JPS58124010A - Controller for gas turbine - Google Patents

Controller for gas turbine

Info

Publication number
JPS58124010A
JPS58124010A JP645182A JP645182A JPS58124010A JP S58124010 A JPS58124010 A JP S58124010A JP 645182 A JP645182 A JP 645182A JP 645182 A JP645182 A JP 645182A JP S58124010 A JPS58124010 A JP S58124010A
Authority
JP
Japan
Prior art keywords
gas turbine
load
temperature
control circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP645182A
Other languages
Japanese (ja)
Other versions
JPS6246681B2 (en
Inventor
Jiro Ozono
次郎 尾園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP645182A priority Critical patent/JPS58124010A/en
Publication of JPS58124010A publication Critical patent/JPS58124010A/en
Publication of JPS6246681B2 publication Critical patent/JPS6246681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To contrive an improvement of follow-up performance and control of a temperature increase during a transitional period, by a method wherein fuel is controlled based on a deviation for an actual load and load instructions and a revolution of a gas turbine, and an opening of an inlet variable stator blade is controlled based on a temperature of exhaust gas and a temperature setting signal. CONSTITUTION:When a deflection signal is generated on an adder 33 according to an increase of a load, it is given to a speed load control circuit 12 through a load setting device 18, through which fuel of a burner 4 of a gas turbine 8 is increased and the signal is added to an adder 26 of an inlet variable stator blade control circuit 14 in a direction of opening an inlet variable stator blade 2 through a gain converter 34, then an air quantity of the gas turbine 8 is increased. A transitional temperature rise of the gas turbine 8 can be prevented from occurring and follow-up performance of a load can be made to improve by controlling like this.

Description

【発明の詳細な説明】 発明の技術分野 本発明はガスタービン制御装置に係り、特に複合発電プ
ラントに用いて負荷追従性を向上させるのに好適なガス
タービン制御装置に関すする〇発明の技術的背景 最近の火力発電プラントに於いては、燃料価格゛の高騰
に伴ない、熱効率の向上、火力発電プラントのミドル化
等の一環として、起動停止を含む負荷追従性の向上等に
対する要求が高まってきている。これらの要求に対する
一つの解答として、ガスタービンと蒸気タービンを組合
せた複合発電プラントが脚光を浴びてきている。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a gas turbine control device, and particularly relates to a gas turbine control device suitable for use in a combined cycle power plant to improve load followability. Background In recent years, in thermal power plants, as fuel prices have soared, there has been an increasing demand for improvements in load followability, including start-up and stoppage, as part of efforts to improve thermal efficiency and make thermal power plants more middle-sized. ing. As one solution to these demands, combined cycle power plants that combine a gas turbine and a steam turbine have been attracting attention.

このような複合発電プラントに用いられるガスタービン
としては、プラント全体の熱効率を高める念めに、ガス
タービンの排気温度を高くし、廃熱回収ボイラの発生蒸
気量を増やし、蒸気タービンの出力をより高く出せるよ
うな工夫がされている。その−例として、ガスタービン
の入ロ靜翼ヲ可変とし、部分負荷においてガスタービン
の流入空気伎を減することにより、ガスタービン排気温
度を高める方式が知られている。
In order to increase the thermal efficiency of the entire plant, the gas turbines used in such combined power generation plants are designed to increase the exhaust temperature of the gas turbine, increase the amount of steam generated by the waste heat recovery boiler, and increase the output of the steam turbine. Efforts have been made to make it more expensive. As an example, a method is known in which the intake airfoil of the gas turbine is made variable to reduce the inflow air pressure of the gas turbine at partial load, thereby increasing the gas turbine exhaust temperature.

第1WAはかかる周知の壷金発電プラント用ガスタービ
ンの系統図を示すもので、特に従来から実施されている
入口可変静翼含有するガスタービンの排気温度を高める
方式について!ff1F!AしたものであるC 第1図構成に於いて、圧縮機人口1には入口可変静翼2
があり、圧縮機3に流入する空気量が制御される。圧縮
機3で圧縮された空気は燃焼器4に送出され、燃料調節
弁5で流通を調節された燃料6の燃焼のために用いられ
逮。燃焼の結果発生し之高温ガス7はガスタービン8に
送られ、膨張しながら仕事をしt後、排気ガス9として
排出される。なお、ガスタービンの回転軸は発電機10
等の負荷に接続される。ガスタービン8がらの排気ガス
9は高温のため廃熱回収ボイラ11に送られ、ボイラの
給水と熱交換され蒸気を発生し、図示しない蒸気タービ
ン側の蒸気サイクルで仕41IをするC第2図は第1図
に示されたガスタービン8に適用される従来のガスター
ビン制御装置のブロック図である。第2図に示す如く、
ガスタービン8の制御は大別して起動制御回路11、速
度負荷制御回路12、温度制御回路13、入口可変静翼
制御回路14から構成されている。起動、速度負荷、温
度の各制御回路からの燃料制御信号は低値優先回路15
全通して最小値が燃料調節弁制御回路16に送られる。
The first WA shows a system diagram of such a well-known gas turbine for a Kawakin power generation plant, and in particular concerns a conventional method of increasing the exhaust temperature of a gas turbine containing variable inlet stator blades! ff1F! In the configuration shown in Figure 1, the compressor population is 1, and the inlet variable stator vane is 2.
The amount of air flowing into the compressor 3 is controlled. The air compressed by the compressor 3 is sent to the combustor 4, and is used for combustion of fuel 6 whose flow is regulated by the fuel control valve 5. The high-temperature gas 7 generated as a result of the combustion is sent to a gas turbine 8, performs work while expanding, and is then discharged as exhaust gas 9. Note that the rotating shaft of the gas turbine is the generator 10.
etc. is connected to the load. The exhaust gas 9 from the gas turbine 8 is sent to the waste heat recovery boiler 11 due to its high temperature, where it exchanges heat with the boiler's feed water to generate steam, which is then processed in a steam cycle on the steam turbine side (not shown). 1 is a block diagram of a conventional gas turbine control device applied to the gas turbine 8 shown in FIG. 1. FIG. As shown in Figure 2,
Control of the gas turbine 8 is broadly divided into a startup control circuit 11, a speed load control circuit 12, a temperature control circuit 13, and an inlet variable stator vane control circuit 14. Fuel control signals from the startup, speed load, and temperature control circuits are routed to the low value priority circuit 15.
The minimum value is sent to the fuel control valve control circuit 16 throughout.

燃料調節弁制御回路16からの出方信号は燃料調節で燃
料調節弁制御回路16へ戻される。一方、速度制御回路
12へはバイアス設定器8aからの定格回転数バイアス
及び負荷設定器I8からの設定値の和と回転数検出器1
9によって検出されたガスタービン8の実回転数との偏
差信号が加算器器で加算され印加される。また、温度制
御回路13へは圧縮機3の吐出圧力に応じ几信号を発生
する温度設定器2】の出力信号とガスタービン8の排気
ガス9の温度を検出する排気ガス温度検出器乙の出力信
号の偏差信号が加算器器で演算され印加される0更に、
入口可変静翼制御回路14へは、温度制御回路13と同
じく圧縮機3の吐出圧力に応じた信号を発生する温度設
定器スの出力信号と排気ガス温度検出器ηの出力信号な
らびに温度制御回路13との干渉を防ぐために設定器5
に設定される負のバイアスが加算器あて演算され入力さ
れる。入口可変静翼制御回路14の出力信号は入口可変
静翼位置制御回路nへ送られ入口可変靜J[2が作動す
る。なお、大口町変靜興2の位置はフィードバック信号
列として入口町変靜翼位置制御回路nへ戻され位竜決め
制御、′μ行なわれる。
The output signal from the fuel adjustment valve control circuit 16 is returned to the fuel adjustment valve control circuit 16 for fuel adjustment. On the other hand, the speed control circuit 12 is supplied with the rated rotational speed bias from the bias setter 8a, the sum of the set value from the load setting device I8, and the rotational speed detector 1.
A deviation signal from the actual rotational speed of the gas turbine 8 detected by the adder 9 is added by an adder and applied. Further, the temperature control circuit 13 is supplied with an output signal from a temperature setting device 2 which generates a temperature signal according to the discharge pressure of the compressor 3 and an output signal from an exhaust gas temperature detector 2 which detects the temperature of the exhaust gas 9 of the gas turbine 8. The deviation signal of the signal is calculated by an adder and applied to 0, and
The inlet variable stator vane control circuit 14 is supplied with an output signal from a temperature setting device that generates a signal corresponding to the discharge pressure of the compressor 3, like the temperature control circuit 13, an output signal from an exhaust gas temperature detector η, and a temperature control circuit. Setter 5 to prevent interference with 13.
The negative bias set to is calculated and input to the adder. The output signal of the variable inlet stator vane control circuit 14 is sent to the variable inlet stator vane position control circuit n, and the variable inlet stator J[2 is operated. Incidentally, the position of Oguchi-cho Henseiko 2 is returned as a feedback signal train to the entrance-cho Henseiki position control circuit n for position determination control, 'μ.

かかる構成にて、ガスタービン8の起動過程に於いては
、起動制御回路11でガスタービン80着火ならびに加
速に必要な燃料制御信号がつくられるが、速度制御回路
12、温度制御回路13からの燃料制御信号はいずれも
実際のガスタービン8の回転数が低いため、またガスタ
ービン8の排気ガス9の温度が低いため、最大信号管発
生しており、従って低値優先回路15を通じて起動制御
回路11からの信号が選択される。起動制御回路11か
らの信号は燃料調節弁制御回路16に与えられ燃料の量
が制御される。
With this configuration, during the startup process of the gas turbine 8, the startup control circuit 11 generates a fuel control signal necessary for igniting and accelerating the gas turbine 80, but the fuel control signal from the speed control circuit 12 and the temperature control circuit 13 Since the actual rotational speed of the gas turbine 8 is low and the temperature of the exhaust gas 9 of the gas turbine 8 is low, the maximum signal tube is generated in each control signal, and therefore, the control signal is transmitted to the startup control circuit 11 through the low value priority circuit 15. The signal from is selected. A signal from the activation control circuit 11 is given to a fuel control valve control circuit 16 to control the amount of fuel.

次に、ガスタービン8の回転数が上り、定格回転数近く
になると、制御は起動制御回路11から速度負荷制御回
路12へ移る。さらに、ガスタービン8が併入され負荷
をとるにつれガスタービン8の排気ガス温度が上昇する
と、今度は温度制御回路13により燃料の量に制限が加
えられる。
Next, when the rotational speed of the gas turbine 8 increases and becomes close to the rated rotational speed, control is transferred from the startup control circuit 11 to the speed load control circuit 12. Furthermore, as the gas turbine 8 is added and the load is increased, the exhaust gas temperature of the gas turbine 8 increases, and the temperature control circuit 13 then limits the amount of fuel.

なお、入口可変静翼2は起動、速度負荷、温度の各制御
回路と独立してガスタービン8の排気温度を高い値に保
つように入口可変静翼位置制御回路4によって制御され
る。
Incidentally, the inlet variable stator vane 2 is controlled by the inlet variable stator vane position control circuit 4 so as to maintain the exhaust gas temperature of the gas turbine 8 at a high value independently of the startup, speed load, and temperature control circuits.

第3図は第2図に示す如きガスタービン制御装置によっ
て制御されるガスタービン8のガスタービン出力に対す
る排気ガス温度の変化の過程を示した特性@を示すもの
で、横軸にガスタービン出力、縦軸に排気ガス温度をそ
れぞれ示すものである。同図に於いて、破線ムは温度制
御回路13での温度制限曲線である。ガスタービン出力
の増加に伴ない、排気ガス温度は太い実線に沿って変化
して行くが、これが略々右下りの特性となっているのは
、ガスタービンの入口温度を一定値に保ち、温度上昇に
よる燃焼器、タービンの纂1段ノズル等の焼損を生じさ
せない友めである。また、実線Bは入口可変静翼制御回
路14による温度制限曲線であり、破線A、実線Bの両
回線の差が設定器5によるバイアス信号の分である。
FIG. 3 shows a characteristic showing the process of change in exhaust gas temperature with respect to the gas turbine output of the gas turbine 8 controlled by the gas turbine control device as shown in FIG. 2, where the horizontal axis shows the gas turbine output; The vertical axis shows the exhaust gas temperature. In the figure, a broken line indicates a temperature limit curve in the temperature control circuit 13. As the gas turbine output increases, the exhaust gas temperature changes along the thick solid line, but the reason why this is a nearly downward slope is because the gas turbine inlet temperature is kept constant and the temperature It is a friend that prevents burnout of the combustor, first stage nozzle of the turbine, etc. due to rising. Further, the solid line B is a temperature limit curve produced by the inlet variable stator vane control circuit 14, and the difference between the two lines, the broken line A and the solid line B, is the bias signal produced by the setter 5.

さて、ガスタービンの部分負荷で運転されている場合は
入口可変静翼は最小開度位置となっているtめ、入口可
変静翼制御回路14の影響は受けないため太線の1−1
1区間に示す如き排気ガス温度特性を示す。次に、ガス
タービン8の出力t−m加させてゆくと、入口可変静翼
制御回路14によりガスタービン8に流入する空気量が
入口可変−s2により制御され、排気ガス温度は高く株
元れる。
Now, when the gas turbine is operated under partial load, the inlet variable stator vanes are at the minimum opening position, so they are not affected by the inlet variable stator vane control circuit 14, so the thick line 1-1
The exhaust gas temperature characteristics are shown in one section. Next, as the output t-m of the gas turbine 8 is increased, the amount of air flowing into the gas turbine 8 is controlled by the variable inlet stator vane control circuit 14 by the variable inlet -s2, and the exhaust gas temperature increases. .

ガスタービン8の出力を頁に上げると、排気ガス温度は
太線の[1−1−IV区間に示す如く制御されるが、こ
の間に入口可変静翼の開度はガスタービン8の出魁昇に
伴ない開いて行き、■の位置で全開となる。更に、ガス
タービン8の出力を上げると、入口可変静翼2を有しな
いガスタービン8の運転特性である曲線Cに沿って排気
ンjス温度は上昇して行く。その結果、排気ガス温度が
破線Aと交わるVの点に到達すると、温度制御回路13
0作用により燃料が制限され最高出力に達する。
When the output of the gas turbine 8 is increased, the exhaust gas temperature is controlled as shown in the thick line [1-1-IV section, but during this time, the opening of the variable inlet stator vanes changes as the output of the gas turbine 8 increases. It gradually opens and becomes fully open at the ■ position. Furthermore, when the output of the gas turbine 8 is increased, the exhaust gas temperature increases along a curve C which is the operating characteristic of the gas turbine 8 without the variable inlet stator vanes 2. As a result, when the exhaust gas temperature reaches a point V where it intersects with the broken line A, the temperature control circuit 13
Due to zero action, fuel is limited and maximum power is reached.

背景技術の問題点 以上述べた如く、入口可変静翼を有するガスタービンに
適用される従来のガスタービン制御装置では、負荷上昇
させる場合、速度負荷制御回路]2からの燃料増加指令
によりガスタービンの排気温度が上昇すると、これが所
定の温度を越えないように入口可変静翼2が開き空気流
量を増やし、温度を一定に保とうとするが、この場合過
渡的に温度が上りやすく、また温度が上昇してから入口
可変−j12が動作するtめ負荷追従性が悪くなるCつ
まり、ガスタービン8の排気温度の上昇を感知してから
入口可変静翼2が開・く几めの応答遅れから、過渡的に
排気ガス温度が上昇し究り負荷追従性が悪くなるという
欠点が有る。まt、入口可変静翼2の制御により排気ガ
ス温度の制御を行なうため、ガスタービン8に流入する
空気量が変化し、速度負荷制御回路12での負荷指令信
号と実際のガスタービン8の出力信号が異なってくるこ
とから、制御性能を悪化させるという問題がある。
Problems with the Background Art As described above, in the conventional gas turbine control device applied to a gas turbine having variable inlet stator blades, when increasing the load, the gas turbine is controlled by a fuel increase command from the speed load control circuit 2. When the exhaust temperature rises, the inlet variable stator vane 2 opens to increase the air flow rate and keep the temperature constant to prevent it from exceeding a predetermined temperature, but in this case, the temperature tends to rise transiently, and the temperature also increases. In other words, the variable inlet stator vane 2 opens after detecting the rise in the exhaust gas temperature of the gas turbine 8, resulting in a delay in response. This has the disadvantage that the exhaust gas temperature rises transiently, resulting in poor load followability. Also, since the exhaust gas temperature is controlled by controlling the variable inlet stator blades 2, the amount of air flowing into the gas turbine 8 changes, and the load command signal in the speed load control circuit 12 and the actual output of the gas turbine 8 change. Since the signals become different, there is a problem that control performance is deteriorated.

発明の目的 従って、本発明の目的はかかる従来技術の問題点を解消
し、ガスタービン負荷指令要求に対して実際のガスター
ビン出力を精度よく追従させ、まえ負荷変化の際の負荷
追従性を改善し、更に過渡時の温度上昇を抑制すること
を可能ならしめ九新規のガスタービン制御装置を提供す
ることにある。
Purpose of the Invention Accordingly, the purpose of the present invention is to solve the problems of the prior art, to make the actual gas turbine output accurately follow the gas turbine load command request, and to improve the load followability when the load changes. It is an object of the present invention to provide a novel gas turbine control device that further suppresses temperature rise during transient periods.

発明の概要 上記目的を達成する光めに、本発明はガスタービン制御
波mを入口可変静翼を有するガスタービンとその排気ガ
スによって駆動される蒸気タービンとにより電力を発生
する発電システムと、ガスタービンの実負荷を検出して
負荷指令と比較し得られた負荷偏差とガスタービンの回
転数に基いてガスタービンの燃料を制御する速度負荷制
御手段と、速度負荷制御手段からの負荷偏差とガスター
ビンの排気ガス温度と温度設定信号に基いて入口可変静
翼の開度を制御する入口可変静翼制御手段とから構成し
ている。
SUMMARY OF THE INVENTION To achieve the above objects, the present invention provides a power generation system that generates electric power by a gas turbine having a gas turbine control wave m having variable inlet stator blades and a steam turbine driven by the exhaust gas thereof; A speed load control means that detects the actual load of the turbine and compares it with a load command and controls the fuel of the gas turbine based on the obtained load deviation and the rotational speed of the gas turbine, and the load deviation from the speed load control means and the gas It is comprised of an inlet variable stator vane control means that controls the opening degree of the inlet variable stator vane based on the exhaust gas temperature of the turbine and a temperature setting signal.

発明の実施例 以下、図面に従って本発明の詳細な説明する。Examples of the invention Hereinafter, the present invention will be described in detail with reference to the drawings.

第4図は本発明の一実施例に係るガスタービン制御装置
の部分ブロック図を示すもので、第2図の構成に対して
異なる点は、速度負荷制御回路12及び入口可変静翼制
御回路14の入力側の構成ic6る。つまり、ガスター
ビン8に対する負荷設定は負荷設定器18にて行なわれ
るが、第4図に示す本実施例の構成に於いては、負荷設
定指令器31の出力信号とガスーービン発電機実負荷検
出器32の出力信号とを加算器おで比較し、この偏差が
負荷設定器18に与えられる。負荷設定器18に於いて
、その設定値は加算6田の出力が零となるまで修正され
る。なお、負荷設定器18はモータ駆動のポテンショメ
ータあるいはディジタル設定器、積分器などのような記
憶式の回路で構成され、加算器おからの偏差信号が零に
なると、すなわちガスタービン発電機の出力が負荷設定
指令器31に設定された所望の負荷と同一になると、負
荷設定器18の設定値は記憶され一定値に保持される。
FIG. 4 shows a partial block diagram of a gas turbine control device according to an embodiment of the present invention, and the differences from the configuration in FIG. 2 are a speed load control circuit 12 and an inlet variable stator vane control circuit 14. The input side configuration is IC6. That is, the load setting for the gas turbine 8 is performed by the load setting device 18, but in the configuration of this embodiment shown in FIG. The output signal of 32 is compared with the output signal of 32 in an adder, and this deviation is given to the load setter 18. In the load setter 18, the set value is corrected until the output of the adder 6 becomes zero. The load setting device 18 is composed of a memory-type circuit such as a motor-driven potentiometer, a digital setting device, an integrator, etc., and when the deviation signal from the adder becomes zero, that is, the output of the gas turbine generator changes. When the load becomes the same as the desired load set in the load setting command device 31, the set value of the load setting device 18 is stored and held at a constant value.

従って入口可変静翼により空気量を減らされたガスター
ビン8の出力変化分は負荷設定器18の設定信号を修正
することにより補正される。一方、本実施例の構成に於
いては、負荷設定指令器31の出力信号と実負荷検出器
(の出力信号との偏差信号すなわち加算器33の出力信
号をゲイン変換6詞を通して入口可変静翼制御回路14
の入力側圧設けた加算6加に加えることによりガスター
ビン8の過渡的温度上昇を抑制し、負荷追従性の向上を
計−っている。
Therefore, the change in the output of the gas turbine 8 whose air amount is reduced by the variable inlet stator vane is corrected by modifying the setting signal of the load setting device 18. On the other hand, in the configuration of this embodiment, the deviation signal between the output signal of the load setting command device 31 and the output signal of the actual load detector (that is, the output signal of the adder 33) is converted to the input variable stator vane through gain conversion. Control circuit 14
By adding the input side pressure to the addition 6, transient temperature rise of the gas turbine 8 is suppressed and load followability is improved.

かかる構成に於いて、負荷上昇に伴なって加算633に
偏差信号が生じると、これが負荷設定器18を介して速
度負荷制御回路12に与えられ、ガスタービン8の燃焼
器4の燃料を増加させると共に、入口可変静翼制御回路
の加算器あにゲイン変換器あを介して入口可変静翼21
に開させる方向で信号が加えられるため ガスタービン
8の空気量が増加する。以上述べた2つの制御を実施す
ることにより、ガスタービン8の過渡的な温度上昇を防
止することが出来ると共に、負荷追従性を向上させるこ
とが出来る。
In such a configuration, when a deviation signal is generated in the addition 633 due to an increase in load, this signal is applied to the speed load control circuit 12 via the load setter 18 to increase the fuel in the combustor 4 of the gas turbine 8. At the same time, the inlet variable stator vane 21 is connected to the inlet variable stator vane 21 via the adder A and the gain converter A of the inlet variable stator vane control circuit.
Since a signal is applied in the direction of opening the gas turbine 8, the amount of air in the gas turbine 8 increases. By implementing the two controls described above, it is possible to prevent a transient temperature rise of the gas turbine 8 and to improve load followability.

なお、第4図の構成においては、ガスタービン発電機出
力を実負荷検出器32′fr:通じて検出する場合を例
示したが、第5図のブロック図に示す如く、入口可変静
翼開度32a、ガスタービン排気温E2b 。
In the configuration shown in FIG. 4, the gas turbine generator output is detected through the actual load detector 32'fr; however, as shown in the block diagram of FIG. 32a, gas turbine exhaust temperature E2b.

圧縮機吐出圧力32cf:検出し、これらを出力演算回
路32d、に入力することによりガスタービン発電機出
力を算出し負荷設定指令器31の出力信号と比較する如
き構成としそもよい。
Compressor discharge pressure 32cf: It may be configured to detect and input these to the output calculation circuit 32d to calculate the gas turbine generator output and compare it with the output signal of the load setting command device 31.

第6図は本発明の他の実施例に係るガスタービン制御装
置の部分プ漬ツク図で、特に第7図の系統図に示す如く
、圧縮機3、ガスタービン8、蒸気タービンあ、発電機
10が同一軸上に配置された構成のものに有効に適用し
得る構成を例示するものである。
FIG. 6 is a partial block diagram of a gas turbine control system according to another embodiment of the present invention. In particular, as shown in the system diagram of FIG. 7, a compressor 3, a gas turbine 8, a steam turbine 8, a generator This exemplifies a configuration that can be effectively applied to a configuration in which 10 are arranged on the same axis.

すなわち、第7図に示す如き形式のコンバインドサイク
ルでは、発電機10の出力、つまり実負荷はガスタービ
ン8と蒸気タービンあの出力の和であるため、ガスター
ビン8の正味の出力を検出することはできない。これ一
対して、ガスタービン8と蒸気タービンあの出力分担に
応じた係数を発電機10の出力信号に掛算して補正する
ことも可能であるが、負荷変化させている場合、ガスタ
ービン出力の変化に対する廃熱回収ボイラの追従性が悪
いために蒸気タービン話の出力は前述の係数通σに一定
割合での変化はしない口 これに対して、第6図の構成に於いては、蒸気タービン
Iの出力が蒸気タービン5の第1段の圧力に比例すると
いう原理を利用して、蒸気タービンの第1段の圧力を検
出することにより蒸気タービン出力を演算する演算回路
あを設け、その出力信号を加算器37に入力することに
よりこれを発電機実負荷検出6諺の出力信号から減算し
て真のガスタービン出力を得ている、 がかる構成により、負荷変化の過渡時において蒸気ター
ビンあの負荷追従の遅れ分をガスタービン側で補ない、
またガスタービンが過負荷運転になるのを防止すること
ができる。
That is, in the combined cycle of the type shown in FIG. 7, the output of the generator 10, that is, the actual load, is the sum of the outputs of the gas turbine 8 and the steam turbine, so it is impossible to detect the net output of the gas turbine 8. Can not. On the other hand, it is also possible to correct this by multiplying the output signal of the generator 10 by a coefficient according to the output sharing between the gas turbine 8 and the steam turbine, but when the load is changed, the change in the gas turbine output The output of the steam turbine does not change at a constant rate with respect to the above-mentioned coefficient σ due to the poor followability of the waste heat recovery boiler against the Utilizing the principle that the output of the steam turbine 5 is proportional to the pressure of the first stage of the steam turbine 5, an arithmetic circuit is provided which calculates the steam turbine output by detecting the pressure of the first stage of the steam turbine. By inputting this into the adder 37, this is subtracted from the output signal of the generator actual load detection to obtain the true gas turbine output. With this configuration, the steam turbine can follow that load during transient load changes. The gas turbine side does not compensate for the delay in
It is also possible to prevent the gas turbine from operating overload.

発明の効果 以上述べた如く、本発明によれば、ガスタービンの負荷
指令に対して実際のガスタービンの出力を精度よく追従
させ、かつ負荷変化の際の負荷追従性を改善し、更に温
度上昇の抑制を可能とすることにより、運転性、信頼性
の高いガスタービン制御装rItを得ることが出来るも
のである。
Effects of the Invention As described above, according to the present invention, it is possible to accurately follow the actual gas turbine output in response to the gas turbine load command, improve the load followability when the load changes, and further reduce the temperature rise. By making it possible to suppress this, it is possible to obtain a gas turbine control system rIt with high operability and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービンの系統図、@2図は従来の
ガスタービン制御装置のブロック図、第3図はコンバイ
ンドサイクル運用時のガスタービン出力とガスタービン
排気ガス温度の関係を示す特性図、第4図は本発明の一
実施例に係るガスタ−ビン制御装置の部分ブロック図、
第5図は実負荷検出器の他の例を示すブロック図、第6
図は本発明の他の実施例に係るガスタービン制御装置の
部分ブロック図、第7図は第6図構成が適用される一軸
形コンパインドサイクルの構成を示す系統図である。
Figure 1 is a system diagram of a conventional gas turbine, Figure 2 is a block diagram of a conventional gas turbine control device, and Figure 3 is a characteristic diagram showing the relationship between gas turbine output and gas turbine exhaust gas temperature during combined cycle operation. , FIG. 4 is a partial block diagram of a gas turbine control device according to an embodiment of the present invention,
Fig. 5 is a block diagram showing another example of an actual load detector;
The figure is a partial block diagram of a gas turbine control device according to another embodiment of the present invention, and FIG. 7 is a system diagram showing the configuration of a uniaxial combined cycle to which the configuration of FIG. 6 is applied.

Claims (1)

【特許請求の範囲】 1、入口可変静翼を有するガスターピントソノ排気ガス
によって駆動される蒸気タービンとにより電力を発生す
る発電システムと、ガスタービンの実負荷を検出して負
荷指令と比較し、得られ定負荷偏差とガスタービンの回
転数に基いてガスタービンの燃料を制御する速度負荷制
御手段と、この速度負荷制御手段からの負荷偏差とガス
タービン排気ガス温度と温度設定信号とに基いて入口可
変静翼の開度を制御する入口可変静翼制御手段とから成
ることを特徴とするガスタービン制御装置。 2、速度負荷制御手段が発電システムの全負荷から蒸気
タービンの出方を差し引いた信号をガスタービンの実負
荷とすることを特徴とする特許請求の範囲第1項に記載
のガスタービン制御装置C 3、入口可変静翼制御手段が速度負荷制御手段からの負
荷偏差に一定の係数をかける係数器を備えている事を特
徴とする特許請求の範囲第1項に記載のガスタービン制
御装置。
[Claims] 1. A power generation system that generates electric power by a steam turbine driven by exhaust gas having a variable inlet stator vane, and detecting the actual load of the gas turbine and comparing it with a load command, speed load control means for controlling the fuel of the gas turbine based on the obtained constant load deviation and the rotational speed of the gas turbine; A gas turbine control device comprising: variable inlet stator vane control means for controlling the opening degree of the variable inlet stator vanes. 2. The gas turbine control device C according to claim 1, wherein the speed load control means sets a signal obtained by subtracting the output of the steam turbine from the total load of the power generation system as the actual load of the gas turbine. 3. The gas turbine control device according to claim 1, wherein the inlet variable stator vane control means includes a coefficient unit that multiplies the load deviation from the speed load control means by a constant coefficient.
JP645182A 1982-01-19 1982-01-19 Controller for gas turbine Granted JPS58124010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP645182A JPS58124010A (en) 1982-01-19 1982-01-19 Controller for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP645182A JPS58124010A (en) 1982-01-19 1982-01-19 Controller for gas turbine

Publications (2)

Publication Number Publication Date
JPS58124010A true JPS58124010A (en) 1983-07-23
JPS6246681B2 JPS6246681B2 (en) 1987-10-03

Family

ID=11638783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP645182A Granted JPS58124010A (en) 1982-01-19 1982-01-19 Controller for gas turbine

Country Status (1)

Country Link
JP (1) JPS58124010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062295A (en) * 1983-09-14 1985-04-10 Hitachi Ltd Digital type multifrequency signal receiver
JPS61107004A (en) * 1984-10-25 1986-05-24 ウエスチングハウス エレクトリック コ−ポレ−ション Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
JPS61171834A (en) * 1985-01-25 1986-08-02 Hitachi Ltd Operation control of turbine and apparatus thereof
JP2015190469A (en) * 2014-03-28 2015-11-02 ゼネラル・エレクトリック・カンパニイ System and method for improved control of combined cycle power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062295A (en) * 1983-09-14 1985-04-10 Hitachi Ltd Digital type multifrequency signal receiver
JPS61107004A (en) * 1984-10-25 1986-05-24 ウエスチングハウス エレクトリック コ−ポレ−ション Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
JPS61171834A (en) * 1985-01-25 1986-08-02 Hitachi Ltd Operation control of turbine and apparatus thereof
JP2015190469A (en) * 2014-03-28 2015-11-02 ゼネラル・エレクトリック・カンパニイ System and method for improved control of combined cycle power plant

Also Published As

Publication number Publication date
JPS6246681B2 (en) 1987-10-03

Similar Documents

Publication Publication Date Title
US4550565A (en) Gas turbine control systems
JP2954456B2 (en) Exhaust recirculation combined plant
JP3869490B2 (en) Adjustment setting method of main control amount during operation of gas turbine group
JPS6158644B2 (en)
JP3677536B2 (en) Gas turbine power generation control device
JP3730275B2 (en) Variable guide vane control device for gas turbine
JPS6333372B2 (en)
JP4895465B2 (en) Flame temperature control and adjustment system for single shaft gas turbine
JP3672339B2 (en) Starting method and starting apparatus for single-shaft combined cycle plant
JPS58124010A (en) Controller for gas turbine
JP3716018B2 (en) Variable inlet guide vane control method
JPS6397835A (en) Gas turbine temperature control device
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
US3965674A (en) Combined cycle electric power plant and a gas turbine having a backup control system with an improved feedforward analog speed/load control
US11236676B2 (en) Humid air turbine
JP2692978B2 (en) Start-up operation method of combined cycle plant
JPS6154927B2 (en)
JPS58107805A (en) Control of turbine for combined cycle power generation
JPH05340205A (en) Controller for combined power generation plant
JPS6239658B2 (en)
JPS59115406A (en) Load controller of composite cycle power generating plant
JPH04246244A (en) Pressurizing fluidized bed combined plant and partial load operation control and device therefor
JPS58206812A (en) Device for adjusting discharged gas of steam turbine with vacuum
JP2003278561A (en) Inlet guide vane controller
JPS6115244B2 (en)