etching technique, and 350 to 450.degree. C. to reduce the contact resistance between the N-type impurity layer 2 and the aluminum wiring 10 in the contact hole 6. Is performed. At this time, usually the second
As shown in FIG. 3E, the polycrystalline silicon film 7 does not react with the aluminum wiring 10 and disappears.

従来例の多結晶シリコン膜7は400〜500℃の熱処理時
にコンタクト孔内6でのアロイスパイク防止の為設けら
れている。
The conventional polycrystalline silicon film 7 is provided to prevent alloy spikes in the contact hole 6 during heat treatment at 400 to 500 ° C.

またN型不純物層8は不純物としてリンを用い、イオ
ン注入による加速エネルギーが70keVの為イオン注入後
のシリコン中での不純物の深さ(以下RPと記す)は約85
0Åで、多結晶シリコン膜7の膜厚より深く、十分P型
シリコン基板1中に導入され、イオン注入後に行なわれ
る800〜1000℃の熱処理で十分深く拡散されるため、コ
ンタクト部でのリークを防止する事ができる。
The phosphorus is used as N-type impurity layer 8 is an impurity, acceleration energy due to ion implantation (hereinafter referred to as R P) depth of impurities in silicon after the ion implantation for the 70keV to about 85
0 °, deeper than the thickness of the polycrystalline silicon film 7, sufficiently introduced into the P-type silicon substrate 1 and diffused sufficiently deep by the heat treatment at 800 to 1000 ° C. performed after the ion implantation. Can be prevented.

なお、従来多結晶シリコン膜7中への不純物導入方法
として、不純物を含む雰囲気で熱処理を行ない導入する
方法があるが、この方法では多結晶シリコン膜7中の不
純物濃度のコントロールがむずかしい。また相補型MOSI
Cのように、N型不純物層上のコンタクト孔にN型不純
物を、P型不純物層上のコンタクト孔にP型不純物を導
入する場合に、製造工程が複雑になるという欠点があ
る。
Conventionally, as a method for introducing impurities into the polycrystalline silicon film 7, there is a method in which heat treatment is performed in an atmosphere containing impurities. However, in this method, it is difficult to control the impurity concentration in the polycrystalline silicon film 7. Complementary MOSI
When an N-type impurity is introduced into a contact hole on an N-type impurity layer and a P-type impurity is introduced into a contact hole on a P-type impurity layer as in C, there is a disadvantage that the manufacturing process becomes complicated.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の半導体装置の金属配線の製造方法は、
金属膜を所定のパターンに整形した後コンタクト部での
金属膜とN型不純物層との接触抵抗を下げる目的で行な
われる、350〜450℃の熱処理で多結晶シリコン膜7はア
ルミニウムと反応しなくなる。
The above-described conventional method for manufacturing a metal wiring of a semiconductor device includes:
After the metal film is shaped into a predetermined pattern, the polycrystalline silicon film 7 does not react with aluminum by a heat treatment at 350 to 450 ° C. performed for the purpose of reducing the contact resistance between the metal film and the N-type impurity layer at the contact portion. .

また仮に多結晶シリコン膜が残るとしても、リンのイ
オン注入の加速エネルギーは70keVなのでRPが約850Åと
なり、多結晶シリコン膜7の膜厚400〜500Åに対して大
きいため、イオン注入される不純物はほとんど通過す
る。従って多結晶シリコン膜中には不純物はほとんど導
入されないため、多結晶シリコン膜は高抵抗のままとな
る。
Further, even if the polycrystalline silicon film remains, since the acceleration energy of phosphorus ion implantation is greater with respect to 70keV so R P of about 850Å, and the polycrystalline silicon film 7 thickness 400~500A, impurity ions are implanted Almost passes. Therefore, since almost no impurities are introduced into the polycrystalline silicon film, the polycrystalline silicon film remains at high resistance.

つまり従来の半導体装置の金属配線の製造方法では、
前述のストレスマイグレーシンにより金属配線が断線す
ると、そのまま配線の断線につながるという欠点があっ
た。
In other words, in the conventional method for manufacturing a metal wiring of a semiconductor device,
When the metal wiring is broken by the stress migration described above, there is a drawback that the wiring is directly broken.

〔課題を解決するための手段〕[Means for solving the problem]

第1の本発明の半導体装置の製造方法は、多結晶半導
体層とその上のアルミニウム層からなる積層構造の配線
を有する半導体装置の製造方法において、半導体基板上
に絶縁膜を形成したのちパターニングしてコンタクト孔
を形成する工程と、このコンタクト孔を含む全面に多結
晶半導体層を形成する工程と、同一導電型の不純物を加
速エネルギー条件を変えて前記多結晶半導体層と前記半
導体基板にイオン注入する工程とを含んで構成される。
According to a first method of manufacturing a semiconductor device of the present invention, in the method of manufacturing a semiconductor device having a wiring having a laminated structure including a polycrystalline semiconductor layer and an aluminum layer thereon, an insulating film is formed on a semiconductor substrate and then patterned. Forming a contact hole by etching, forming a polycrystalline semiconductor layer over the entire surface including the contact hole, and implanting impurities of the same conductivity type into the polycrystalline semiconductor layer and the semiconductor substrate by changing acceleration energy conditions. And the step of performing

第2の本発明の半導体装置の製造方法は、多結晶半導
体層とその上のアルミニウム層からなる積層構造の配線
を有する半導体装置の製造方法において、前記半導体基
板上に絶縁膜を形成したのちパターニングしてコンタク
ト孔を形成する工程と、このコンタクト孔を含む全面に
多結晶半導体層を形成する工程と、同一導電性で種類の
異なる不純物のうち第一の不純物を主に前記多結晶半導
体層に他の不純物を主に前記半導体基板にそれぞれイオ
ン注入する工程とを含んで構成される。
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device having a wiring having a laminated structure including a polycrystalline semiconductor layer and an aluminum layer thereon, wherein an insulating film is formed on the semiconductor substrate and then patterned. Forming a contact hole, and forming a polycrystalline semiconductor layer over the entire surface including the contact hole. The first impurity of the same conductivity and different types of impurities is mainly added to the polycrystalline semiconductor layer. Implanting other impurities into the semiconductor substrate.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(a)〜(e)は本発明の第1の実施例を説明
するための工程順に配置した半導体チップの断面図であ
る。
1 (a) to 1 (e) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining a first embodiment of the present invention.

まず第1図(a)に示すように、P型シリコン基板1
上にトランジスタ等の機能素子としてN型不純物層2,フ
ィールド酸化シリコン膜4,酸化シリコン膜5等を形成
後、公知のCVD技術を用いて厚さ0.8μmの酸化シリコン
膜3を成長させる。
First, as shown in FIG. 1 (a), a P-type silicon substrate 1
After forming an N-type impurity layer 2, a field silicon oxide film 4, a silicon oxide film 5 and the like as functional elements such as transistors thereon, a 0.8 μm thick silicon oxide film 3 is grown by using a known CVD technique.

次に第1図(b)に示すように、機能素子間の接続等
の為コンタクト孔6を開孔し、次で多結晶シリコン膜7
を公知のCVD技術を用いて400〜500Åの厚さに成長す
る。
Next, as shown in FIG. 1 (b), a contact hole 6 is opened for connection between functional elements or the like, and then a polycrystalline silicon film 7 is formed.
Is grown to a thickness of 400 to 500 mm using a known CVD technique.

次に第1図(c)に示すように、イオン注入技術を用
いてN型不純物としてリンを70keVの加速エネルギーで
基板全面に導入し、コンタクト孔6内のP型シリコン基
板1内にN型不純物層8を形成する。
Next, as shown in FIG. 1 (c), phosphorus is introduced as an N-type impurity over the entire surface of the substrate at an acceleration energy of 70 keV by ion implantation, and an N-type impurity is introduced into the P-type silicon substrate 1 in the contact hole 6. An impurity layer 8 is formed.

次に第1図(d)に示すように、同様にイオン注入技
術を用いてN型不純物としてリンを30keVの加速エネル
ギーで基板全面に導入しコンタクト孔6内のP型シリコ
ン基板1内に浅いN型不純物層9を形成する。
Next, as shown in FIG. 1 (d), similarly, phosphorus is introduced as an N-type impurity into the entire surface of the substrate with an acceleration energy of 30 keV by using ion implantation technology, and shallow in the P-type silicon substrate 1 in the contact hole 6. An N-type impurity layer 9 is formed.

次に第1図(e)に示すように、アルミニウム膜を厚
さ0.8μmに被着後、公知のホトエッチングの技術を用
いてアルミニウム配線10に整形する。
Next, as shown in FIG. 1 (e), after an aluminum film is applied to a thickness of 0.8 μm, it is shaped into an aluminum wiring 10 using a known photo-etching technique.

本第1の実施例では、リンのイオン注入時の加速エネ
ルギーを従来と同一の70keVと従来と異なる30keVとして
2回イオン注入を行う。従来と同一の70keVの加速エネ
ルギーでイオン注入を行なう時に、コンタクト孔6内の
不純物層8の深さを従来と同じにする。
In the first embodiment, ion implantation is performed twice with the same acceleration energy of 70 keV as the conventional ion and 30 keV different from the conventional ion implantation. When ion implantation is performed at the same acceleration energy of 70 keV as in the conventional case, the depth of the impurity layer 8 in the contact hole 6 is made the same as in the conventional case.

そして30keVの加速エネルギーではリンのRPは約370Å
であるから、400〜500Åの多結晶シリコン膜7中にリン
を不純物として導入する事ができ、多結晶シリコン膜7
を低抵抗とする事ができる。また多結晶シリコン膜7中
の不純物としてのリンの濃度が増加すると、350〜450℃
の熱処理では多結晶シリコン膜7とアルミニウム配線10
との反応を抑える事ができるので、低抵抗の多結晶シリ
コン膜7を残す事ができる。
The phosphorus R P is an acceleration energy of 30keV is about 370Å
Therefore, phosphorus can be introduced as an impurity into the polycrystalline silicon film 7 of 400 to 500 ° C.
Can be reduced in resistance. When the concentration of phosphorus as an impurity in the polycrystalline silicon film 7 increases,
Heat treatment, the polycrystalline silicon film 7 and the aluminum wiring 10
Can be suppressed, so that the low-resistance polycrystalline silicon film 7 can be left.

次に第2の実施例としてリンとヒ素を導入する場合に
ついて説明する。
Next, a case where phosphorus and arsenic are introduced will be described as a second embodiment.

第1図(a)〜(c)を用いて説明したように、コン
タクト孔6を形成した後、多結晶シリコン膜7を400〜5
00Åの厚さに成長させる。次でN型不純物としてリンを
70keVの加速エネルギーで基板全面に導入し、コンタク
ト孔6内のP型シリコン基板1内にN型不純物層8を形
成する。
As described with reference to FIGS. 1A to 1C, after the contact hole 6 is formed, the polycrystalline silicon film 7 is
Grow to a thickness of 00Å. Next, phosphorus as an N-type impurity
An N-type impurity layer 8 is formed in the P-type silicon substrate 1 in the contact hole 6 by introducing the entire surface of the substrate with an acceleration energy of 70 keV.

次にN型不純物としてヒ素を50keVの加速エネルギー
で基板全面にイオン注入し、コンタクト孔6内のP型シ
リコン基板1内にN型不純物層を形成する。
Next, arsenic as an N-type impurity is ion-implanted into the entire surface of the substrate at an acceleration energy of 50 keV to form an N-type impurity layer in the P-type silicon substrate 1 in the contact hole 6.

ヒ素のRPは50keVの加速エネルギーの時約320Åである
ため、厚さ400〜500Åの多結晶シリコン膜7中に導入す
る事ができ、リンを低加速エネルギーで導入した第1の
実施例の時と同一の効果を得る事ができる。
For R P of arsenic is about 320Å when the acceleration energy of 50 keV, can be introduced into the polycrystalline silicon film 7 having a thickness of 400~500A, the first embodiment of introducing phosphorus at a low acceleration energy The same effect as at the time can be obtained.

このように本実施例によれば、コンタクト孔6内に異
なる深さのN型不純物層を別々に形成するので、それぞ
れの濃度をコントロールする事ができる。つまり十分深
いN型不純物層8によりコンタクト部でのリークを抑え
る事ができ、浅いN型不純物層9の濃度を高める事によ
り低い接触抵抗を実現できるという利点がある。
As described above, according to the present embodiment, since the N-type impurity layers having different depths are separately formed in the contact holes 6, the respective concentrations can be controlled. That is, there is an advantage that the leak at the contact portion can be suppressed by the sufficiently deep N-type impurity layer 8 and a low contact resistance can be realized by increasing the concentration of the shallow N-type impurity layer 9.

なお本発明の実施例をP型シリコン基板上にN型不純
物層を形成した例で示したが、これに限定されるもので
はなく、N型シリコン基板上にP型不純物層を形成した
場合や、P型シリコン基板あるいはN型シリコン基板上
にN型不純物層とP型不純物層の両方を形成した場合で
もよいことは勿論である。
Although the embodiment of the present invention has been described with an example in which an N-type impurity layer is formed on a P-type silicon substrate, the present invention is not limited to this. Of course, both the N-type impurity layer and the P-type impurity layer may be formed on the P-type silicon substrate or the N-type silicon substrate.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、アルミニウム膜の下に
低抵抗の多結晶シリコン膜を形成できるので、ストレス
マイグレーションによりアルミニウム膜が断線しても配
線は低抵抗の多結晶シリコン膜で接続されているため断
線不良とはならない。従って信頼性の高い金属配線を有
する半導体装置が得られるという効果がある。
As described above, according to the present invention, since a low-resistance polycrystalline silicon film can be formed under an aluminum film, even if the aluminum film is disconnected due to stress migration, the wiring is connected by the low-resistance polycrystalline silicon film. Therefore, a disconnection failure does not occur. Therefore, there is an effect that a semiconductor device having highly reliable metal wiring can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)及び第2図(a)〜(e)は本発
明の第1の実施例及び従来例を説明するための工程順に
配置した半導体チップの断面図である。 1…P型シリコン基板、2…N型不純物層、3…酸化シ
リコン膜、4…フィールド酸化シリコン膜、5…酸化シ
リコン膜、6…コンタクト孔、7…多結晶シリコン膜、
8…N型不純物層、9…N型不純物層、10…アルミニウ
ム配線。
1 (a) to 1 (e) and 2 (a) to 2 (e) are cross-sectional views of a semiconductor chip arranged in a process order for explaining a first embodiment of the present invention and a conventional example. DESCRIPTION OF SYMBOLS 1 ... P type silicon substrate, 2 ... N type impurity layer, 3 ... silicon oxide film, 4 ... field silicon oxide film, 5 ... silicon oxide film, 6 ... contact hole, 7 ... polycrystalline silicon film
8 N-type impurity layer, 9 N-type impurity layer, 10 aluminum wiring.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多結晶半導体層とその上のアルミニウム層
からなる積層構造の配線を有する半導体装置の製造方法
において、半導体基板上に絶縁膜を形成したのちパター
ニングしてコンタクト孔を形成する工程と、このコンタ
クト孔を含む全面に多結晶半導体層を形成する工程と、
同一導電型の不純物を加速エネルギー条件を変えて前記
多結晶半導体層と前記半導体基板にイオン注入する工程
とを含むことを特徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device having a wiring having a laminated structure composed of a polycrystalline semiconductor layer and an aluminum layer thereon, comprising the steps of: forming an insulating film on a semiconductor substrate and then patterning to form a contact hole; Forming a polycrystalline semiconductor layer over the entire surface including the contact hole;
A method of ion-implanting impurities of the same conductivity type into the polycrystalline semiconductor layer and the semiconductor substrate while changing acceleration energy conditions.
【請求項2】多結晶半導体層とその上のアルミニウム層
からなる積層構造の配線を有する半導体装置の製造方法
において、半導体基板上に絶縁膜を形成したのちパター
ニングしてコンタクト孔を形成する工程と、このコンタ
クト孔を含む全面に多結晶半導体層を形成する工程と、
同一導電型で種類の異なる不純物のうち第一の不純物を
主に前記多結晶半導体層に他の不純物を主に前記半導体
基板にそれぞれイオン注入する工程とを含むことを特徴
とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device having a wiring having a laminated structure composed of a polycrystalline semiconductor layer and an aluminum layer thereover, comprising the steps of: forming an insulating film on a semiconductor substrate and then patterning to form a contact hole; Forming a polycrystalline semiconductor layer over the entire surface including the contact hole;
A step of ion-implanting the first impurity mainly into the polycrystalline semiconductor layer among the impurities of the same conductivity type and different types mainly into the semiconductor substrate, respectively. Method.
JP2254454A 1990-09-25 1990-09-25 Method for manufacturing semiconductor device Expired - Lifetime JP2720592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2254454A JP2720592B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254454A JP2720592B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04132226A JPH04132226A (en) 1992-05-06
JP2720592B2 true JP2720592B2 (en) 1998-03-04

Family

ID=17265242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254454A Expired - Lifetime JP2720592B2 (en) 1990-09-25 1990-09-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2720592B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148422A (en) * 1979-05-09 1980-11-19 Hitachi Ltd Manufacturing of semiconductor device
JPS6377138A (en) * 1986-09-20 1988-04-07 Fujitsu Ltd Manufacture of semiconductor device
JP2624709B2 (en) * 1987-10-07 1997-06-25 株式会社日立製作所 Method for manufacturing semiconductor device
JPH0750696B2 (en) * 1987-12-14 1995-05-31 三菱電機株式会社 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH04132226A (en) 1992-05-06

Similar Documents

Publication Publication Date Title
EP0146895B1 (en) Method of manufacturing semiconductor device
US4459325A (en) Semiconductor device and method for manufacturing the same
US5780330A (en) Selective diffusion process for forming both n-type and p-type gates with a single masking step
US4422885A (en) Polysilicon-doped-first CMOS process
KR940009360B1 (en) Semiconductor device and manufacturing method thereof
JPH0426542B2 (en)
WO1984004852A1 (en) Process for fabricating complementary and nonvolatile type devices on a common substrate
JP3098848B2 (en) Self-aligned planar monolithic integrated circuit vertical transistor process
US5151378A (en) Self-aligned planar monolithic integrated circuit vertical transistor process
JP2720592B2 (en) Method for manufacturing semiconductor device
JP3325692B2 (en) Method for manufacturing semiconductor device
JPS6138858B2 (en)
JP2576664B2 (en) Method for manufacturing NPN transistor
JP2855684B2 (en) Method for manufacturing semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JPS6145392B2 (en)
JP2699421B2 (en) Method for manufacturing semiconductor device
JP2517380B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6154661A (en) Manufacture of semiconductor device
JPH02161750A (en) Manufacture of semiconductor device
JPH11168145A (en) Manufacture of semiconductor device
JPH08264651A (en) Manufacture of semiconductor device
KR20030053551A (en) Blanket polysilicon etchback method
JPH0273628A (en) Manufacture of semiconductor device
JPS6258667B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

EXPY Cancellation because of completion of term