JPS6335814B2 - - Google Patents

Info

Publication number
JPS6335814B2
JPS6335814B2 JP56207530A JP20753081A JPS6335814B2 JP S6335814 B2 JPS6335814 B2 JP S6335814B2 JP 56207530 A JP56207530 A JP 56207530A JP 20753081 A JP20753081 A JP 20753081A JP S6335814 B2 JPS6335814 B2 JP S6335814B2
Authority
JP
Japan
Prior art keywords
turbine
signal
temperature
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56207530A
Other languages
Japanese (ja)
Other versions
JPS58107819A (en
Inventor
Toshiki Furukawa
Hiroshi Takaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP20753081A priority Critical patent/JPS58107819A/en
Publication of JPS58107819A publication Critical patent/JPS58107819A/en
Publication of JPS6335814B2 publication Critical patent/JPS6335814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed

Description

【発明の詳細な説明】 発明の技術分野 本発明はタービン入口温度が所定の温度となる
べく予め定められたタービン排ガス温度曲線に応
じた第1の燃料制御信号と、タービン速度偏差信
号を負荷偏差信号により修正した信号に応じた第
2の燃料制御信号とを低値優先回路により選択
し、この選択された燃料制御信号により燃料制御
を行なうガスタービン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention provides a first fuel control signal according to a predetermined turbine exhaust gas temperature curve so that the turbine inlet temperature becomes a predetermined temperature, and a turbine speed deviation signal as a load deviation signal. The present invention relates to a gas turbine control device that selects a second fuel control signal corresponding to a signal modified by using a low value priority circuit, and performs fuel control based on the selected fuel control signal.

発明の技術的背景 近年、ガスタービンは、コンバインドサイクル
発電プラントとして構成することにより、従来の
火力発電所では得られない高い熱効率を得ること
ができることなどの理由により注目を浴びてい
る。しかしガスタービンの燃料ガス中に含まれる
窒素酸化物(以下NOxと称す)の量が多く規制
値をこえる場合は対策が必要となつてくる。
Technical Background of the Invention In recent years, gas turbines have attracted attention because, by configuring them as combined cycle power plants, they can provide high thermal efficiency that cannot be obtained with conventional thermal power plants. However, if the amount of nitrogen oxides (hereinafter referred to as NOx) contained in the gas turbine fuel gas exceeds the regulatory value, countermeasures will be required.

第1図にNOx対策としてガスタービン燃焼器
内に蒸気又は水を入れる方法を採用した場合のガ
スタービン装置の構成を示す。ガスタービン2
は、コンプレツサ1および発電機などの被駆動機
4と直結され、これらを駆動する。コンプレツサ
1は大気より空気5を吸入し、圧縮して圧縮空気
6を燃焼器3へ送る。また燃料7は燃料制御弁8
により、蒸気9は制御弁10により流量制御され
て燃焼器3へ送られる。燃焼器3では、燃料7が
圧縮空気6により燃焼し高温燃焼ガス11を生成
する。蒸気9は燃焼器3の中に噴射され燃焼ガス
の温度を下げてNOxの発生を低減する。燃焼器
3より出てきた高温燃焼ガス11はガスタービン
2に送られ、ガスタービン2で膨張仕事をする。
タービン排ガス12は大気へ捨てられるか、他の
機器(例えば排熱回収ボイラ)へ送られる。
Figure 1 shows the configuration of a gas turbine system in which a method of introducing steam or water into the gas turbine combustor is adopted as a countermeasure against NOx. gas turbine 2
is directly connected to the compressor 1 and a driven machine 4 such as a generator, and drives these. The compressor 1 takes in air 5 from the atmosphere, compresses it, and sends the compressed air 6 to the combustor 3. Also, the fuel 7 is controlled by the fuel control valve 8.
Accordingly, the flow rate of the steam 9 is controlled by the control valve 10 and the steam 9 is sent to the combustor 3. In the combustor 3, the fuel 7 is combusted by the compressed air 6 to generate high-temperature combustion gas 11. Steam 9 is injected into the combustor 3 to lower the temperature of the combustion gases and reduce the generation of NOx. High-temperature combustion gas 11 coming out of the combustor 3 is sent to the gas turbine 2, where it performs expansion work.
Turbine exhaust gas 12 is dumped into the atmosphere or sent to other equipment (eg, a heat recovery boiler).

ガスタービン2のコンプレツサ1は、大気温度
が低くなると吸入空気量が増加するので、タービ
ン入口圧力が上がり、それに応じてコンプレツサ
吐出圧力PDも上昇する。従つて、タービン入口
温度一定の場合、大気温度が低下するとタービン
の圧力比が増加し、タービンの入口と出口の温度
差が増加するので、タービン排ガス温度は低下す
る。このことを第2図を用いて詳述する。
In the compressor 1 of the gas turbine 2, the intake air amount increases as the atmospheric temperature decreases, so the turbine inlet pressure increases, and the compressor discharge pressure P D also increases accordingly. Therefore, when the turbine inlet temperature is constant, when the atmospheric temperature decreases, the turbine pressure ratio increases and the temperature difference between the turbine inlet and outlet increases, so the turbine exhaust gas temperature decreases. This will be explained in detail using FIG.

第2図はタービン入口温度T1と排ガス温度T2
の作動カーブを示したものであり、横軸はコンプ
レツサ1の吐出圧力PDである。例えば大気温度
が高い時は、タービン入口温度T1はA点、排ガ
ス温度T2は下点の温度で作動する。大気温度が
下つてくるとコンプレツサ吐出圧力PDが増加す
るので、入口温度T1をA点→B点→C点→D点
と一定とした場合、排ガス温度T2はF点→G点
→H点→J点と低下する。
Figure 2 shows turbine inlet temperature T 1 and exhaust gas temperature T 2
The horizontal axis is the discharge pressure P D of the compressor 1. For example, when the atmospheric temperature is high, the turbine inlet temperature T 1 operates at point A and the exhaust gas temperature T 2 operates at the lower point. As the atmospheric temperature decreases, the compressor discharge pressure P D increases, so if the inlet temperature T 1 is kept constant as point A → point B → point C → point D, the exhaust gas temperature T 2 will change from point F → point G → It decreases from H point to J point.

ガスタービン2の入口温度T1と排ガス温度T2
とは上記のような特性を示すので、従来の制御シ
ステムではタービン入口温度T1を一定とした場
合のタービン排ガス温度T2のカーブに従つて燃
料制御を行なつている。
Gas turbine 2 inlet temperature T 1 and exhaust gas temperature T 2
shows the above-mentioned characteristics, so in conventional control systems, fuel control is performed according to the curve of the turbine exhaust gas temperature T 2 when the turbine inlet temperature T 1 is constant.

背景技術の問題点 このような従来の制御システムにより運転して
いる時(例えば第2図中のB点およびG点)、燃
焼器3の中に蒸気噴射を行なうとタービン入口圧
力が上がるので、これに応じてコンプレツサ吐出
圧力PDも上昇する。即ち、排ガス温度T2はG点
からH点に移動する。この時タービン入口温度
T1はC点にはならずE点になり少し温度が低下
する。
Problems of the Background Art When operating with such a conventional control system (for example, points B and G in FIG. 2), when steam is injected into the combustor 3, the turbine inlet pressure increases. Correspondingly, the compressor discharge pressure P D also increases. That is, the exhaust gas temperature T 2 moves from point G to point H. At this time, the turbine inlet temperature
T 1 does not become point C, but becomes point E, and the temperature decreases a little.

これは次のような理由による。タービンの一般
式を下記に示す。
This is due to the following reasons. The general formula of the turbine is shown below.

上式のKは比熱比であり、燃焼ガス中に水分が
増加するとともに小さくなるので、入口温度T1
が一定の場合排ガス温度T2は大きくなる。即ち、
蒸気噴射を行なうことによつて、入口温度T1
B点からC点に移つた場合、排ガス温度T2はG
点からH点に移らずK点に移る。しかし、従来の
制御システムではK点での運転は許されないので
H点およびE点で運転せざるを得ないこととな
る。
K in the above equation is the specific heat ratio, which decreases as moisture increases in the combustion gas, so the inlet temperature T 1
When is constant, the exhaust gas temperature T 2 increases. That is,
When the inlet temperature T 1 moves from point B to point C by steam injection, the exhaust gas temperature T 2 changes to G
Move from point to point K instead of point H. However, the conventional control system does not allow operation at point K, so operation must be performed at point H and point E.

このように従来の制御システムでは蒸気噴射を
行なつた場合、入口温度T1を下げて運転するこ
ととなり、ガスタービンの効率が悪いという欠点
があつた。
As described above, in conventional control systems, when steam injection is performed, the inlet temperature T1 must be lowered during operation, which has the disadvantage that the efficiency of the gas turbine is poor.

発明の目的 本発明は上記事情を考慮してなされたもので蒸
気噴射量などの燃焼条件が変化してもガスタービ
ンの効率を下げることなく運転することができる
ガスタービン制御装置を提供することを目的とす
る。
Purpose of the Invention The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a gas turbine control device that can operate the gas turbine without reducing its efficiency even when combustion conditions such as the amount of steam injection change. purpose.

発明の概要 この発明を達成するため本発明は燃焼ガス中の
水蒸気量を検出する検出装置と、この検出装置で
検出された検出信号に基づきタービン排ガス温度
曲線を補正する補正装置とを備えており、この補
正装置により補正されたタービン排ガス温度曲線
に応じた燃料制御を行なう。
Summary of the Invention In order to achieve the present invention, the present invention includes a detection device that detects the amount of water vapor in combustion gas, and a correction device that corrects a turbine exhaust gas temperature curve based on a detection signal detected by the detection device. , performs fuel control according to the turbine exhaust gas temperature curve corrected by this correction device.

タービンでの燃焼ガスの温度降下量はその圧力
比と燃焼ガスの比熱で決定される。燃焼ガスの成
分は窒素、酸素、水蒸気、二酸化炭素等である
が、そのうち主として重量当りの比熱(kcal/Kg
℃)が特別大きい水蒸気の比率によつて燃焼ガス
の比熱が決まる。即ち、燃焼ガス中の水蒸気量と
圧力比でタービンでの温度降下量が決まると言え
る。燃焼ガス中の水蒸気の比率が変わる要素とし
ては蒸気噴射量、大気の温度、燃料の種類などが
考えられる。かかる点に着目して、これらの要素
のうち1つ(例えば蒸気噴射量)又は2つ以上の
検出により燃焼ガス中の水蒸気量を検出し、その
検出信号に基づいて排ガス温度曲線と補正するよ
うにしたことが本発明の骨子である。上記要素の
うち上記噴射量は、従来技術の説明において述べ
たように、燃焼ガス中の水蒸気量に大きく影響し
排ガス温度曲線を左右するから、少くとも蒸気噴
射量の検出信号に基づく補正は行なうことが望ま
しい。更にこれに大気温度や燃料の種類に基づく
補正も加えればよりきめ細かな補正が可能であ
る。
The amount of temperature drop of the combustion gas in the turbine is determined by its pressure ratio and the specific heat of the combustion gas. The components of combustion gas are nitrogen, oxygen, water vapor, carbon dioxide, etc., but the main component is specific heat per weight (kcal/Kg
The specific heat of the combustion gas is determined by the proportion of water vapor with a particularly large temperature (°C). That is, it can be said that the amount of temperature drop in the turbine is determined by the amount of water vapor in the combustion gas and the pressure ratio. Possible factors that change the ratio of water vapor in combustion gas include the amount of steam injection, atmospheric temperature, and the type of fuel. Focusing on this point, the amount of water vapor in the combustion gas is detected by detecting one or more of these elements (for example, the amount of steam injection), and the exhaust gas temperature curve is corrected based on the detected signal. This is the gist of the present invention. Of the above factors, the injection amount greatly affects the amount of water vapor in the combustion gas and influences the exhaust gas temperature curve, as mentioned in the explanation of the prior art, so at least corrections should be made based on the detection signal of the amount of steam injection. This is desirable. Furthermore, if corrections based on atmospheric temperature and fuel type are added to this, more detailed corrections can be made.

このように、各種の燃焼条件のうち燃焼ガス温
度降下に特に大きい影響を及ぼす水蒸気量に基づ
いて補正を行なうため、燃焼条件の変化に対して
高い対応能力を得ることができる。
In this way, since the correction is performed based on the amount of water vapor which has a particularly large effect on the combustion gas temperature drop among various combustion conditions, it is possible to obtain a high ability to respond to changes in combustion conditions.

発明の実施例 第3図は本発明の一実施例によるガスタービン
制御装置を示したものである。
Embodiment of the Invention FIG. 3 shows a gas turbine control device according to an embodiment of the invention.

ガスタービン排ガス12の実測温度信号13
は、蒸気噴射しないときは、タービン排ガス温度
曲線設定器14の信号から加減算器15で減算さ
れ、比例積分器16に入力され第1の燃料制御信
号25aとなる。一方実測速度信号17と、速度
設定信号18は加減算器23で減算され、偏差信
号を得る。実負荷信号19と負荷指令信号20も
加減算器21でその偏差信号を得る。この偏差信
号は積分器22で積分され加減算器23に入力さ
れる。加減算器23では速度偏差信号が負荷偏差
信号で修正され、比例演算器24により第2の燃
料制御信号25bとなる。第1の燃料制御信号2
5aと第2の燃料制御信号25bは低値優先回路
25において低値が選択され、その選択された燃
料制御信号に基づき燃料制御弁8により燃料7を
制御する。
Actual temperature signal 13 of gas turbine exhaust gas 12
When not injecting steam, is subtracted from the signal from the turbine exhaust gas temperature curve setter 14 by the adder/subtractor 15, and is input to the proportional integrator 16 to become the first fuel control signal 25a. On the other hand, the measured speed signal 17 and the speed setting signal 18 are subtracted by an adder/subtractor 23 to obtain a deviation signal. The actual load signal 19 and the load command signal 20 are also used in an adder/subtractor 21 to obtain their deviation signals. This deviation signal is integrated by an integrator 22 and input to an adder/subtracter 23. The speed deviation signal is corrected by the load deviation signal in the adder/subtractor 23, and becomes the second fuel control signal 25b by the proportional calculator 24. First fuel control signal 2
5a and the second fuel control signal 25b are selected to have low values in the low value priority circuit 25, and the fuel 7 is controlled by the fuel control valve 8 based on the selected fuel control signal.

制御弁10により蒸気9を燃焼器3の中に噴射
するときは、流量計26により蒸気流量が検出さ
れ補正器27に入力される。補正器27は関数発
生器28と加減算器29で構成されている。蒸気
流量信号に基づき関数発生器27は所定の補正信
号を出力し、この補正信号はタービン排ガス温度
曲線設計器14の信号に加減算器29で加算され
る。すなわち蒸気流量信号に基づいて排ガス温度
曲線が補正されたこととなる。
When the control valve 10 injects the steam 9 into the combustor 3, the flow meter 26 detects the steam flow rate and inputs it to the corrector 27. The corrector 27 is composed of a function generator 28 and an adder/subtractor 29. Based on the steam flow rate signal, the function generator 27 outputs a predetermined correction signal, and this correction signal is added to the signal from the turbine exhaust gas temperature curve designer 14 in an adder/subtractor 29 . In other words, the exhaust gas temperature curve has been corrected based on the steam flow rate signal.

従つてタービン排ガス温度T2は、第2図で示
すH点ではなくK点で運転することができ、ター
ビン入口温度T1をE点ではなくC点とすること
ができるので、蒸気噴射を行なつた場合でもター
ビン入口温度T1を下げることなく、所定の温度
で運転することができる。すなわちガスタービン
2の熱効率の高い所で運転でき、燃料の節約とな
る。
Therefore, the turbine exhaust gas temperature T 2 can be operated at point K instead of point H shown in Fig. 2, and the turbine inlet temperature T 1 can be set at point C instead of point E, so steam injection can be performed. Even if the turbine becomes hot, the turbine can be operated at a predetermined temperature without lowering the turbine inlet temperature T1 . In other words, the gas turbine 2 can be operated at a location with high thermal efficiency, resulting in fuel savings.

また、第一の実施例では補正器27の関数設定
器28への入力は蒸気流量信号であつたが、他に
タービン排ガス12の排ガス量信号、大気の相対
湿度信号、燃料7の種類などの燃焼条件をも補正
器27の関数設定器28へ入力することとすれ
ば、これらの燃焼条件に従つたよりきめ細かい補
正をすることができる。
Further, in the first embodiment, the input to the function setting device 28 of the corrector 27 was the steam flow rate signal, but in addition, the input to the function setting device 28 of the corrector 27 was the exhaust gas amount signal of the turbine exhaust gas 12, the relative humidity signal of the atmosphere, the type of fuel 7, etc. If combustion conditions are also input to the function setter 28 of the corrector 27, more detailed correction can be made in accordance with these combustion conditions.

これらの実施例を排熱回収式コンバインドサイ
クルに使用するとガスタービン自身の性能向上が
得られる他に、ガスタービン排ガス温度が上昇す
るので蒸気タービンの出力増加が得られ、コンバ
イドサイクルブランド全体の性能向上が図れると
いう利点を有する。
When these examples are used in a heat recovery type combined cycle, not only can the performance of the gas turbine itself be improved, but also the output of the steam turbine can be increased because the gas turbine exhaust gas temperature increases, which improves the performance of the entire combined cycle brand. This has the advantage that improvements can be made.

発明の効果 本発明は以上のように燃焼条件のうち少くとも
燃焼ガス中の水蒸気量を検出し、この検出信号に
基づいてタービン排ガス温度曲線を補正すること
としているため、燃焼条件が変化してもガスター
ビンの効率を下げることなく運転することがで
き、結局は燃料の節約ができる効果がある。
Effects of the Invention As described above, the present invention detects at least the amount of water vapor in the combustion gas among the combustion conditions, and corrects the turbine exhaust gas temperature curve based on this detection signal. The gas turbine can also be operated without reducing its efficiency, resulting in fuel savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガスタービン制御装置が
適用されるガスタービン装置の一具体例を示すブ
ロツク図、第2図はタービン入口温度及び排ガス
温度とコンプレツサ吐出圧力の関係を示すグラ
フ、第3図は本発明の一実施例によるガスタービ
ン制御装置のブロツク図である。 1……コンプレツサ、2……ガスタービン、3
……燃焼器、4……被駆動機、5……空気、6…
…圧縮空気、7……燃料、8,10……制御弁、
9……蒸気、11……高温燃焼ガス、12……タ
ービン排ガス、T1……タービン入口温度、T2
…排ガス温度、PD……コンプレツサ吐出圧力、
13……実測温度信号、14……タービン排ガス
温度曲線設定器、15,21,23,29……加
減算器、16……比例積分器、17……実測速度
信号、18……速度設定信号、19……実負荷信
号、20……負荷指令信号、22……積分器、2
4……比例演算器、25……低値優先回路、26
……流量計、27……補正器、28……関数発生
器、25a……第1の燃料制御信号、25b……
第2の燃料制御信号。
FIG. 1 is a block diagram showing a specific example of a gas turbine device to which the gas turbine control device according to the present invention is applied, FIG. 2 is a graph showing the relationship between turbine inlet temperature, exhaust gas temperature, and compressor discharge pressure, and FIG. The figure is a block diagram of a gas turbine control device according to an embodiment of the present invention. 1...Compressor, 2...Gas turbine, 3
...Combustor, 4...Driven machine, 5...Air, 6...
...Compressed air, 7...Fuel, 8,10...Control valve,
9... Steam, 11... High temperature combustion gas, 12... Turbine exhaust gas, T 1 ... Turbine inlet temperature, T 2 ...
…Exhaust gas temperature, P D …Compressor discharge pressure,
13... actually measured temperature signal, 14... turbine exhaust gas temperature curve setter, 15, 21, 23, 29... adder/subtractor, 16... proportional integrator, 17... actually measured speed signal, 18... speed setting signal, 19...Actual load signal, 20...Load command signal, 22...Integrator, 2
4... Proportional calculator, 25... Low value priority circuit, 26
...flow meter, 27 ... corrector, 28 ... function generator, 25a ... first fuel control signal, 25b ...
Second fuel control signal.

Claims (1)

【特許請求の範囲】 1 タービン入口温度が所定の温度となるべく予
め定められたタービン排ガス温度曲線に応じた第
1の燃料制御信号と、タービン速度偏差信号を負
荷偏差信号により修正した信号に応じた第2の燃
料制御信号とを低値優先回路により選択し、この
選択された燃料制御信号により燃料制御を行なう
ガスタービン制御装置において、燃料ガス中の水
蒸気量を検出する検出装置と、この検出された検
出信号に基づき前記タービン排ガス温度曲線を補
正する補正装置とを備えたことを特徴とするガス
タービン制御装置。 2 特許請求の範囲第1項記載の装置において、
水蒸気量を検出する検出装置が燃料ガスへの蒸気
噴射量を検出する流量計であるガスタービン制御
装置。
[Claims] 1. A first fuel control signal responsive to a turbine exhaust gas temperature curve predetermined so that the turbine inlet temperature becomes a predetermined temperature, and a first fuel control signal responsive to a turbine speed deviation signal corrected by a load deviation signal. In a gas turbine control device that selects a second fuel control signal by a low value priority circuit and performs fuel control based on the selected fuel control signal, a detection device that detects the amount of water vapor in the fuel gas; A gas turbine control device comprising: a correction device that corrects the turbine exhaust gas temperature curve based on the detected signal. 2. In the device according to claim 1,
A gas turbine control device in which the detection device that detects the amount of water vapor is a flow meter that detects the amount of steam injected into the fuel gas.
JP20753081A 1981-12-22 1981-12-22 Gas turbine control device Granted JPS58107819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20753081A JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20753081A JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Publications (2)

Publication Number Publication Date
JPS58107819A JPS58107819A (en) 1983-06-27
JPS6335814B2 true JPS6335814B2 (en) 1988-07-18

Family

ID=16541241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20753081A Granted JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Country Status (1)

Country Link
JP (1) JPS58107819A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773646B2 (en) * 2001-08-24 2011-09-14 三菱重工業株式会社 Gas turbine inlet temperature control method and estimation method
JP4831820B2 (en) * 2006-05-22 2011-12-07 三菱重工業株式会社 Gas turbine output learning circuit and gas turbine combustion control apparatus having the same
US8355854B2 (en) * 2009-05-08 2013-01-15 General Electric Company Methods relating to gas turbine control and operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108113A (en) * 1978-02-14 1979-08-24 Toshiba Corp Measuring of inlet gas temperature of gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108113A (en) * 1978-02-14 1979-08-24 Toshiba Corp Measuring of inlet gas temperature of gas turbine

Also Published As

Publication number Publication date
JPS58107819A (en) 1983-06-27

Similar Documents

Publication Publication Date Title
EP2795084B1 (en) Control of the gas composition in a gas turbine power plant with flue gas recirculation
US4550565A (en) Gas turbine control systems
JPH0588379B2 (en)
JP3415658B2 (en) Apparatus and method for controlling coolant injection into combustor in gas turbine power plant
US10767855B2 (en) Method and equipment for combustion of ammonia
CA2854140A1 (en) Oxy-fuel plant with flue gas compression and method
CA2405472A1 (en) Fuel ratio control method and device in a gas turbine combustor
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JPS6335814B2 (en)
JP3672339B2 (en) Starting method and starting apparatus for single-shaft combined cycle plant
US7634914B2 (en) Corrected parameter control method for a two-shaft gas turbine
JPH0996227A (en) Pressure controller of gasification plant
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JPH0932508A (en) Combined cycle plant
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH08270407A (en) Control of gas turbine in uniaxial composite plant
JPS63106304A (en) Denitration control device for combined power plant
JP4836908B2 (en) Water or steam injection type gas turbine and control method thereof
JPS5514926A (en) Water injection system for gas turbine
JPS6340245B2 (en)
JPH01285627A (en) Gas turbine fuel control device
JPH05179992A (en) Compound power generation system
JP3769064B2 (en) Boiler fuel control method and apparatus for exhaust recombustion combined cycle
JPS63687B2 (en)
JPS63159606A (en) Denitration control device for composite power generation facility