JPH01285627A - Gas turbine fuel control device - Google Patents

Gas turbine fuel control device

Info

Publication number
JPH01285627A
JPH01285627A JP11274388A JP11274388A JPH01285627A JP H01285627 A JPH01285627 A JP H01285627A JP 11274388 A JP11274388 A JP 11274388A JP 11274388 A JP11274388 A JP 11274388A JP H01285627 A JPH01285627 A JP H01285627A
Authority
JP
Japan
Prior art keywords
lower limit
gas turbine
load
flow rate
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11274388A
Other languages
Japanese (ja)
Other versions
JPH0615824B2 (en
Inventor
Takeshi Ishida
武司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63112743A priority Critical patent/JPH0615824B2/en
Publication of JPH01285627A publication Critical patent/JPH01285627A/en
Publication of JPH0615824B2 publication Critical patent/JPH0615824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent failure in ignition of a combustor by a method wherein, in a device which has an upper lower limit limiter to limit the upper and the lower limit value of a flow rate of fuel to a combustor, a function generator is provided for computing the lower limit value of a flow rate of fuel according to an atmospheric temperature and outputting a lower limit value correction value signal. CONSTITUTION:During the starting of a gas turbine, from either of a starting control part 1, an exhaust gas temperature control part 2, and an acceleration control part 3, an optimum control signal is selected by a selection circuit 5 according to a running state to output it, and the rotation speed of the gas turbine is increased. When the speed is increased to a rated value, a control signal from a speed and addition control part 4 is selected by the selection circuit 5 to complete the starting of the gas turbine. Thereafter, the rise and fall of a turbine load are effected by means of a load increase command and a load decrease command 7. In this case, a function generator 10 to input an output signal from an atmospheric temperature gauge 14, where a temperature-corrected fuel flow rate limit value (b) is calculated. The calculating result is inputted as a lower limit value to an upper lower limit limiter 9 on starting/ stop process conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1発電用又は機械叩動用ガスタービンの燃料制
御装置に係り、特に燃焼器の失火防止に好適なガスター
ビン燃料制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel control device for a gas turbine for power generation or for mechanical beating, and particularly to a gas turbine fuel control device suitable for preventing misfires in a combustor.

〔従来の技術〕[Conventional technology]

従来のガスタービン燃料制御装置は、その制御を大別す
ると、起動制御、排気温度制御、加速度制御、速度・負
荷制御に分かれる。
The control of conventional gas turbine fuel control devices can be roughly divided into startup control, exhaust temperature control, acceleration control, and speed/load control.

起動制御は、定められた起動パターンに従って燃料量を
制御し、ガスタービンを自動的に昇速させる。
Start-up control controls the amount of fuel according to a defined start-up pattern and automatically speeds up the gas turbine.

排気温度制御は、高温部の材料の寿命管理のため、排気
温度及び起動時の排気温度の変化率を制限する。
Exhaust temperature control limits the exhaust temperature and the rate of change in the exhaust temperature at startup in order to manage the life of the material in the high temperature section.

加速度制御は、起動時の加速度を制御する。Acceleration control controls acceleration at startup.

速度・負荷制御は、定格速度と実際のガスタービン速度
の偏差の量に応じて、設定された速度調定率によって、
ガスタービン出力を制御する。
Speed/load control is controlled by a set speed regulation rate depending on the amount of deviation between the rated speed and the actual gas turbine speed.
Controls gas turbine output.

ガスタービン燃料制御装置は前記制御を行う各制御部か
らの制御信号を運転状態に応じて最適な信号を選択する
回路を有し、その回路を介して燃料制御指令を出力する
制御系統となっている。
The gas turbine fuel control device has a circuit that selects an optimal control signal from each control unit that performs the control according to the operating state, and serves as a control system that outputs a fuel control command through the circuit. There is.

一方、近年、ガスタービンの排出窒素酸化物(以下NO
xと称する)濃度を低減する目的で。
On the other hand, in recent years, gas turbine exhaust nitrogen oxides (NO
x) for the purpose of reducing the concentration.

マルチノズル方式燃焼器が用いられ、2段又は、複数段
燃焼方式が用いられるようになってきた。
Multi-nozzle combustors have been used, and two-stage or multi-stage combustion systems have come into use.

マルチノズル方式燃焼器の制御装置として関連するもの
は1例えば特開昭61−241425号公報が挙げられ
る。
An example of a related control device for a multi-nozzle type combustor is disclosed in Japanese Patent Application Laid-Open No. 61-241425.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、N Oxを低減する目的で、マルチノ
ズル方式燃焼器を使用した複数段燃焼方式が用いられる
が、複数段燃焼方式であると、燃焼器の失火防止の為、
最低燃料流量を確保する必要がある。
In the above conventional technology, a multi-stage combustion method using a multi-nozzle combustor is used for the purpose of reducing NOx.
It is necessary to ensure a minimum fuel flow rate.

しかし、従来の燃料制御装置は、大気温度に対応してこ
の流量を確保する制御方式を考慮していないという問題
がある。
However, conventional fuel control devices have a problem in that they do not take into consideration a control method for ensuring this flow rate in response to atmospheric temperature.

本発明の目的は、複数段燃焼方式を使用した燃焼器の失
火を防止するガスタービン燃料制御装置を提供すること
にある。
An object of the present invention is to provide a gas turbine fuel control device that prevents misfires in a combustor using a multi-stage combustion method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のガスタービンの燃
料制御装置は、ガスタービンの燃焼器への燃料流量の上
下限を制限する上下限制限器を備えたガスタービンの燃
料制御装置において、大気温度を測定して大気温度信号
を出力する温度測定手段と、該大気温度信号を入力して
前記燃料流量の下限値を補正演算し下限値補正値信号を
前記上下限制限器に出力する関数発生器とを備えたもの
である。
In order to achieve the above object, the gas turbine fuel control device of the present invention includes an upper and lower limit limiter that limits the upper and lower limits of the fuel flow rate to the combustor of the gas turbine. temperature measuring means for measuring temperature and outputting an atmospheric temperature signal; and a function generator for inputting the atmospheric temperature signal, calculating a correction value for the lower limit value of the fuel flow rate, and outputting a lower limit value correction value signal to the upper and lower limit limiter. It is equipped with a container.

〔作用〕[Effect]

ガスタービンの負荷と燃料流量と大気温度の関係におい
て、同一負荷であれば燃料流量は大気温度の関数で表さ
れ、大気温度が高いと燃料流量は少なく逆に大気温度が
低いと燃料流量は多くなる。
Regarding the relationship between the gas turbine load, fuel flow rate, and atmospheric temperature, if the load is the same, the fuel flow rate is expressed as a function of the atmospheric temperature; when the atmospheric temperature is high, the fuel flow rate is low, and conversely, when the atmospheric temperature is low, the fuel flow rate is high. Become.

関数発生器は燃焼器が失火しないために最低限必要な燃
料流量に対する前記関数を設定している。
The function generator sets the function for the minimum fuel flow rate required to prevent the combustor from misfiring.

温度測定手段は大気温度を測定してその大気温度に対応
して大気温度信号を出力し、関数発生器はその大気温度
信号を入力して前記関数に基づき燃料流量の下限値を演
算して下限値補正値信号を出力し、上下限制限器はその
下限値補正値信号を入力してその補正値を下限制限値と
してガスタービンへの増減負荷指令に対応する。
The temperature measuring means measures the atmospheric temperature and outputs an atmospheric temperature signal corresponding to the atmospheric temperature, and the function generator receives the atmospheric temperature signal and calculates the lower limit value of the fuel flow rate based on the function. The upper/lower limit limiter outputs a value correction value signal, inputs the lower limit value correction value signal, and uses the correction value as a lower limit value to respond to a load increase/decrease command to the gas turbine.

〔実施例〕〔Example〕

以下、2段燃焼方式についての本発明の実施例を第1図
〜第4図により説明する。
Embodiments of the present invention regarding a two-stage combustion system will be described below with reference to FIGS. 1 to 4.

第1図は、第1実施例としてのガスタービンの燃料制御
ブロック図を示す。
FIG. 1 shows a fuel control block diagram of a gas turbine as a first embodiment.

ガスタービン起動中は起動制御部1.排気温度制御部2
.加速度制御部3のいずれかがら、運転状態に応じて最
適な制御信号を選択する制御信号選択回路5を介して出
力する燃料制御指令にて。
During startup of the gas turbine, the startup control unit 1. Exhaust temperature control section 2
.. With a fuel control command outputted from one of the acceleration control units 3 via a control signal selection circuit 5 that selects an optimal control signal depending on the operating state.

ガスタービンは昇速する。The gas turbine speeds up.

定格速度に達すると、速度・負荷制御部40制御信号が
、制御信号選択回路5にて選択されて。
When the rated speed is reached, the speed/load control section 40 control signal is selected by the control signal selection circuit 5.

ガスタービンの起動は完了する。Startup of the gas turbine is completed.

以降、タービンの負荷の上昇、下降は、負荷増指令6.
負荷減指令7にて行われる。
From then on, the load increase or decrease of the turbine load is controlled by load increase command 6.
This is done in response to the load reduction command 7.

負荷上昇の場合は、負荷増指令6によりアナログメモリ
8からの信号値が増加し、上下限制限器9と経由して負
荷設定値として、速度・負荷制御部4に入力し、燃料制
御指令が増加して、タービンの負荷は上昇する。負荷増
指令に対するある割合の規定の負荷に達したとき、2段
目の燃焼器に点火し、排ガスのNOx量の低減を図る。
In the case of a load increase, the signal value from the analog memory 8 is increased by the load increase command 6, and is inputted to the speed/load control section 4 as a load setting value via the upper and lower limit limiter 9, and the fuel control command is issued. Increasingly, the load on the turbine rises. When the load reaches a predetermined ratio of the load increase command, the second stage combustor is ignited to reduce the amount of NOx in the exhaust gas.

負荷降下の場合は、負荷域指令7によりアナログメモリ
8からの信号値が減少し、上下限制限器9を経由して、
負荷設定値として、速度・負荷制御部4に入力し、燃料
制御指令が減少してタービンの負荷は降下する。
In the case of a load drop, the signal value from the analog memory 8 decreases according to the load range command 7, and passes through the upper and lower limit limiter 9.
This is input as a load setting value to the speed/load control unit 4, and the fuel control command decreases, causing the turbine load to drop.

ここで2段目の燃焼器が失火しない規定の最低燃料流量
を確保するため、大気温度計14の大気温度信号により
、関数発生器10は温度補正した燃焼流量制限値すを算
出して補正値信号を出力し。
Here, in order to secure a prescribed minimum fuel flow rate that will prevent the second stage combustor from misfiring, the function generator 10 calculates a temperature-corrected combustion flow rate limit value based on the atmospheric temperature signal from the atmospheric thermometer 14, and calculates a correction value. output a signal.

この補正値信号と、無負荷を条件に運転する起動/停止
過程の負荷制限値を設定する信号発生器11からの信号
aとを切替器12に入力し、起動/停止過程の条件で切
替えて燃料流量制限値すを上下限制限器9の下限制限値
として入力することで、上下限制限器9の負荷設定値は
、規定の最低流量を確保するように制限できる。
This correction value signal and the signal a from the signal generator 11 that sets the load limit value for the start/stop process of operation under no-load conditions are input to the switch 12, and the signal is switched according to the start/stop process conditions. By inputting the fuel flow rate limit value as the lower limit value of the upper and lower limit limiter 9, the load setting value of the upper and lower limit limiter 9 can be limited so as to ensure a specified minimum flow rate.

又、負荷上限制限値を設定する信号発生器13の信号は
、上下限制限器9の上限設定値として入力し、負荷設定
値の上限を制限する。
Further, the signal from the signal generator 13 for setting the load upper limit value is inputted as the upper limit setting value of the upper and lower limit limiter 9 to limit the upper limit of the load setting value.

第2図に、大気温度をパラメータとしたガスタ−ビンの
負荷と燃料流量の関係を示す。
FIG. 2 shows the relationship between gas turbine load and fuel flow rate using atmospheric temperature as a parameter.

第2図によれば、同一負荷において、大気温度が高い方
が、必要とする燃料流量が少なく、大気温度が低い方が
その燃料流量が多いことがわかる。
According to FIG. 2, it can be seen that for the same load, the higher the atmospheric temperature, the smaller the required fuel flow rate, and the lower the atmospheric temperature, the larger the required fuel flow rate.

第3図に、第2図に示す2段目の燃焼器が失火しないた
めの最低負荷20をパラメータとした、大気温度と燃料
流量の関係を示す。
FIG. 3 shows the relationship between the atmospheric temperature and the fuel flow rate, with the minimum load 20 to prevent the second-stage combustor from misfiring shown in FIG. 2 as a parameter.

第3図に示す曲線aを第1図に示す関数発生器10にて
、y、定しており、それで最低燃料流量制限値を算出す
ることで、大気温度の変化による影響を補正することが
できる。
The curve a shown in FIG. 3 is fixed at y by the function generator 10 shown in FIG. can.

この第1実施例のタービン燃料制御装置によれば、関数
発生器により燃焼器が失火しない最低燃料流量を大気温
度に対して補正し燃料制御指令を出すので、燃焼器の失
火を防止できる。
According to the turbine fuel control device of the first embodiment, the function generator corrects the lowest fuel flow rate at which the combustor will not misfire, relative to the atmospheric temperature, and issues a fuel control command, so that misfires in the combustor can be prevented.

この第1実施例のタービン燃料制御装置をガスタービン
、蒸気タービン、排熱回収ボイラから成る複合サイクル
発電プラントに適用した場合、以下の効果がある。
When the turbine fuel control device of the first embodiment is applied to a combined cycle power plant consisting of a gas turbine, a steam turbine, and an exhaust heat recovery boiler, the following effects can be obtained.

すなわち、複合サイクル発電プラントの負荷を降下させ
る場合、その負荷設定が最終的にはガスタービンに対し
て前記最低燃料流量制限値以上になる設定であったとし
ても、負荷降下時、過渡的には排熱回収ボイラの応答遅
れによる蒸気タービンの負荷応答遅れがあるため、この
遅れを補なうように、ガスタービンに対して最低燃料流
量制限値以下となる負荷の減指令が上位制御装置より、
発せられることがある。しかし、このような場合でも、
本実施のタービンの燃料制御装置によれば。
In other words, when reducing the load of a combined cycle power plant, even if the load setting is ultimately set to exceed the minimum fuel flow limit value for the gas turbine, during the load reduction, transient There is a delay in the load response of the steam turbine due to a delay in the response of the exhaust heat recovery boiler, so in order to compensate for this delay, the host controller issues a load reduction command to the gas turbine to bring it below the minimum fuel flow limit value.
It may be emitted. However, even in such cases,
According to the turbine fuel control device of this embodiment.

前記負荷の滅指令に対し下限制限値を設定しているため
、負荷設定値は、最低燃料流量以下の設定とはならず、
燃焼器の失火が防止できる。
Since a lower limit value is set for the load reduction command, the load setting value will not be set below the minimum fuel flow rate.
Misfires in the combustor can be prevented.

第4図は本発明の第2実施例を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

前記第1実施例では増指令6又は減指令7に対し最低燃
料流量を規制しているが、第2実施例では制御信号選択
回路5からの燃料制御指令に対し最低燃料流量を規制し
ている。そのため回路構成は若干具なるが、最低燃料流
量の規制に関しては実際上第1実施例と全く同じである
。従って第1実施例と同じ部分の説明は省略し、回路構
成の相違する部分についてのみ説明する。
In the first embodiment, the minimum fuel flow rate is regulated for the increase command 6 or the decrease command 7, but in the second embodiment, the minimum fuel flow rate is regulated for the fuel control command from the control signal selection circuit 5. . Therefore, although the circuit configuration is slightly different, the regulation of the minimum fuel flow rate is practically the same as the first embodiment. Therefore, a description of the same parts as in the first embodiment will be omitted, and only the different parts of the circuit configuration will be described.

まず第1の相違点として、上下限制限器9にその下限設
定値として起動/停止過程の負荷制限値を設定する信号
発生器11を直接接続していることである。第2の相違
として、制御(ご号選択回路5の出力側に新たに上下限
制限器16を設けており、その上下限制限器16の下限
制限値として、次に説明する切換器12の信号を設定し
ていることである。すなわち、大気温度計14からの大
気温度信号により関数発生器10は温度補正した燃料流
量制限値を算出して補正値信号を出力し、その補正値信
号と信号発生器15からの信号を切換器12に入力して
、切換ri15からの43号が上下限設定器16に入力
している。
The first difference is that a signal generator 11 is directly connected to the upper/lower limit limiter 9 for setting a load limit value for the start/stop process as its lower limit set value. The second difference is that a new upper/lower limit limiter 16 is provided on the output side of the control (number selection circuit 5), and the lower limit value of the upper/lower limit limiter 16 is the signal of the switch 12, which will be explained next. In other words, the function generator 10 calculates a temperature-corrected fuel flow rate limit value based on the atmospheric temperature signal from the atmospheric thermometer 14 and outputs a correction value signal, and the correction value signal and signal A signal from the generator 15 is input to the switch 12, and a signal No. 43 from the switch ri15 is input to the upper and lower limit setter 16.

増指令6又は減指令7によるタービンの負荷の上昇又は
降下の場合、信号発生器15の設定は。
In the case of an increase or decrease in the load of the turbine due to the increase command 6 or decrease command 7, the settings of the signal generator 15 are as follows.

零とし、切替器12の切替条件として起動/停止過程の
条件を用い、起動/停止過程中の場合は信号発生器15
の起動停止信号aを選択する。この切替器12の出力を
最低燃料流量制限値として、燃料制御指令を制限する上
下限器16に入力することで、燃料流量指令は、最低燃
料流量を確保することになる。
The condition of the start/stop process is used as the switching condition of the switch 12, and when the start/stop process is in progress, the signal generator 15 is set to zero.
Select start/stop signal a. By inputting the output of this switch 12 as the minimum fuel flow rate limit value to the upper/lower limiter 16 that limits the fuel control command, the fuel flow command ensures the minimum fuel flow rate.

第2実施例によれば、最低燃料流量制限値は実際上速度
・負荷制御においてのみ有効となるので。
According to the second embodiment, the minimum fuel flow rate limit value is actually effective only in speed/load control.

回路構成が相違するものの、結局第1実施例と全く同じ
燃料制限を行うことになる。
Although the circuit configuration is different, the fuel restriction is ultimately performed in exactly the same way as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、関数発生器により大気温度に応じて燃
焼器が失火しない最低燃料流量を補正してガスタービン
への負荷域指令に対応する上下限制限器の下限制限値を
設定するので、温度が変化してもまた負荷域指令が前記
最低燃料流量を下回ったとしても燃焼器の失火を防止で
きるという効果がある。
According to the present invention, since the function generator corrects the minimum fuel flow rate at which the combustor does not misfire according to the atmospheric temperature and sets the lower limit value of the upper and lower limit limiter corresponding to the load range command to the gas turbine, Even if the temperature changes or the load range command falls below the minimum fuel flow rate, misfires in the combustor can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1実施例の制御ブロック図、第2図は大気温
度をパラメータとしたガスタービンの負荷/燃料流量カ
ーブ、第3図は燃焼器の失火防止に対する大気温度/燃
料流量カーブ、第4図は第2実施例の制御ブロック図で
ある。 6・・・負荷増指令、  7・・・負荷域指令。 9・・・上下限制限器、  10・・・関数発生器、1
4・・・大気温度計。
Fig. 1 is a control block diagram of the first embodiment, Fig. 2 is a gas turbine load/fuel flow curve with atmospheric temperature as a parameter, Fig. 3 is an atmospheric temperature/fuel flow curve for preventing combustor misfires, FIG. 4 is a control block diagram of the second embodiment. 6...Load increase command, 7...Load range command. 9... Upper and lower limit limiter, 10... Function generator, 1
4... Atmospheric thermometer.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービンの燃焼器への燃料流量の上下限値を制
限する上下限制限器を備えたガスタービン燃料制御装置
において、大気温度を計測して大気温度信号を出力する
温度測定手段と、該大気温度信号を入力して前記燃料流
量の下限値を演算し下限値補正値信号を前記上下限制限
器に出力する関数発生器とを設けたことを特徴とするガ
スタービンの燃料制御装置。
1. In a gas turbine fuel control device equipped with an upper and lower limit limiter that limits the upper and lower limits of a fuel flow rate to a combustor of a gas turbine, a temperature measuring means that measures atmospheric temperature and outputs an atmospheric temperature signal; A fuel control device for a gas turbine, comprising: a function generator that inputs an atmospheric temperature signal, calculates a lower limit value of the fuel flow rate, and outputs a lower limit correction value signal to the upper and lower limit limiter.
JP63112743A 1988-05-10 1988-05-10 Gas turbine fuel controller Expired - Lifetime JPH0615824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63112743A JPH0615824B2 (en) 1988-05-10 1988-05-10 Gas turbine fuel controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112743A JPH0615824B2 (en) 1988-05-10 1988-05-10 Gas turbine fuel controller

Publications (2)

Publication Number Publication Date
JPH01285627A true JPH01285627A (en) 1989-11-16
JPH0615824B2 JPH0615824B2 (en) 1994-03-02

Family

ID=14594437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112743A Expired - Lifetime JPH0615824B2 (en) 1988-05-10 1988-05-10 Gas turbine fuel controller

Country Status (1)

Country Link
JP (1) JPH0615824B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610746B2 (en) 2005-09-14 2009-11-03 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas turbine
JP2012215127A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Gas turbine control device, gas turbine, and gas turbine control method
US10801361B2 (en) 2016-09-09 2020-10-13 General Electric Company System and method for HPT disk over speed prevention

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225724A (en) * 1986-03-27 1987-10-03 Toshiba Corp Gas turbine control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225724A (en) * 1986-03-27 1987-10-03 Toshiba Corp Gas turbine control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610746B2 (en) 2005-09-14 2009-11-03 Mitsubishi Heavy Industries, Ltd. Combustion control device for gas turbine
JP2012215127A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Gas turbine control device, gas turbine, and gas turbine control method
US10801361B2 (en) 2016-09-09 2020-10-13 General Electric Company System and method for HPT disk over speed prevention

Also Published As

Publication number Publication date
JPH0615824B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
US5896736A (en) Load rejection rapid acting fuel-air controller for gas turbine
JP3782838B2 (en) Method and gas turbine control system for operating a gas turbine
JP5346359B2 (en) Compensation method of combustion efficiency in fuel control system
WO2004038199A1 (en) Method and system for controlling gas turbine engine
EP1300566B1 (en) Fuel ratio control method in a gas turbine combustor
JP5640227B2 (en) Control device for gas turbine power plant
US5307619A (en) Automatic NOx control for a gas turbine
JPH01285627A (en) Gas turbine fuel control device
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JP2003148170A (en) Method for controlling load of power plant
JP2006029162A (en) Control device and control method of gas turbine
JP4270763B2 (en) Gas turbine control device
JP2003239763A (en) Governor-free control method and control device of gas turbine generation equipment
JP2778820B2 (en) Gas turbine control device
JPH0783074A (en) Gas turbine control device
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JPH08270407A (en) Control of gas turbine in uniaxial composite plant
JP3733693B2 (en) Exhaust reburning plant
JPH06323166A (en) Gas turbine combustor
JPH04303103A (en) Turbine control method and device
JPS6335814B2 (en)
JPH01182531A (en) Gas turbine start-up controller
JPH0932510A (en) Combined power generation plant control device
JP2000045791A (en) Gas turbine intake controller
JP3557302B2 (en) Gas turbine controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 15