JPH0996227A - Pressure controller of gasification plant - Google Patents

Pressure controller of gasification plant

Info

Publication number
JPH0996227A
JPH0996227A JP7256332A JP25633295A JPH0996227A JP H0996227 A JPH0996227 A JP H0996227A JP 7256332 A JP7256332 A JP 7256332A JP 25633295 A JP25633295 A JP 25633295A JP H0996227 A JPH0996227 A JP H0996227A
Authority
JP
Japan
Prior art keywords
booster
pressure
gas turbine
pressure control
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7256332A
Other languages
Japanese (ja)
Other versions
JP3716014B2 (en
Inventor
Kazufumi Kusakabe
和文 草壁
Makoto Kato
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25633295A priority Critical patent/JP3716014B2/en
Publication of JPH0996227A publication Critical patent/JPH0996227A/en
Application granted granted Critical
Publication of JP3716014B2 publication Critical patent/JP3716014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PROBLEM TO BE SOLVED: To reduce auxiliary machine power as well as to restrict pressure variation caused by external disturbance by controlling the opening of a guide vane as the result of controlling the set value to make compensatory addition equivalent to a pressure loss taking place from a booster to a gasification furnace variable according to an air flow quantity change in the case of setting the ejection pressure of the booster for feeding air to the gasification furnace. SOLUTION: Signals 3, 5 obtained by making proportional control to a gas turbine and signals 4, 6 obtained by making proportional integration control to the same terms as stated above are subjected to addition to/subtraction from signals 8, 9 serving as functions of a turbine output command 7, and also subjected to preceding control of fuel, air and spray as a gas turbine governor valve opening command 10 and a gasification furnace input command 11. And also a gasification furnace pressure set signal 12 as the function of a gas turbine demand is added to the function of the secondary air flow quantity command signal 13 and the function of the primary air flow quantity ejection pressure signal 14 and compared with the ejection pressure signals 15, 16 of respective boosters to get signals 17, 18 and signals subjected to proportional integration are designated to signals 17', 18' for controlling the openings of inlet guide vanes of respective boosters.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガス化プラントの空
気・ガス系圧力制御装置もしくは昇圧機制御装置に適用
される制御アルゴリズムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control algorithm applied to an air / gas system pressure controller or a booster controller of a gasification plant.

【0002】[0002]

【従来の技術】図4は石炭ガス化複合発電プラントの一
例を示す概要図である。この図に示されるように、石炭
ガス化複合発電プラントは、ガス化炉設備(100)、
脱塵設備(110)、脱硫設備(120)、ガスタービ
ン発電機(132)、(133)、排熱回収ボイラ(1
40)、蒸気タービン発電機(150)、(151)、
空気昇圧機(161)、(162)、石炭供給装置(1
70)等から成る。石炭供給装置(170)から微粉炭
を圧縮空気とともにガス化炉(101)内へ噴射して、
ガス化剤(空気または酸素)で燃焼させることにより石
炭をガス化する。
2. Description of the Related Art FIG. 4 is a schematic diagram showing an example of an integrated coal gasification combined cycle power plant. As shown in this figure, the integrated coal gasification combined cycle power plant has a gasification furnace facility (100),
Dust removal equipment (110), desulfurization equipment (120), gas turbine generators (132), (133), exhaust heat recovery boiler (1
40), steam turbine generator (150), (151),
Air boosters (161), (162), coal feeder (1
70) and the like. Injecting pulverized coal with compressed air into the gasification furnace (101) from the coal supply device (170),
Coal is gasified by burning it with a gasifying agent (air or oxygen).

【0003】ガス化炉(101)で生成した石炭ガス
は、ガス化炉後方のガス冷却器(102)で冷却された
後、チャー回収系(103)、脱塵設備(110)、脱
硫設備(120)で石炭ガスを精製した後、ガスタービ
ン燃焼器へ送られて発電を行なう。また、ガスタービン
駆動の空気圧縮機(134)から取り出された抽気は、
ガス化炉圧力調整のために空気昇圧機(161)、(1
62)で昇圧された後、搬送用および燃焼用として加圧
状態のガス化炉に圧入される。
The coal gas produced in the gasification furnace (101) is cooled in a gas cooler (102) at the rear of the gasification furnace, and then a char recovery system (103), a dust removal equipment (110), a desulfurization equipment ( After refining the coal gas in 120), the coal gas is sent to a gas turbine combustor for power generation. Further, the bleed air extracted from the air compressor (134) driven by the gas turbine is
Air boosters (161), (1
After the pressure is increased in 62), it is pressed into a gasification furnace in a pressurized state for transportation and combustion.

【0004】石炭ガス化複合発電においては、ガス冷却
器(102)で発生した主蒸気とガスタービン後流のガ
ス処理装置付き排熱回収ボイラ(140)で発生した主
蒸気を全量、蒸気タービン(150)で混圧結合し発電
することができる程の蒸気発生となり、加圧燃焼の効果
もあって、排熱回収LNG複合発電とはガスタービン/
蒸気タービンの負荷配分が異なる。
In the integrated coal gasification combined cycle power generation, the main steam generated in the gas cooler (102) and the main steam generated in the exhaust heat recovery boiler (140) with a gas treatment device downstream of the gas turbine are entirely combusted in the steam turbine ( At 150), steam is generated so that it can be mixed pressure combined to generate electricity, and because of the effect of pressurized combustion, the exhaust heat recovery LNG combined power generation is a gas turbine /
The steam turbine load distribution is different.

【0005】図5は従来の石炭ガス化炉圧力制御方式の
一例を示す図である。この図に示すように、圧力設定器
(30)による圧力設定に対して、ガス化炉出口圧力
(31)と脱塵装置出口圧力信号(32)を比較してカ
スケードフィードバックを行ない、C1弁(ガス焼却炉
入口圧力調節弁)開度指令(33)とともにC1弁に対
する開度制御(34)を行なっている。このガス化炉出
口圧力制御ブロック(35)によって構成されたガス化
炉圧力制御指令(36)は、昇圧機吐出圧力設定器(3
7)に渡されて、昇圧機吐出圧力信号(40)と比較
し、昇圧機吐出圧力制御装置(38)によって空気昇圧
機入口案内ベーン開度(39)を操作する。
FIG. 5 is a diagram showing an example of a conventional coal gasification furnace pressure control system. As shown in this figure, the gasifier outlet pressure (31) and the dust remover outlet pressure signal (32) are compared with respect to the pressure set by the pressure setter (30) to perform cascade feedback, and the C1 valve ( The opening control (34) for the C1 valve is performed together with the gas incinerator inlet pressure control valve) opening command (33). The gasifier pressure control command (36) constituted by the gasifier outlet pressure control block (35) is supplied to the booster discharge pressure setter (3).
7) and compared to the booster discharge pressure signal (40) to operate the air booster inlet guide vane opening (39) by the booster discharge pressure controller (38).

【0006】また、制御モードがガス化炉負荷制御モー
ド(42)からガス化炉圧力制御モード(43)に切り
換えられた時には、ガス化炉負荷指令信号(44)の代
わりにガス化炉圧力制御指令(36)がガス化炉入力指
令(GID)信号(37)として燃料および空気流量の
制御を行なうようになっている。
When the control mode is switched from the gasifier load control mode (42) to the gasifier pressure control mode (43), the gasifier load control signal (44) is used instead of the gasifier pressure control signal (44). The command (36) serves as a gasifier input command (GID) signal (37) to control the fuel and air flow rates.

【0007】上記のように、従来のガス化プラントの負
荷・圧力・制御においては、ガス化炉入力要求に対して
負荷・圧力制御の切り換えが採用され、またガスタービ
ンリード、ガス化炉リード、協調制御が提案されたが、
昇圧機吐出圧力は一定値制御されていた。また、それと
は独立にガス化炉圧力に比して一定差圧だけ高くするこ
とにより、昇圧機吐出圧力が必要以上に高くなることを
防止する方法が提案されていた。
As described above, in the load / pressure / control of the conventional gasification plant, switching of the load / pressure control is adopted in response to the gasifier input request, and the gas turbine lead, gasifier lead, Cooperative control was proposed,
The booster discharge pressure was controlled at a constant value. In addition, a method has been proposed that prevents the booster discharge pressure from becoming unnecessarily high by independently increasing the pressure by a certain differential pressure compared to the gasifier pressure.

【0008】[0008]

【発明が解決しようとする課題】前記従来の圧力制御方
式には、次のような解決すべき課題があった。
The above-mentioned conventional pressure control system has the following problems to be solved.

【0009】1)ガス化炉の圧力は、負荷変化等の外乱
に対しても大きな変動をしないように制御を行なわない
と、給炭系との差圧の変動のために燃料流量の脈動や逆
流を引き起こす恐れがある。
1) Unless the pressure of the gasification furnace is controlled so as not to change significantly even with disturbances such as load changes, fuel pressure pulsation and pulsation due to fluctuations in the pressure difference with the coal feeding system will occur. May cause reflux.

【0010】2)昇圧機の吐出圧力は、高負荷帯におけ
る制御性を考えて調整すると、低負荷帯における安定性
が損なわれてハンチングを起こす恐れがある。
2) If the discharge pressure of the booster is adjusted in consideration of controllability in the high load zone, stability in the low load zone may be impaired and hunting may occur.

【0011】3)昇圧機の吸込流量が低負荷帯で規定値
よりも少なくなると、サージングを引き起こす恐れがあ
る。
3) If the suction flow rate of the booster is less than the specified value in the low load zone, surging may occur.

【0012】4)昇圧機の吸気湿度が高い場合に過冷却
を行なうと、ドレンが発生して昇圧機が液圧縮を起こし
たり、初段にエロージョンを起こす恐れがある。
4) If supercooling is performed when the intake air humidity of the booster is high, there is a risk that drainage may occur and the booster may cause liquid compression or erosion in the first stage.

【0013】[0013]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決するために、下記1)ないし7)に示される
ガス化プラントの圧力制御装置を提案するものである。
In order to solve the above-mentioned conventional problems, the present inventor proposes a pressure control device for a gasification plant shown in 1) to 7) below.

【0014】1)固体燃料または液体燃料をガス化する
ガス化炉と、そのガス化炉で発生したガスを燃焼させて
発電するガスタービンと、そのガスタービンと同軸結合
された空気圧縮機と、その空気圧縮機の抽気を昇圧して
上記ガス化炉へ送給する昇圧機とを備え、ガスタービン
デマンドの関数としてガス化炉圧力設定を構成し、ガス
タービンガバナ弁開度指令およびガス化炉入力デマンド
による負荷制御およびガス化炉圧力制御に対してガスタ
ービン出力偏差の修正とともにガス化炉圧力偏差の修正
を行なう協調制御装置において、空気供給弁とガスター
ビンガバナ弁を制御するとともに上記昇圧機の吐出圧力
を制御する手段を備え、その設定値を、ガス化炉圧力設
定に対してガス化炉へ供給される空気量により定まる圧
損分を上乗せして設定し、上記昇圧機吐出圧力制御手段
の調節によって昇圧機の吐出圧力を制御することを特徴
とするガス化プラントの圧力制御装置。
1) A gasification furnace for gasifying a solid fuel or a liquid fuel, a gas turbine for combusting the gas generated in the gasification furnace to generate electricity, and an air compressor coaxially connected to the gas turbine. The gas compressor is provided with a booster for boosting the bleed air of the air compressor and feeding it to the gasification furnace, and the gasification furnace pressure setting is configured as a function of the gas turbine demand. The gas turbine governor valve opening command and the gasification furnace are provided. In a coordinated control device for correcting gas turbine output deviation as well as gasifier pressure deviation for load control and gasifier pressure control by input demand, in the booster, controlling an air supply valve and a gas turbine governor valve. Is equipped with a means for controlling the discharge pressure, and the set value is added to the gasification furnace pressure setting by the pressure loss determined by the amount of air supplied to the gasification furnace. Constant, and controlling the discharge pressure of the booster by adjusting the pressure control device of the gasification plant, wherein the booster discharge pressure control means.

【0015】2)上記要件に加えて、上記昇圧機の吐出
圧力制御手段として昇圧機の入口案内ベーンを用いるこ
とを特徴とするガス化プラントの圧力制御装置。
2) In addition to the above requirements, a pressure control device for a gasification plant, characterized in that an inlet guide vane of the booster is used as the discharge pressure control means of the booster.

【0016】3)上記1)の要件に加えて、上記昇圧機
の吐出圧力制御手段として昇圧機の回転数制御を用いる
ことを特徴とするガス化プラントの圧力制御装置。
3) In addition to the requirement of 1) above, a pressure control device for a gasification plant is characterized in that a rotation speed control of a booster is used as a discharge pressure control means of the booster.

【0017】4)上記1)の要件に加えて、上記昇圧機
の吐出圧力制御手段として昇圧機上流に設置した入口弁
を用いることを特徴とするガス化プラントの圧力制御装
置。
4) In addition to the requirements of 1) above, a pressure control device for a gasification plant, characterized in that an inlet valve installed upstream of the booster is used as the discharge pressure control means of the booster.

【0018】5)上記1)の要件に加えて、上記ガスタ
ービン負荷指令の関数として制御器のゲインを定め、低
負荷ほど小さく設定することを特徴とするガス化プラン
トの圧力制御装置。
5) In addition to the requirements of 1) above, a pressure control device for a gasification plant is characterized in that the gain of the controller is determined as a function of the gas turbine load command, and the gain is set smaller as the load becomes lower.

【0019】6)上記1)の要件に加えて、上記昇圧機
の圧縮比の関数として定まるサージングライン以上の吸
込流量を確保するように、再循環弁の開度を自動調節す
ることを特徴とするガス化プラントの圧力制御装置。
6) In addition to the requirement of 1) above, the opening of the recirculation valve is automatically adjusted so as to secure a suction flow rate above the surging line determined as a function of the compression ratio of the booster. Pressure control device for gasification plant.

【0020】7)上記1)の要件に加えて、上記上乗せ
する圧損分ΔPを次式で定めることを特徴とするガス化
プラントの圧力制御装置。
7) In addition to the requirement of 1) above, a pressure controller for a gasification plant is characterized in that the pressure loss component ΔP to be added is determined by the following equation.

【0021】ΔP=K(Po/P)(T/To)W2 ここに K:定格点での流調弁Cv値および配管等の圧
損抵抗から定まる係数 Po、To:定格点での圧力、温度 P、T :運転状態での圧力、温度 W :空気流量 上記1)ないし4)のように制御すると、負荷変動によ
る空気流量変化があったとしても、空気流調弁の開度を
規定値+α%の範囲に抑えることができるので、一定差
圧分上乗せする場合よりも、弁のレンジアビリティを広
げ流量制御装置の感度を上げることができるとともに、
全閉/全開までの裕度が増すので外乱に対する対応力/
耐力を上げることができる。また負荷変化に対するガス
タービンガバナ弁の動きによって発生するガス圧力の変
動分を、圧力修正項によって打ち消すことができる。
ΔP = K (Po / P) (T / To) W 2 Here, K: coefficient determined by Cv value of flow control valve at rated point and pressure loss resistance of piping etc. Po, To: pressure at rated point, Temperature P, T: Pressure in operating state, temperature W: Air flow rate When controlled as in the above 1) to 4), even if the air flow rate changes due to load fluctuation, the opening of the air flow control valve will be the specified value. Since it can be suppressed within the range of + α%, the rangeability of the valve can be expanded and the sensitivity of the flow rate control device can be increased compared with the case where a certain differential pressure is added.
Responsiveness to disturbances because the margin until fully closed / fully opened increases
You can increase the yield strength. Further, the fluctuation amount of the gas pressure generated by the movement of the gas turbine governor valve with respect to the load change can be canceled by the pressure correction term.

【0022】そして上記5)のように制御すると、昇圧
機のQ/H特性の傾斜の急な低負荷帯ではループゲイン
を下げることによってゲイン余裕の減少を防止すること
ができる。
By controlling as in the above 5), it is possible to prevent the gain margin from decreasing by lowering the loop gain in the low load zone where the Q / H characteristic of the booster has a steep slope.

【0023】更に上記6)のように制御すると、昇圧機
のサージマージンを常にある程度以上確保することがで
きる。
Further, if the control is carried out as in the above 6), the surge margin of the booster can always be secured to some extent or more.

【0024】加えて上記7)のように制御すると上記
1)ないし4)の空気圧力制御の精度を向上させること
ができる。
In addition, if the control is performed as in 7) above, the accuracy of the air pressure control in 1) through 4) above can be improved.

【0025】[0025]

【発明の実施の形態】次に本発明の実施の形態を図面に
よって説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0026】まず図1に示す空気・ガス系制御について
説明する。ガスタービン出力偏差信号(1)およびガス
化炉圧力偏差(2)を比例制御した信号(3)、(5)
および比例積分制御した信号(4)、(6)を、ガスタ
ービン出力指令(7)の関数として定まる信号(8)、
(9)にそれぞれ加減算し、ガスタービンガバナ弁開度
指令(10)およびガス化炉入力要求(11)として、
燃料、空気、スプレイ先行制御を行なう。また、ガスタ
ービンデマンドの関数として定まるガス化炉圧力設定
(12)を2次空気流量指令信号(13)の関数および
1次空気流量指令信号(14)の関数に加算して、それ
ぞれの昇圧機の吐出圧力信号(15)、(16)と比較
し(17)、(18)、比例・積分を行なった信号をそ
れぞれの昇圧機の入口案内ベーン開度を操作する信号
(17′)、(18′)とする。
First, the air / gas system control shown in FIG. 1 will be described. Gas turbine output deviation signal (1) and gasifier pressure deviation (2) proportional control signals (3), (5)
And the signals (4) and (6) which are controlled by proportional-plus-integral control as a function of the gas turbine output command (7) (8),
Addition / subtraction to (9), respectively, as a gas turbine governor valve opening command (10) and gasifier input request (11),
Fuel, air, spray advance control is performed. Further, the gasifier pressure setting (12) determined as a function of the gas turbine demand is added to the function of the secondary air flow rate command signal (13) and the function of the primary air flow rate command signal (14), and each booster is added. The discharge pressure signals (15) and (16) are compared (17) and (18), and the proportional and integrated signals are used to operate the inlet guide vane opening of each booster (17 '), ( 18 ').

【0027】次に図2に2次空気昇圧機制御を纏めて示
すと、図1に述べた2次空気昇圧機入口案内ベーン開度
制御に加えて、ガスタービン負荷指令(19)のゲイン
スケジュール関数を2次空気昇圧機吐出圧力偏差信号に
乗ずることによるゲイン補正機能と、2次空気昇圧機吐
出圧力(15)と吸込圧力(21)との比すなわち圧縮
比(22)の関数としてのサージ流量(23)と2次空
気昇圧機吸込流量(24)の差信号(25)の関数の時
間遅れ信号によって、2次空気昇圧機再循環ベーン開度
を操作する(27)機能とを付加することになる。1次
空気に関してもほぼ同様である。
Next, FIG. 2 shows a summary of the secondary air booster control. In addition to the secondary air booster inlet guide vane opening control described in FIG. 1, the gain schedule of the gas turbine load command (19) is shown. Gain correction function by multiplying the function by the secondary air booster discharge pressure deviation signal, and surge as a function of the ratio of the secondary air booster discharge pressure (15) to the suction pressure (21), that is, the compression ratio (22). A function (27) for operating the secondary air booster recirculation vane opening is added by a time delay signal as a function of a difference signal (25) between the flow rate (23) and the secondary air booster suction flow rate (24). It will be. The same applies to the primary air.

【0028】これらの制御機能の基本構成を纏めて表現
したものが図3である。
FIG. 3 collectively shows the basic configuration of these control functions.

【0029】本実施形態の基本的原理は、ガス化炉圧力
の変動を最小限に抑制するために、下流側のガスタービ
ンガバナ弁開度指令およびガス化炉入力指令に対して、
適切なガスタービン出力偏差修正および圧力偏差修正を
追加するとともに、ガス化炉に空気を送る昇圧機の吐出
圧力の設定に際して、空気流量変化によって変わる昇圧
機からガス化炉までの圧損分だけ上乗せするような設定
値制御を行なって、昇圧機入口案内ベーン開度を操作す
るものである。更に、この昇圧機による空気系の圧力制
御機能の安定性と信頼性を補助する手段として、第1に
昇圧機吐出圧力制御器のゲインをガスタービン負荷指令
の関数として定めて低負荷ほど小さく設定し、第2に圧
縮比の関数として定まるサージングライン以上の吸込流
量を確保するように再循環弁の開度を自動調節するもの
である。
The basic principle of this embodiment is that in order to minimize fluctuations in the gasifier pressure, the gas turbine governor valve opening command on the downstream side and the gasifier input command are
Appropriate gas turbine output deviation correction and pressure deviation correction are added, and when setting the discharge pressure of the booster that sends air to the gasifier, add only the pressure loss from the booster to the gasifier that changes depending on the air flow rate change. By performing such set value control, the opening of the booster inlet guide vane is operated. Further, as a means for assisting the stability and reliability of the pressure control function of the air system by the booster, firstly, the gain of the booster discharge pressure controller is determined as a function of the gas turbine load command and set to be smaller as the load is lower. Secondly, the opening of the recirculation valve is automatically adjusted so as to secure a suction flow rate equal to or higher than the surging line determined as a function of the compression ratio.

【0030】[0030]

【発明の効果】本発明においては、負荷要求指令に対し
てガスタービンに出された出力要求に応じて操作される
ガスタービンガバナ弁および空気供給系により外乱を与
えられるガス化炉圧力系に対して、空気流調弁裕度向上
と制御器の感度向上およびガバナ弁による圧力偏差修正
等の作用により、外乱による圧力の変動を小さく抑える
効果がある。また上記の効果によって、派生的にガス化
炉の燃焼状況にも好影響を与え、燃焼およびガス化特性
を安定化させる効果がある。
According to the present invention, the gas turbine governor valve operated according to the output demand issued to the gas turbine in response to the load demand command and the gasifier pressure system disturbed by the air supply system are provided. As a result, the fluctuation of the pressure due to the disturbance can be suppressed to be small by the action of improving the air flow control valve margin, improving the sensitivity of the controller and correcting the pressure deviation by the governor valve. In addition, the above-mentioned effect has a derivative effect on the combustion state of the gasification furnace and stabilizes the combustion and gasification characteristics.

【0031】更に、空気供給弁開度の変化を小さく抑え
るように昇圧機吐出圧力を制御することができ、負荷変
動に対しても空気供給弁に過剰な絞りを加えることがな
いから、絞り損失を低減でき、また部分負荷での流量制
御性を確保しつつ吐出圧力が過大とならないので、補機
動力を削減することができる。この点は、ガス化炉圧力
に一定値を上乗せして吐出圧力設定を行なう方式よりも
すぐれている特徴的な効果である。
Further, the booster discharge pressure can be controlled so as to suppress the change in the opening of the air supply valve to a small extent, and an excessive throttling is not applied to the air supply valve even when the load changes, so that the throttling loss And the discharge pressure does not become excessive while ensuring the flow rate controllability under partial load, so that the auxiliary machine power can be reduced. This is a characteristic effect that is superior to the method of setting the discharge pressure by adding a constant value to the gasifier pressure.

【0032】本発明ではまた、どの負荷帯においても昇
圧機吐出圧力制御の安定性が増し、ハンチングを防止で
きる。そして、どの負荷帯においても昇圧機のサージン
グ発生を抑制でき、昇圧機制御の信頼性が増す。加えて
昇圧機制御の精度が向上し、信頼性が増す。
Further, in the present invention, the stability of the booster discharge pressure control is increased in any load zone, and hunting can be prevented. Then, the surging of the booster can be suppressed in any load zone, and the reliability of the booster control is increased. In addition, the accuracy of booster control is improved and reliability is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施の一形態に係る空気・ガス
系圧力制御装置を示す制御フロー図である。
FIG. 1 is a control flow chart showing an air / gas system pressure control device according to an embodiment of the present invention.

【図2】図2は上記実施形態における2次空気昇圧機制
御装置を示す制御フロー図である。
FIG. 2 is a control flow diagram showing a secondary air booster control device in the above embodiment.

【図3】図3は上記実施形態の圧力制御基本構成を示す
制御フロー図である。
FIG. 3 is a control flow chart showing a basic configuration of pressure control of the above embodiment.

【図4】図4は石炭ガス化複合発電プラントの一例を示
す概要図である。
FIG. 4 is a schematic diagram showing an example of an integrated coal gasification combined cycle power plant.

【図5】図5は従来の石炭ガス化炉圧力制御方式の一例
を示す制御フロー図である。
FIG. 5 is a control flow chart showing an example of a conventional coal gasifier pressure control system.

【符号の説明】[Explanation of symbols]

(100) ガス化炉設備 (101) ガス化炉 (102) ガス冷却器 (103) チャー回収系 (110) 脱塵設備 (120) 脱硫設備 (130) ガスタービン入口弁 (131) ガスタービン燃焼器 (132) ガスタービン (133) 発電機 (134) 空気圧縮機 (140) 排熱回収ボイラ (150) 蒸気タービン (151) 発電機 (161)、(162) 空気昇圧機 (163) 空気供給弁 (170) 石炭供給装置 (100) Gasification furnace equipment (101) Gasification furnace (102) Gas cooler (103) Char recovery system (110) Dust removal equipment (120) Desulfurization equipment (130) Gas turbine inlet valve (131) Gas turbine combustor (132) Gas turbine (133) Generator (134) Air compressor (140) Exhaust heat recovery boiler (150) Steam turbine (151) Generator (161), (162) Air booster (163) Air supply valve ( 170) Coal supply device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23N 1/02 101 F23N 1/02 101 G05D 16/20 G05D 16/20 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location F23N 1/02 101 F23N 1/02 101 G05D 16/20 G05D 16/20 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固体燃料または液体燃料をガス化するガ
ス化炉と、そのガス化炉で発生したガスを燃焼させて発
電するガスタービンと、そのガスタービンと同軸結合さ
れた空気圧縮機と、その空気圧縮機の抽気を昇圧して上
記ガス化炉へ送給する昇圧機とを備え、ガスタービンデ
マンドの関数としてガス化炉圧力設定を構成し、ガスタ
ービンガバナ弁開度指令およびガス化炉入力デマンドに
よる負荷制御およびガス化炉圧力制御に対してガスター
ビン出力偏差の修正とともにガス化炉圧力偏差の修正を
行なう協調制御装置において、空気供給弁とガスタービ
ンガバナ弁を制御するとともに上記昇圧機の吐出圧力を
制御する手段を備え、その設定値を、ガス化炉圧力設定
に対してガス化炉へ供給される空気量により定まる圧損
分を上乗せして設定し、上記昇圧機吐出圧力制御手段の
調節によって昇圧機の吐出圧力を制御することを特徴と
するガス化プラントの圧力制御装置。
1. A gasification furnace for gasifying a solid fuel or a liquid fuel, a gas turbine for combusting gas generated in the gasification furnace to generate electricity, and an air compressor coaxially connected to the gas turbine. The gas compressor is provided with a booster for boosting the bleed air of the air compressor and feeding it to the gasification furnace, and the gasification furnace pressure setting is configured as a function of the gas turbine demand. The gas turbine governor valve opening command and the gasification furnace are provided. In a coordinated control device for correcting gas turbine output deviation as well as gasifier pressure deviation for load control and gasifier pressure control by input demand, in the booster, controlling an air supply valve and a gas turbine governor valve. Equipped with a means to control the discharge pressure of, and set the set value by adding the pressure loss amount determined by the amount of air supplied to the gasifier to the gasifier pressure setting Then, the pressure control device of the gasification plant is characterized in that the discharge pressure of the booster is controlled by adjusting the booster discharge pressure control means.
【請求項2】 上記昇圧機の吐出圧力制御手段として昇
圧機の入口案内ベーンを用いることを特徴とする請求項
1記載のガス化プラントの圧力制御装置。
2. The pressure control device for a gasification plant according to claim 1, wherein an inlet guide vane of the booster is used as the discharge pressure control means of the booster.
【請求項3】 上記昇圧機の吐出圧力制御手段として昇
圧機の回転数制御を用いることを特徴とする請求項1記
載のガス化プラントの圧力制御装置。
3. The pressure control device for a gasification plant according to claim 1, wherein the control of the number of revolutions of the booster is used as the discharge pressure control means of the booster.
【請求項4】 上記昇圧機の吐出圧力制御手段として昇
圧機上流に設置した入口弁を用いることを特徴とする請
求項1記載のガス化プラントの圧力制御装置。
4. The pressure control device for a gasification plant according to claim 1, wherein an inlet valve installed upstream of the booster is used as the discharge pressure control means of the booster.
【請求項5】 上記ガスタービン負荷指令の関数として
制御器のゲインを定め、低負荷ほど小さく設定すること
を特徴とする請求項1記載のガス化プラントの圧力制御
装置。
5. The pressure control device for a gasification plant according to claim 1, wherein the gain of the controller is determined as a function of the gas turbine load command and is set to be smaller as the load is lower.
【請求項6】 上記昇圧機の圧縮比の関数として定まる
サージングライン以上の吸込流量を確保するように、再
循環弁の開度を自動調節することを特徴とする請求項1
記載のガス化プラントの圧力制御装置。
6. The opening degree of the recirculation valve is automatically adjusted so as to secure a suction flow rate equal to or higher than a surging line determined as a function of a compression ratio of the booster.
A pressure control device for the gasification plant described.
【請求項7】 上記上乗せする圧損分ΔPを次式で定め
ることを特徴とする請求項1記載のガス化プラントの圧
力制御装置。 ΔP=K(Po/P)(T/To)W2 ここに K:定格点での流調弁Cv値および配管等の圧
損抵抗から定まる係数 Po、To:定格点での圧力、温度 P、T :運転状態での圧力、温度 W :空気流量
7. The pressure control device of a gasification plant according to claim 1, wherein the pressure loss component ΔP to be added is determined by the following equation. ΔP = K (Po / P) (T / To) W 2 Here, K is a coefficient determined from the flow control valve Cv value at the rated point and the pressure loss resistance of the pipe, etc. Po, To: Pressure at the rated point, temperature P, T: Pressure and temperature in operating state W: Air flow rate
JP25633295A 1995-10-03 1995-10-03 Pressure control equipment for gasification plant Expired - Fee Related JP3716014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25633295A JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25633295A JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Publications (2)

Publication Number Publication Date
JPH0996227A true JPH0996227A (en) 1997-04-08
JP3716014B2 JP3716014B2 (en) 2005-11-16

Family

ID=17291210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25633295A Expired - Fee Related JP3716014B2 (en) 1995-10-03 1995-10-03 Pressure control equipment for gasification plant

Country Status (1)

Country Link
JP (1) JP3716014B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056781A1 (en) * 2006-11-09 2008-05-15 Mitsubishi Heavy Industries, Ltd. Goal gasification composite power generating system, and its running control method
US7797921B2 (en) 2004-10-20 2010-09-21 Mitsubishi Heavy Industries, Ltd. Control apparatus of extracted air booster system of integrated gasification combined cycle power plant
US7827793B2 (en) 2007-03-30 2010-11-09 The Tokyo Electric Power Company, Incorporated Power generation system
JP2011219524A (en) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd Boiler facility
KR20180019295A (en) * 2016-08-16 2018-02-26 한국서부발전 주식회사 Control System for Integrated Gasification Combined Cycle Facility
CN114507550A (en) * 2022-02-23 2022-05-17 新奥科技发展有限公司 Pressure control system of pressure changing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963323B (en) * 2020-07-29 2022-08-02 东方电气自动控制工程有限公司 Fuel control method in gas turbine speed-up process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7797921B2 (en) 2004-10-20 2010-09-21 Mitsubishi Heavy Industries, Ltd. Control apparatus of extracted air booster system of integrated gasification combined cycle power plant
WO2008056781A1 (en) * 2006-11-09 2008-05-15 Mitsubishi Heavy Industries, Ltd. Goal gasification composite power generating system, and its running control method
JP2008121450A (en) * 2006-11-09 2008-05-29 Mitsubishi Heavy Ind Ltd Coal gasification composite power generating system, and its running control method
JP4745940B2 (en) * 2006-11-09 2011-08-10 三菱重工業株式会社 Coal gasification combined power generation system and operation control method thereof
US8408007B2 (en) 2006-11-09 2013-04-02 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle and operation control method thereof
US7827793B2 (en) 2007-03-30 2010-11-09 The Tokyo Electric Power Company, Incorporated Power generation system
JP2011219524A (en) * 2010-04-05 2011-11-04 Mitsubishi Heavy Ind Ltd Boiler facility
KR20180019295A (en) * 2016-08-16 2018-02-26 한국서부발전 주식회사 Control System for Integrated Gasification Combined Cycle Facility
CN114507550A (en) * 2022-02-23 2022-05-17 新奥科技发展有限公司 Pressure control system of pressure changing device

Also Published As

Publication number Publication date
JP3716014B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3062207B2 (en) Integrated boost compressor / gas turbine controller
US8408007B2 (en) Integrated gasification combined cycle and operation control method thereof
US20070193249A1 (en) Air pressure control device in integrated gasification combined cycle system
US4274256A (en) Turbine power plant with back pressure turbine
JP2585324B2 (en) Gas turbine control method and apparatus
JPH0996227A (en) Pressure controller of gasification plant
JPH11210495A (en) Gas turbine
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
JPH05187271A (en) Control method for gas turbine combustor
US4231761A (en) Flare gas limiting apparaus for coal gasification unit
JPH0216040Y2 (en)
JPH06288262A (en) Operation control method of coal gasification compound generator system
JPS5949410B2 (en) Control method for gasification power plant
JP2000297610A (en) Integrated coal gasification combined cycle power plant and operation control method of the same
EP2577025B1 (en) Method for increasing an emissions compliant load range for a combined-cycle system
JP2000266310A (en) Pressure fluidized bed boiler and control method thereof
JPS5853643A (en) Control method of two-shaft gas turbine
JPH0932508A (en) Combined cycle plant
JP3697731B2 (en) Main steam temperature controller in exhaust recombustion combined cycle plant
JPS6291608A (en) Control device for power plant
JPS62223421A (en) Sliding pressure operation control method for coal gasification compound power generating plant
JP3061881B2 (en) Control device for coal gasification power plant
JPH0216039Y2 (en)
KR101866651B1 (en) Control System for Integrated Gasification Combined Cycle Facility
JP3199893B2 (en) Pressurized fluidized bed combustion plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees