JPS58107819A - Gas turbine control device - Google Patents

Gas turbine control device

Info

Publication number
JPS58107819A
JPS58107819A JP20753081A JP20753081A JPS58107819A JP S58107819 A JPS58107819 A JP S58107819A JP 20753081 A JP20753081 A JP 20753081A JP 20753081 A JP20753081 A JP 20753081A JP S58107819 A JPS58107819 A JP S58107819A
Authority
JP
Japan
Prior art keywords
signal
turbine
exhaust gas
temperature
fuel control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20753081A
Other languages
Japanese (ja)
Other versions
JPS6335814B2 (en
Inventor
Toshiki Furukawa
俊樹 古川
Hiroshi Takaoka
高岡 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP20753081A priority Critical patent/JPS58107819A/en
Publication of JPS58107819A publication Critical patent/JPS58107819A/en
Publication of JPS6335814B2 publication Critical patent/JPS6335814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To obtain an efficient operation even if the combustion condition varies in a device controlling the fuel in accordance with a turbine exhaust gas temperature curve with a turbine inlet temperature kept constant by detecting the combustion condition to correct said curve. CONSTITUTION:The measured temperature signal 13 of the gas turbine exhaust gas is subtracted from the signal of a turbine exhaust gas temperature curve setter 14 by means of an adder/subtractor 15 and is input into a proportional integrator 16 to give the first fuel control signal 25a. On the other hand, the deviation signal between the measured speed signal 17 and speed setting signal 18 is corrected in an adder/subtractor 23 by means of the deviation signal between an actual load signal 19 and load command signal 20, and the second fuel control signal 25b is generated in a proportional calculator 24. A lower value between the above two signals 25a, 25b is selected by a lower value preference circuit 25, and the fuel is controlled based on the signal. In this case, the steam flow is detected by a flow meter 26 and is input into a corrector 27, and a correction signal is output from a function generator 28 and is added to the signal of said setter 14 by means of an adder/subtractor 29.

Description

【発明の詳細な説明】 発明の技術分野 本発明はタービン入口温度が所定の温度となるべく予め
定められたタービン排ガス温度曲線に応じた第1の燃料
制御信号と、タービン速度偏差信号を負荷偏差信号によ
り修正した信号に応じた第2の燃料制御信号とを低値優
先回路により選択し、この選択された燃料制御信号によ
り燃料制御を行なうガスタービン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a first fuel control signal according to a predetermined turbine exhaust gas temperature curve so that the turbine inlet temperature becomes a predetermined temperature, and a turbine speed deviation signal to a load deviation signal. The present invention relates to a gas turbine control device that selects a second fuel control signal corresponding to a signal modified by using a low value priority circuit, and performs fuel control based on the selected fuel control signal.

発明の技術的背景 近年、ガスタービンは、コンバインドサイクル発電プラ
ントとして構成することにより、従来の火力発電所では
得られない高い熱効率を得ることができること々どの理
由により注目を浴びている。
TECHNICAL BACKGROUND OF THE INVENTION In recent years, gas turbines have attracted attention for several reasons: by configuring them as combined cycle power plants, it is possible to obtain high thermal efficiency that cannot be obtained with conventional thermal power plants.

しかしガスタービンの燃焼ガス中に含まれる窒素酸化物
(以下NOxと称す)の量が多く規制値をこえる場合は
対策が必要と人ってくる。
However, if the amount of nitrogen oxides (hereinafter referred to as NOx) contained in the combustion gas of a gas turbine is large and exceeds the regulation value, some people say that countermeasures are required.

第1図にNOx対策としてガスタービン燃焼器内に蒸気
又は水を入れる方法を採用した場合のガスタービン装置
の構成を示す。ガスタービン2は、(2) コンプレッサ1および発電機などの被駆動機4と直結さ
れ、これらを駆動する・0コンプレツサ1は大気より空
気5を吸入し、圧縮して圧縮空気6を燃焼器3へ送る。
FIG. 1 shows the configuration of a gas turbine device in which a method of introducing steam or water into a gas turbine combustor is adopted as a NOx countermeasure. The gas turbine 2 is directly connected to (2) a compressor 1 and a driven machine 4 such as a generator, and drives them. The compressor 1 sucks air 5 from the atmosphere, compresses it, and sends the compressed air 6 to the combustor 3. send to

また燃料7は燃料制御弁8により、蒸気9は制御弁10
により流量制御されて燃焼器3へ送られる。燃焼器3で
は、燃料7が圧縮空気6により燃焼し高温燃焼ガス11
f、生成する。蒸気9は燃焼器3の中に噴射され燃焼ガ
スの温度を下げてNOxの発生を低減する。燃焼器3よ
り出てきた高温燃焼ガス11はガスタービン2に送られ
、ガスタービン2で膨張仕事をする。タービン排ガス1
2は大気へ捨てられるか、他の機器(例えば排熱回収ボ
イラ)へ送られる。
Further, the fuel 7 is supplied by a fuel control valve 8, and the steam 9 is supplied by a control valve 10.
The flow rate is controlled by and sent to the combustor 3. In the combustor 3, fuel 7 is combusted by compressed air 6 and high temperature combustion gas 11 is produced.
f. Generate. Steam 9 is injected into the combustor 3 to lower the temperature of the combustion gases and reduce the generation of NOx. High-temperature combustion gas 11 coming out of the combustor 3 is sent to the gas turbine 2, where it performs expansion work. Turbine exhaust gas 1
2 is either dumped into the atmosphere or sent to other equipment (e.g. heat recovery boiler).

ガスタービン2のコンプレッサ1は、大気温度が低くな
ると吸入空気量が増加するので、タービン入口圧力が上
がり、それに応じてコンプレッサ吐出圧力PDも上昇す
る。従って、タービン入口温度一定の場合、大気温度が
低下するとタービンの圧力比が増加し、タービンの入口
と出口の温度差が増加するので、タービン排ガス温度は
低下す(3) る。このことを第2図を用いて詳述する。
In the compressor 1 of the gas turbine 2, the intake air amount increases as the atmospheric temperature decreases, so the turbine inlet pressure increases, and the compressor discharge pressure PD also increases accordingly. Therefore, when the turbine inlet temperature is constant, when the atmospheric temperature decreases, the turbine pressure ratio increases and the temperature difference between the turbine inlet and outlet increases, so the turbine exhaust gas temperature decreases (3). This will be explained in detail using FIG.

第2図はタービン入口温度T1と排ガス温度T、lの作
動カーブを示したものでおり、横軸はコンプレッサ1の
吐出圧力PDである。例えば大気温度が高い時は、ター
ビン入口温度T1はA点、排ガス温度T2は下点の温度
で作動する。大気温度が下ってくるとコンプレッサ吐出
圧力もが増加するので、入口温度T、i A点→B点→
C点→D点と一定とした場合、排ガス温度T、はF点→
G点→H点→J点と低下する・ ガスタービン2の入口温度T、と排ガス温度T2とは上
記のような特性を示すので、従来の制御システムではタ
ービン入ロ温度Trk一定とした場合のタービン排ガス
温度T2のカーブに従って燃料制御を行なっている。
FIG. 2 shows an operating curve of the turbine inlet temperature T1 and the exhaust gas temperature T, l, and the horizontal axis is the discharge pressure PD of the compressor 1. For example, when the atmospheric temperature is high, the turbine inlet temperature T1 operates at point A and the exhaust gas temperature T2 operates at the lower point. As the atmospheric temperature decreases, the compressor discharge pressure also increases, so the inlet temperature T, i Point A → Point B →
If point C → point D is constant, the exhaust gas temperature T is from point F →
Since the inlet temperature T of the gas turbine 2 and the exhaust gas temperature T2 exhibit the characteristics described above, in the conventional control system, when the turbine inlet temperature Trk is constant, Fuel control is performed according to the curve of turbine exhaust gas temperature T2.

背景技術の問題点 このような従来の制御システムにより運転している時(
例えば第2図中のB点およびG点)、燃焼器3の中に蒸
気噴射を行なうとタービン入口圧力が上がるので、これ
に応じてコンプレッサ吐出(4) 圧力PDも上昇する。即ち、排ガス温度T2はG点から
H点に移動する。この時タービン入口温度T、は6点に
はならず8点1rなり少し温度が低下する。
Problems with the Background Art When operating with such a conventional control system (
For example, when steam is injected into the combustor 3 (points B and G in FIG. 2), the turbine inlet pressure increases, so the compressor discharge (4) pressure PD also increases accordingly. That is, the exhaust gas temperature T2 moves from point G to point H. At this time, the turbine inlet temperature T is not at 6 points, but at 8 points 1r, and the temperature decreases slightly.

これは次のような理由による。タービンの一般式を下記
に示す。
This is due to the following reasons. The general formula of the turbine is shown below.

一拭のKは比熱比であり、燃焼ガス中に水分が増加する
とともに小さくなるので、入口温度T1が一定の場合排
ガス温度T2は大きくなる。即ち、蒸気噴射を行なうこ
とによって、入口温度T1がB点から6点に移った場合
、排ガス温度T2はG点からH点に移らずに点に移る。
K of one wipe is a specific heat ratio, and it decreases as moisture increases in the combustion gas, so when the inlet temperature T1 is constant, the exhaust gas temperature T2 increases. That is, when the inlet temperature T1 moves from point B to point 6 by performing steam injection, the exhaust gas temperature T2 does not move from point G to point H, but moves to point H.

しかし、従来の制御システムではに点での運転は許され
ないのでH点およびE点で運転せざるを得ないこととな
る。
However, the conventional control system does not allow operation at point H and must operate at point H and point E.

このように従来の制御システムでは蒸気噴射を行なった
場合、入口温度Tit下げて運転することとなり、ガス
タービンの効率が悪いという欠点があった。
As described above, in the conventional control system, when steam injection is performed, the inlet temperature Tit must be lowered during operation, which has the disadvantage that the efficiency of the gas turbine is poor.

発明の目的 本発明は上記事情を考慮してなされたもので蒸気噴射量
などの燃焼条件が変化してもガスタービンの効率を下げ
ることなく運転することができるガスタービン制御装r
tt−提供することを目的とするO 発明の4a要 この目的を達成するため本発明は燃焼条件を検出する検
出装置と、この検出装置で検出された検出信号に基づき
タービン排ガス温度曲1lIIを補正する補正装置とを
備えており、この補正装置により補正されたタービン排
ガス温度曲線に応じた燃料制御を行なう。
Purpose of the Invention The present invention has been made in consideration of the above circumstances, and provides a gas turbine control system that can operate the gas turbine without reducing its efficiency even if the combustion conditions such as the amount of steam injection change.
tt-O Object of the Invention 4a Summary To achieve this object, the present invention includes a detection device for detecting combustion conditions, and a method for correcting a turbine exhaust gas temperature curve 1lII based on a detection signal detected by the detection device. The turbine exhaust gas temperature curve is corrected by the correction device, and fuel control is performed according to the turbine exhaust gas temperature curve corrected by the correction device.

発明の実施例 第3図は本発明の一実施例によるガスタービン制御装置
を示したものである。
Embodiment of the Invention FIG. 3 shows a gas turbine control device according to an embodiment of the invention.

ガスタービン排ガス12の実測温度信号13は、蒸気噴
射しないときは、タービン排ガス温度曲線設定器14の
信号から加減算器15で減算され、比例積分器16に入
力され第1の燃料制御信号25aとなる〇一方実測速度
信号17と、速度設定信号18は加減算益田で減算され
、偏差信号を得る。実負荷信号19と負荷偏差信号加も
加減算器21でその偏差信号を得る。この偏差信号は積
分器22で積分され加減算益田に入力される。加減算器
z3では速度偏差信号が負荷偏差信号で修正され、比例
演算器鴎により第2の燃料制御信号25bとなる。第1
の燃料制御信号25aと第2の燃料制御信号5bは低値
優先回路部において低値が選択され、その選択された燃
料制御信号に基づき燃料制御弁8により燃料7を制御す
る。
When steam injection is not performed, the measured temperature signal 13 of the gas turbine exhaust gas 12 is subtracted by the adder/subtractor 15 from the signal from the turbine exhaust gas temperature curve setter 14, and is input to the proportional integrator 16 to become the first fuel control signal 25a. On the other hand, the measured speed signal 17 and the speed setting signal 18 are subtracted by addition/subtraction Masuda to obtain a deviation signal. An adder/subtracter 21 adds the actual load signal 19 and the load deviation signal to obtain a deviation signal. This deviation signal is integrated by an integrator 22 and input to the addition/subtraction Masuda. The speed deviation signal is corrected by the load deviation signal in the adder/subtractor z3, and becomes the second fuel control signal 25b by the proportional calculator AO. 1st
A low value is selected for the fuel control signal 25a and the second fuel control signal 5b in the low value priority circuit section, and the fuel 7 is controlled by the fuel control valve 8 based on the selected fuel control signal.

制御弁10により蒸気9を燃焼器3の中に噴射するとき
は、流量計26により蒸気流量が検出され補正器nに入
力される。補正器部は関数発生器側と加減算器四で構成
されている。蒸気流量信号に基づき関数発生器がは所定
の補正信号を出力し、この補正信号はタービン排ガス温
度曲線設計器14の信号に加減算器29で加算される。
When the control valve 10 injects the steam 9 into the combustor 3, the flow rate of the steam is detected by the flow meter 26 and input to the corrector n. The corrector section consists of a function generator side and four adders/subtractors. Based on the steam flow rate signal, the function generator outputs a predetermined correction signal, and this correction signal is added to the signal from the turbine exhaust gas temperature curve designer 14 in an adder/subtractor 29 .

すなわち蒸気流量信号に基づいて排ガス温度曲線が補正
されたこととなる。
In other words, the exhaust gas temperature curve has been corrected based on the steam flow rate signal.

従ってタービン排ガス温度T!は−、第2図で示す(7
) H点では々くに点で運転することができ、タービン入ロ
温度T、iE点ではなく0点とすることができるので、
蒸気噴射を行なった場合でもタービン入口部’a: T
I 1に下げることなく、所定の温度で運転することが
できる。すなわちガスタービン2の熱効率の高い所で運
転でき、燃料の節約となる。
Therefore, the turbine exhaust gas temperature T! -, as shown in Figure 2 (7
) At point H, it is possible to operate at a very high point, and the turbine entrance temperature can be set to 0 point instead of the T and iE point.
Even when steam injection is performed, the turbine inlet section 'a: T
It is possible to operate at a given temperature without lowering to I1. In other words, the gas turbine 2 can be operated at a location with high thermal efficiency, resulting in fuel savings.

また、第一の実施例では補正器27の関数設定器:)B
への入力は蒸気流量信号でめったが、他にタービン排ガ
ス12の排ガス曾信号、大気の相対湿度信号、燃料7の
種類などの燃焼条件をも補正器27の関数設定器四へ入
力することとすれば、これらの燃焼条件に従ったよりき
め細かい補正をすることができる。
In addition, in the first embodiment, the function setting device of the corrector 27:)B
Although the steam flow rate signal is rarely input to the controller, combustion conditions such as the exhaust gas signal of the turbine exhaust gas 12, the relative humidity signal of the atmosphere, and the type of fuel 7 may also be input to the function setting device 4 of the corrector 27. This allows more detailed corrections to be made in accordance with these combustion conditions.

これらの実施例を排熱回収式コンバインドサイクルに使
用するとガスタービン自身の性能向上が得られる他に、
ガスタービン排ガス温度が上昇するので蒸気タービンの
出力増加が得られ、コンバインドサイクルブランド全体
の性能向上が図れるという利点を有する。
When these examples are used in an exhaust heat recovery type combined cycle, the performance of the gas turbine itself can be improved, as well as
Since the temperature of the gas turbine exhaust gas increases, the output of the steam turbine can be increased, which has the advantage of improving the performance of the entire combined cycle brand.

発明の効果 (8) 本発明は以上のように燃焼条件を検出し、この検出信号
に基づいてタービン排ガス温度曲線を補正することとし
ているため、燃焼条件が変化してもガスタービンの効率
を下げることなく運転することができ、結局は燃料の節
約ができる効果かある
Effect of the Invention (8) Since the present invention detects the combustion conditions as described above and corrects the turbine exhaust gas temperature curve based on this detection signal, the efficiency of the gas turbine is not reduced even if the combustion conditions change. It is possible to drive without having to worry about driving, and in the end, it has the effect of saving fuel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガスタービン制御装置が適用され
るガスタービン装置の一具体例を示すブロック図、第2
図はタービン入口温度及び排ガス温度とコ〉′ブレツサ
吐出圧力の関係を示すグラフ、第3図は本発明の一実施
例によるガスタービン制御装置のブロック図でアル。 1・・・コンプレッサ、2・・・ガスタービン、3・・
・燃焼器、4・・・被駆動機、5・・・空気、6・・・
圧縮空気、7・・・燃料、8,10・・・制御弁、9・
・・蒸気、11・・・高温燃焼ガス、12・・・タービ
ン排ガス、TI・・・タービン人口温度、T、・・・排
ガス温度、PD・・・コンプレッサ吐出圧力、13・・
・実測温度信号、14・・・タービン排ガス温度曲線設
定器、15 、21 、 田、 29・・・加減算器、
16・・・比例積分器、17・・・実測速度信号、18
・・・速度設定信号、19・・・実負荷信号、加・・・
負荷指令信号、z2・・・積分器、ム・・・比例演算器
、5・・・低値優先回路、26・・・流量計、27・・
・補正器、四・・・関数発生器、5a・・・第1の燃料
制御信号、25b・・・第2の燃料制御信号。
FIG. 1 is a block diagram showing a specific example of a gas turbine device to which a gas turbine control device according to the present invention is applied;
The figure is a graph showing the relationship between turbine inlet temperature, exhaust gas temperature, and pressure breather discharge pressure, and FIG. 3 is a block diagram of a gas turbine control device according to an embodiment of the present invention. 1...Compressor, 2...Gas turbine, 3...
・Combustor, 4... Driven machine, 5... Air, 6...
compressed air, 7... fuel, 8, 10... control valve, 9.
...Steam, 11...High temperature combustion gas, 12...Turbine exhaust gas, TI...Turbine population temperature, T,...Exhaust gas temperature, PD...Compressor discharge pressure, 13...
- Actual temperature signal, 14... Turbine exhaust gas temperature curve setting device, 15, 21, field, 29... Addition/subtraction device,
16...Proportional integrator, 17...Actually measured speed signal, 18
...Speed setting signal, 19...Actual load signal, addition...
Load command signal, z2... Integrator, Mu... Proportional calculator, 5... Low value priority circuit, 26... Flow meter, 27...
- Corrector, 4... Function generator, 5a... First fuel control signal, 25b... Second fuel control signal.

Claims (1)

【特許請求の範囲】 1、タービン入口温度が所定の温度となるべく予め定め
られたタービン排ガス温度曲線に応じた第1の燃料制御
信号と、タービン速度偏差信号を負荷偏差信号により修
正した信号に応じた第2の燃料制御信号とを低値優先回
路により選択し、この選択された燃料制御信号により燃
料制御を行なうガスタービン制御装置において、燃焼条
件を検出する検出装置と、この検出された検出信号に基
づき前記タービン排ガス温度曲線を補正する補正装置と
を備えたことを特徴とするガスタービン制御装置。 2!P!f許請求の範囲第1項記載の装置において、燃
焼条件を検出する検出装置が蒸気噴射量を検出する流量
計であるガスタービン制御装置。 (1)            −八
[Scope of Claims] 1. A first fuel control signal according to a predetermined turbine exhaust gas temperature curve so that the turbine inlet temperature becomes a predetermined temperature, and a signal obtained by correcting a turbine speed deviation signal by a load deviation signal. A gas turbine control device that selects a second fuel control signal with a low value priority circuit and performs fuel control based on the selected fuel control signal, includes a detection device that detects a combustion condition and a detection signal that is detected. A gas turbine control device comprising: a correction device that corrects the turbine exhaust gas temperature curve based on the following. 2! P! f) The gas turbine control device according to claim 1, wherein the detection device for detecting combustion conditions is a flow meter for detecting the amount of steam injection. (1) -8
JP20753081A 1981-12-22 1981-12-22 Gas turbine control device Granted JPS58107819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20753081A JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20753081A JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Publications (2)

Publication Number Publication Date
JPS58107819A true JPS58107819A (en) 1983-06-27
JPS6335814B2 JPS6335814B2 (en) 1988-07-18

Family

ID=16541241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20753081A Granted JPS58107819A (en) 1981-12-22 1981-12-22 Gas turbine control device

Country Status (1)

Country Link
JP (1) JPS58107819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065081A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Control method and estimation method for gas turbine inlet temperature
JP2007309279A (en) * 2006-05-22 2007-11-29 Mitsubishi Heavy Ind Ltd Gas turbine output learning circuit and combustion control device for gas turbine equipped with the circuit
JP2010261458A (en) * 2009-05-08 2010-11-18 General Electric Co <Ge> Method related to control and operation of gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108113A (en) * 1978-02-14 1979-08-24 Toshiba Corp Measuring of inlet gas temperature of gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108113A (en) * 1978-02-14 1979-08-24 Toshiba Corp Measuring of inlet gas temperature of gas turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065081A (en) * 2001-08-24 2003-03-05 Mitsubishi Heavy Ind Ltd Control method and estimation method for gas turbine inlet temperature
JP2007309279A (en) * 2006-05-22 2007-11-29 Mitsubishi Heavy Ind Ltd Gas turbine output learning circuit and combustion control device for gas turbine equipped with the circuit
JP2010261458A (en) * 2009-05-08 2010-11-18 General Electric Co <Ge> Method related to control and operation of gas turbine

Also Published As

Publication number Publication date
JPS6335814B2 (en) 1988-07-18

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
JP3415658B2 (en) Apparatus and method for controlling coolant injection into combustor in gas turbine power plant
JP3672339B2 (en) Starting method and starting apparatus for single-shaft combined cycle plant
JPS58107819A (en) Gas turbine control device
US7634914B2 (en) Corrected parameter control method for a two-shaft gas turbine
JPS6056894B2 (en) Fuel control method and device during startup and acceleration of single-shaft gas turbine with heat exchanger
JPH08270407A (en) Control of gas turbine in uniaxial composite plant
JPS58124010A (en) Controller for gas turbine
JP4836908B2 (en) Water or steam injection type gas turbine and control method thereof
JPH0615824B2 (en) Gas turbine fuel controller
JPS63106304A (en) Denitration control device for combined power plant
JPH07301128A (en) Gas turbine exhaust gas temperature control device
JPS6154927B2 (en)
JPS5848740B2 (en) Rainbow beetle star - Binnoseigiyosouchi
JPS6112169B2 (en)
JP2002129985A (en) Cogeneration power plant and its control method
JPH08284616A (en) Load control device for compound cycle electric power plant
JPS60173323A (en) Nox concentration control device
JPH05179992A (en) Compound power generation system
JPH0749039A (en) Gas turbine
JPH06323166A (en) Gas turbine combustor
JPS60247014A (en) Method of controlling temperature of combustion gas of gas turbine and device therefor
JPS62234528A (en) Method and apparatus for denitration of combined plant
JPH06193471A (en) Method of controlling regenerative gas turbine and control device therefor
JPH0610426B2 (en) Gas turbine control device