JPS63159606A - Denitration control device for composite power generation facility - Google Patents

Denitration control device for composite power generation facility

Info

Publication number
JPS63159606A
JPS63159606A JP30527486A JP30527486A JPS63159606A JP S63159606 A JPS63159606 A JP S63159606A JP 30527486 A JP30527486 A JP 30527486A JP 30527486 A JP30527486 A JP 30527486A JP S63159606 A JPS63159606 A JP S63159606A
Authority
JP
Japan
Prior art keywords
ratio
amount
power generation
output
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30527486A
Other languages
Japanese (ja)
Inventor
Hiroshi Hiromoto
廣本 博史
Yuji Kanezaki
金崎 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30527486A priority Critical patent/JPS63159606A/en
Publication of JPS63159606A publication Critical patent/JPS63159606A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To allow transient increase and decrease in steam quantity being injected into a combustion chamber so that NOX concentration in exhaust gas may be suppressed below a reference value thereof, by controlling in advance a set ratio between steam injection quantity and fuel flow quantity, in accordance with a variation in the output of a power generator during the load change in a plant. CONSTITUTION:A denitration equipment 14 is provided with a means 15 for receiving the input of a power generator output command value b as a physical quantity that changes before a NOX concentration value does, and detecting its load change rate e to output it. Further, a means 16 is provided therein a receive the input of the load change e so as to calculate a correction quantity of S/F ratio (a set ratio between steam injection quantity and fuel flow quantity), and then output S/F ratio correction quantity target value f. In addition, a means 17 is provided to receive the input of the S/F ratio correction quantity target value f and also a S/F ratio a that is to be a reference value so as to output added results as a corrected S/F ratio g. The aforesaid constitution will enable the S/F ratio to be controlled in advance in accordance with a variation in the output of the power generator during the load change in a plant, thereby allowing the steam injection quantity to be increased and decreased transiently.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、複合発電設備における排ガス中のN0x(窒
素酸化物)を低減する複合発電設備の脱硝制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a denitrification control device for a combined cycle power generation facility that reduces NOx (nitrogen oxides) in exhaust gas in the combined cycle facility.

(従来の技術) 複合発電設備においては、高負荷燃焼器を持つガスター
ビンは、燃焼器内で空気中の窒素(N2)と過剰な酸素
(02)が高温下で反応するため、NOxが発生する。
(Conventional technology) In combined cycle power generation facilities, gas turbines with high-load combustors generate NOx because nitrogen (N2) in the air and excess oxygen (02) react at high temperatures in the combustor. do.

従って、このままでは排ガス中に含まれたNOXが大量
に大気中に排出されてしまうため、排ガス中のNOXを
低減するために、脱硝制御装置が設けられている。
Therefore, if left as is, a large amount of NOX contained in the exhaust gas will be emitted into the atmosphere, so a denitrification control device is provided to reduce NOX in the exhaust gas.

ここで、複合発電設備の構成を第4図を用いて簡単に説
明する。
Here, the configuration of the combined power generation facility will be briefly explained using FIG. 4.

回転軸1上には空気圧縮器2が設けられ、圧縮された空
気(図中、AIRで示す)は、燃料(図中、FUELで
示す)と共に燃焼器3に送られる。燃焼器3は送られた
燃料を圧縮空気で燃焼し、高温高圧ガスをガスタービン
4に送り、これを駆動する。ガスタービン4を駆動した
高温高圧ガスは排ガスとなって。
An air compressor 2 is provided on the rotating shaft 1, and compressed air (indicated by AIR in the figure) is sent to a combustor 3 together with fuel (indicated by FUEL in the figure). The combustor 3 burns the sent fuel with compressed air, and sends high-temperature, high-pressure gas to the gas turbine 4 to drive it. The high-temperature, high-pressure gas that drove the gas turbine 4 becomes exhaust gas.

排熱回収蒸気発生器(以下、HR5Gという)5を通り
It passes through an exhaust heat recovery steam generator (hereinafter referred to as HR5G) 5.

煙突6より大気中に排出される。一方、 )lR5G5
に配設される蒸気配管には水が供給され、供給された水
は排ガスの熱エネルギーにより蒸気に変換される。変換
された蒸気は蒸気タービン7へ送られ、この蒸気タービ
ン7を駆動したのち、コンデンサ8を通して水となって
排出される0発電機9は、この蒸気タービン7と前述し
たガスタービン4により駆動される。
It is discharged into the atmosphere from the chimney 6. On the other hand, )lR5G5
Water is supplied to the steam piping installed in the steam pipe, and the supplied water is converted into steam by the thermal energy of the exhaust gas. The converted steam is sent to the steam turbine 7, and after driving the steam turbine 7, it passes through the condenser 8 and is discharged as water.The generator 9 is driven by the steam turbine 7 and the aforementioned gas turbine 4. Ru.

以上の複合発電設備に対し、排ガス中のNOxを低減す
るために、HR5GS内にはアンモニアを注入し、NO
xと反応させる脱硝装置10が設けられる。
In order to reduce NOx in the exhaust gas for the above-mentioned combined power generation equipment, ammonia is injected into the HR5GS to reduce NOx.
A denitrification device 10 for reacting with x is provided.

また、燃焼器3へ蒸気を噴射し、燃焼温度を下げること
によりNOxを低減することも可能である。
It is also possible to reduce NOx by injecting steam into the combustor 3 and lowering the combustion temperature.

このため、蒸気タービン7から燃焼器3への配管11上
にはバルブ12が設けられ、燃焼器3と配管11との接
続部には燃焼器3への蒸気噴射量がバルブ12の弁開度
によって制御される蒸気噴射装置13が設けられている
For this reason, a valve 12 is provided on the pipe 11 from the steam turbine 7 to the combustor 3, and the amount of steam injected into the combustor 3 is determined by the valve opening of the valve 12 at the connection part between the combustor 3 and the pipe 11. A steam injection device 13 is provided, which is controlled by a.

この複合発電設備の運転において1図示せぬ従来の脱硝
制御装置は、排ガス中のNOxを低減するために、外部
の設定器等によりガスタービンの効率を考慮して適宜の
値に設定される蒸気噴射量(以下、 S/I量と略す)
と燃料流量との設定比率(以下、S/F比率と略す)と
、実際の燃料流量とから、蒸気噴射量(S/I量目標値
)=S/F比率X燃料流量[T/H]によってS/I量
目標値を算出し、この算出結果に基づいてバルブを操作
し燃焼器3へ供給するS/I量を制御するものであった
。これにより、燃焼器3へ供給される燃焼流量が増大し
たときは、燃焼器3へのS/I量を増大させ、燃焼器3
内での燃焼温度を低くして、燃焼温度が高くなることに
よるNOxの発生を抑制していた。
In the operation of this combined power generation facility, a conventional denitrification control device (not shown) uses an external setting device to set the steam to an appropriate value in consideration of the efficiency of the gas turbine, in order to reduce NOx in the exhaust gas. Injection amount (hereinafter abbreviated as S/I amount)
Based on the set ratio of and fuel flow rate (hereinafter abbreviated as S/F ratio) and the actual fuel flow rate, steam injection amount (S/I amount target value) = S/F ratio The S/I amount target value is calculated by the following method, and the S/I amount supplied to the combustor 3 is controlled by operating the valve based on this calculation result. As a result, when the combustion flow rate supplied to the combustor 3 increases, the amount of S/I to the combustor 3 is increased, and
The combustion temperature inside the engine was lowered to suppress the generation of NOx caused by higher combustion temperatures.

しかし、このS/I量が多過ぎる場合、つまりS/F比
率を高く設定した場合は、第5図に示すNOx低減効率
とS/F比率との関係から、燃焼器3内の燃焼温度が下
がり、排ガス中のNOxは低減されるが、蒸気が噴射さ
れて温度が下がった燃焼ガスにより駆動されるガスター
ビン4の効率と出力が低下する。
However, if this S/I amount is too large, that is, if the S/F ratio is set high, the combustion temperature in the combustor 3 will increase based on the relationship between the NOx reduction efficiency and the S/F ratio shown in Figure 5. Although the NOx in the exhaust gas is reduced, the efficiency and output of the gas turbine 4, which is driven by the combustion gas whose temperature has been lowered by injecting steam, is reduced.

また、燃焼器3へ噴射する蒸気は、蒸気タービン7より
直接取り出されるため、取り出された分の蒸気熱量がプ
ラントロスとなり、蒸気タービン7の効率をも低下させ
ることになる。
Furthermore, since the steam injected into the combustor 3 is directly extracted from the steam turbine 7, the extracted amount of steam heat amount becomes a plant loss, which also reduces the efficiency of the steam turbine 7.

そこで、経済面と環境汚染との両者の観点により、一般
的には、燃焼器3内へのS/I量は必要最小限に設定し
ておき、主として、HR5GS内の脱硝装置10へのア
ンモニア注入量を制御することにより。
Therefore, from the viewpoint of both economics and environmental pollution, the amount of S/I into the combustor 3 is generally set to the minimum necessary, and the amount of S/I into the combustor 3 is generally set to the minimum necessary, and the amount of S/I into the combustor 3 is mainly set to the ammonia into the denitrification device 10 in the HR5GS. By controlling the injection volume.

大気中へ排出されるNOxを減少させる方法がとられて
いた。
Measures have been taken to reduce NOx emitted into the atmosphere.

(発明が解決しようとする問題点) しかしながら、上記従来方法によると、アンモニア注入
による触媒反応用いた脱硝制御は反応が遅いため、特に
負荷変動時において、 NOx排出量の増加を抑制でき
ず、排ガス中のNOx濃度が基準を越える問題点がある
(Problems to be Solved by the Invention) However, according to the above conventional method, since the denitrification control using a catalytic reaction by ammonia injection has a slow reaction, it is not possible to suppress the increase in NOx emissions, especially during load fluctuations, and the exhaust gas There is a problem that the NOx concentration inside exceeds the standard.

今、これをプラントの負荷が変動し、第6図(A)に示
すように、時刻11以前で一定となっていた発電機出力
指令値が時刻L1からL2迄の間増加し、時刻L2より
し3迄一定となり、更に時刻t3よりし4迄の間減少し
て再び時刻上4以降は元の状態に戻るような場合につい
て考える。
Now, as the plant load fluctuates, as shown in Figure 6 (A), the generator output command value, which was constant before time 11, increases from time L1 to L2, and from time L2 Let us consider a case in which the value remains constant until t3, then decreases from time t3 to t4, and then returns to the original state from time t3 onwards.

このとき、燃料流量は発電機出力指令値と同様に変化し
、NOx低減の主となる脱硝装置1fIOへのアンモニ
ア注入量は同図(B)のように増量される。
At this time, the fuel flow rate changes in the same way as the generator output command value, and the amount of ammonia injected into the denitrification device 1fIO, which is the main part of NOx reduction, is increased as shown in FIG. 2(B).

また、基準となるS/F比率を燃料流量に積算したS/
I量目標値も同図(C)のように増量される。
In addition, the S/F ratio, which is the standard S/F ratio, is integrated into the fuel flow rate.
The I amount target value is also increased as shown in FIG.

ところが、主となるアンモニアとNOxとの反応速度は
遅く、同図(D)に示すように、負荷変化時NOx濃度
が増大し、特に、燃料流量が最大値に到達する時刻し2
付近でピークとなり、NOx濃度基準値を越えてしまう
という問題点が生じる。
However, the main reaction rate between ammonia and NOx is slow, and as shown in Figure (D), the NOx concentration increases when the load changes, especially at the time when the fuel flow rate reaches its maximum value.
A problem arises in that the NOx concentration peaks in the vicinity and exceeds the NOx concentration reference value.

そこで本発明は、プラントが負荷変動しても。Therefore, the present invention can be used even if the plant load fluctuates.

排ガス中のNOx濃度を基準値以下に制御することので
きる複合発電設備の脱硝制御装置を提供することを目的
とする。
It is an object of the present invention to provide a denitrification control device for a combined power generation facility that can control the NOx concentration in exhaust gas to a reference value or less.

[発明の構成] (問題点を解決するための手段) 本発明は、脱硝制御装置に発電機の出力変化を検出する
出力変化検出手段と、この出力変化検出手段からの出力
変化率を入力し、基準となるS/F比率に対する修正量
を算出するためのS/F比率修正量演算手段と、このS
/F比率修正量演算手段からのS/F比率修正量目標値
と、基準となるS/F比率を入力してこれらを加算し、
加算結果を修正されたS/F比率として出力するS/F
比率決定手段とを設けたものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes an output change detection means for detecting a change in the output of a generator, and an output change rate input from the output change detection means into a denitrification control device. , S/F ratio correction amount calculation means for calculating the correction amount for the reference S/F ratio, and this S/F ratio correction amount calculation means.
/F ratio correction amount target value from the S/F ratio correction amount calculation means and the reference S/F ratio are inputted, and these are added.
S/F that outputs the addition result as a corrected S/F ratio
The ratio determining means is provided.

(作用) これにより、プラントの負荷変動時、発電機出力の変化
に応じて、S/F比率を先行制御することにより、燃焼
器に噴射するS/I量を過渡時に増減することができ、
アンモニア注入量の増加だけでは制御できないNOx濃
度を基準値以下に制御することができる。
(Function) As a result, when the plant load fluctuates, the amount of S/I injected into the combustor can be increased or decreased during transient periods by proactively controlling the S/F ratio according to changes in the generator output.
It is possible to control the NOx concentration, which cannot be controlled only by increasing the amount of ammonia injection, to below the reference value.

(実施例) 本発明の一実施例による複合発電設備の脱硝制御装置の
構成を第1図に示す。この図において、脱硝制御袋[1
4は、燃料の単位重量当りの基準となるS/F比率比率
上電機出力指令値すおよび燃料流量Cを入力して、蒸気
タービン7から燃焼器3の蒸気噴射袋W113への配管
11上のバルブ12へ操作信号dを出力するものである
(Embodiment) FIG. 1 shows the configuration of a denitrification control device for a combined power generation facility according to an embodiment of the present invention. In this figure, the denitrification control bag [1
4 inputs the S/F ratio electric motor output command value and the fuel flow rate C, which are the standards per unit weight of fuel, and connects the pipe 11 from the steam turbine 7 to the steam injection bag W113 of the combustor 3. It outputs the operation signal d to the valve 12.

この脱硝制御装置14は、NOx濃度に先行して変化す
る物理量として1発電機出力指令値すを入力してその変
化率である負荷変化率eを検出して出力する出力変化検
出手段15と、この出力変化検出手段15からの負荷変
化率eを入力し、S/F比率の修正量を算出し、 S/
F比率比率修正量目標値基力するS/F比率修正量演算
手段16と、このS/F比率修正量演算手段16からの
S/F比率比率修正量目標値基準となるS/F比率比率
上力して、これらを加算し、加算結果を修正されたS/
F比率比率口て出力するS/F比率決定手段17と、こ
のS/F比率決定手段17からの修正されたS/F比率
比率口料流量Cを入力して、これを乗算し1乗算結果を
S/I量目標値りとして出力するS/I量設定設定値演
算手段18このS/I量設定設定値演算手段18のS/
I量目標値りをバルブ12への操作信号dに変換するた
めのS/I量設定手段19よりなる。
This denitrification control device 14 includes an output change detection means 15 that inputs one generator output command value as a physical quantity that changes in advance of the NOx concentration, detects and outputs a load change rate e that is the rate of change; The load change rate e from this output change detection means 15 is input, the correction amount of the S/F ratio is calculated, and the S/F ratio is calculated.
The S/F ratio correction amount calculation means 16 that serves as the F ratio correction amount target value, and the S/F ratio ratio that serves as the S/F ratio correction amount target value standard from the S/F ratio correction amount calculation means 16. Add these and convert the addition result to the corrected S/
The S/F ratio determining means 17 that outputs the F ratio ratio and the corrected S/F ratio ratio mouth flow rate C from this S/F ratio determining means 17 are input, and this is multiplied to obtain the 1 multiplication result. The S/I amount set value calculation means 18 outputs the S/I amount set value as the S/I amount target value.
It consists of an S/I amount setting means 19 for converting the I amount target value into an operation signal d to the valve 12.

また、脱硝制御装置14内のS/F比率修正量演算手段
16は、第2図に示すように、出力変化検出手段15か
らの負荷変化率eを入力して、入力した負荷変化率eの
正負符号およびその絶対値の大小に応じて、予め作成さ
れた図示せぬメモリテーブルの中から該当するゲインを
選択するためのゲイン選択手段20と、このゲイン選択
手段20の選択したゲインに負荷変化率eを乗算し、S
/F比率比率修正量−力するS/F比率修正量算出手段
21および入力したS/F比率比率修正量一定変化率範
囲内で追従するS/F比率比率修正量目標値基力する変
化率制限手段22よりなる。
Further, as shown in FIG. 2, the S/F ratio correction amount calculation means 16 in the denitrification control device 14 inputs the load change rate e from the output change detection means 15, and calculates the input load change rate e. A gain selection means 20 for selecting a corresponding gain from a memory table (not shown) created in advance according to the positive/negative sign and the magnitude of its absolute value, and a load change to the gain selected by this gain selection means 20. Multiply by the rate e, S
/F ratio correction amount - input S/F ratio correction amount calculation means 21 and input S/F ratio correction amount target value of S/F ratio correction amount to follow within a constant change rate range It consists of a limiting means 22.

以上の構成で、プラントに負荷変動がなく発電機出力が
一定であり、発電機出力指令値すが変動しない場合は、
出力変化検出手段15は、負荷変化率eとして“0”を
出力している。これにより、S/F比率修正量演算手段
16からのS/F比率比率修正量目標値基0”となって
おり、 S/F比率決定手段17は修正されたS/F比
率比率口て基準となるS/F比率比率上のまま出力して
いる。 S/I量設定設定値演算手段18S/F比率決
定手段17より出力される基準となるS/F比率比率上
流流量Cを入力して乗算を行ない変動しないS/I量目
標値りを出力している。S/I量設定手段19は、この
S/I量目標値りを入力し、一定の操作信号dを出力し
、バルブ12の開度を一定に保ちプラントを安定に制御
している。
With the above configuration, if there is no load fluctuation in the plant, the generator output is constant, and the generator output command value does not change,
The output change detection means 15 outputs "0" as the load change rate e. As a result, the S/F ratio correction amount target value from the S/F ratio correction amount calculating means 16 is set to 0'', and the S/F ratio determining means 17 uses the corrected S/F ratio ratio as a reference. The S/F ratio ratio is output as it is above the S/F ratio ratio.The S/F ratio upstream flow rate C, which is the standard output from the S/F ratio determination means 17, is inputted into the S/I amount setting value calculation means 18. The S/I amount target value that does not fluctuate is output by performing multiplication.The S/I amount setting means 19 inputs this S/I amount target value, outputs a constant operation signal d, and outputs the S/I amount target value that does not fluctuate. The plant is controlled stably by keeping the opening degree constant.

この状態から、プラントに負荷変動が発生し。From this state, load fluctuations occur in the plant.

発電機出力指令値すが変動すると、まず出力変化検出手
段15は、負荷変化率eを以下の式により算出する。
When the generator output command value S fluctuates, the output change detection means 15 first calculates the load change rate e using the following formula.

(負荷変化率e)=d(発電機出力指令値b)/dt・
・・・・・(1) 次に、第2図に示すS/F比率修正量演算手段16内の
ゲイン選択手段20は、負荷変化率eの正、負すなわち
発電機出力の上昇あるいは下降および負荷変化率eの絶
対値に基づいて前述した図示せぬメモリテーブルの中か
ら対応するゲインを選択する。
(Load change rate e) = d (generator output command value b)/dt・
(1) Next, the gain selection means 20 in the S/F ratio correction amount calculation means 16 shown in FIG. Based on the absolute value of the load change rate e, a corresponding gain is selected from the aforementioned memory table (not shown).

負荷変化率eの正、負により、絶対値が同じでも異なる
ゲインを選択するようにしたのは、 NOx排出量の動
作傾向が、発電機出力の上昇時と下降時で相違があるた
めである。S/F比率修正量算出手段21は、ゲイン選
択手段20により選択されたゲインと負荷変化率eに基
づいて以下の式によりS/F比率比率修正量対出する。
The reason why different gains are selected depending on whether the load change rate e is positive or negative even if the absolute value is the same is because the operating tendency of NOx emissions is different when the generator output increases and when it decreases. . The S/F ratio correction amount calculation means 21 calculates the S/F ratio correction amount using the following formula based on the gain selected by the gain selection means 20 and the load change rate e.

(S/F比率修正量1)=(ゲイン)×(負荷変化率e
)・・・・・・(2) 変化率制限手段22は、このS/F比率修正量算出手段
21からのS/F比率比率修正量対し、変化率制限を加
えてS/F比率比率修正量目標値基力する。
(S/F ratio correction amount 1) = (gain) x (load change rate e
)...(2) The change rate limiting means 22 adds a change rate limit to the S/F ratio correction amount from the S/F ratio correction amount calculation means 21 to correct the S/F ratio ratio. Quantity target value basis.

第1図のS/F比率決定手段17は、このS/F比率比
率修正量目標値基準となるS/F比率aを入力し、以下
の式に示すように、基準となるS/F比率aにS/F比
率比率修正量目標値基算し、修正されたS/F比率比率
撚力する。
The S/F ratio determining means 17 in FIG. The S/F ratio correction amount target value is calculated based on a, and the corrected S/F ratio ratio twisting force is applied.

(修正されたS/F比率比率撚(基準となるS/F比率
a)+ (S/F比率比率修正量目標値基      
・・・・・・(3)ただし、(修正されたS/F比率比
率撚αのときは(修正されたS/F比率比率撚α (修正されたS/F比率比率撚βのときは(修正された
S/F比率比率撚β α:上限制限値 β:下限制限値 この上限制限値αおよび下限制限値βを設けた理由は1
発電機出力が増加するとき、S/I量を急激に増加させ
ると、燃焼器3の失火をまねき、また1発電機出力が減
少するときはアンモニアの反応が遅いため急激なS/I
量の減少ができないことによる。
(Corrected S/F ratio twist (standard S/F ratio a) + (S/F ratio correction amount target value base)
......(3) However, (when the corrected S/F ratio twist α (corrected S/F ratio twist α) (when the corrected S/F ratio twist β) (Corrected S/F ratio twist β α: Upper limit value β: Lower limit value The reason for setting the upper limit value α and lower limit value β is 1.
When the generator output increases, a sudden increase in the S/I amount may cause a misfire in the combustor 3, and when the generator output decreases, the ammonia reaction is slow, resulting in a sudden S/I increase.
Due to the inability to reduce the amount.

次に、 S/I量設定設定値演算手段18このS/F比
率決定手段17からの修正されたS/F比率比率撚料流
量Cを入力して、以下の式によりS/I量目標値りを算
出する。
Next, the corrected S/F ratio twisting material flow rate C from this S/F ratio determining means 17 is inputted to the S/I amount set value calculation means 18, and the S/I amount target value is determined by the following formula. Calculate the difference.

(S/I量目標値h)=(燃料流量c) X (修正さ
れたS/F比率比率撚・・・・・(4) ただし、(S/I量目標値h)<rのとき(S/I量目
標値h) =r r:下限制限値 この下限制限値rは、S/I量が少なくなると、配!!
11に流れる蒸気量が少なくなり、配管11の温度が低
下し、この状態でS/I量を増加しても適切なS/I量
が燃焼器3へ供給できないことがあり、いわゆる配管1
1および蒸気噴射装置13等のウオーミングアツプのた
めに設定したものである。
(S/I quantity target value h) = (Fuel flow rate c) S/I amount target value h) = r r: Lower limit value This lower limit value r is set when the S/I amount decreases.
The amount of steam flowing to the combustor 3 decreases, the temperature of the pipe 11 decreases, and even if the S/I amount is increased in this state, an appropriate amount of S/I may not be supplied to the combustor 3.
This setting is for warming up the steam injection device 1 and the steam injection device 13, etc.

このように、プラントの負荷変動に応じて算出したS/
I量目標値りは、 S/I量設定手段19を介して操作
信号dとなってバルブ12へ出力される。
In this way, S/
The I amount target value is output to the valve 12 via the S/I amount setting means 19 as an operation signal d.

次に、実際のプラントの負荷変動に対する本実施例の脱
硝制御袋@14によりNOx低減効果および各プラント
量の動作特性を第3図に示す。時刻のタイミングは前述
第6図と同様にとっである。プラントの負荷変動により
発電機出力指令値すが第3図(A)のように変化したと
き、S/F比率修正量演算手段16内のゲイン選択手段
201よ発電機出力指令値すの変化に対応するゲインを
選択し、 S/F比率修正量算出手段21が前述した演
算内容に基づいて、同図(B)に示すように発電機出力
が変化している間“0”とならないS/F比率比率修正
量対力する。変化率制限手段22はこれに所定の変化率
制限を加えて、S/F比率比率修正量目標値基力する。
Next, FIG. 3 shows the NOx reduction effect using the denitrification control bag @14 of this embodiment and the operating characteristics of each plant amount with respect to actual plant load fluctuations. The timing is the same as in FIG. 6 above. When the generator output command value changes as shown in FIG. 3(A) due to load fluctuations in the plant, the gain selection means 201 in the S/F ratio correction amount calculation means 16 adjusts the change in the generator output command value. The corresponding gain is selected, and the S/F ratio correction amount calculation means 21 calculates the S/F ratio that does not become "0" while the generator output is changing, as shown in FIG. Enter the F ratio ratio correction amount. The rate-of-change limiting means 22 adds a predetermined rate-of-change limit to this to set the S/F ratio correction amount target value as a base value.

S/F比率決定手段17はこのS/F比率比率修正量目
標値基準となるS/F比率aを加算し、同図(C)に示
すような修正されたS/F比率比率撚力する。この修正
されたS/F比率比率撚6図(A)のように変化する燃
料流量Cを乗算したものが第3図(D)に示すS/I量
設定設定値演算手段18力であるS/I量目標値りであ
る。
The S/F ratio determination means 17 adds this S/F ratio correction amount target value standard S/F ratio a, and twists the corrected S/F ratio ratio as shown in FIG. . The product obtained by multiplying this corrected S/F ratio ratio by the fuel flow rate C that changes as shown in Figure 6 (A) is the S/I amount set value calculation means 18 force shown in Figure 3 (D). /I amount is at target value.

このS/I量目標値りを入力したS/I量設定手段19
がバルブ12を操作することによってNOx濃度を制御
した結果を同図(E)に示す。前述第6図の従来例と比
べて判るように、従来、NOx濃度がピークとなり基準
値を越えていた時刻L2付近でNOx濃度が大幅に低減
していることがわかる。
S/I amount setting means 19 into which this S/I amount target value is input
The result of controlling the NOx concentration by operating the valve 12 is shown in the same figure (E). As can be seen from the comparison with the prior art example shown in FIG. 6, the NOx concentration is significantly reduced near time L2, where in the past, the NOx concentration had peaked and exceeded the reference value.

このように、発電機出力の変化に応じて反応の遅いアン
モニアに換えて、燃焼器3へ噴射するS/I量を増減す
ることにより、プラントの負荷変動時。
In this way, by increasing or decreasing the amount of S/I injected into the combustor 3 instead of ammonia, which reacts slowly, in response to changes in the generator output, the amount of S/I can be increased or decreased when the plant load fluctuates.

特に負荷増加時基準値を越えていたNOx濃度を基準値
以内に制御することができる。
In particular, the NOx concentration, which exceeds the reference value when the load increases, can be controlled to within the reference value.

尚、上記実施例ではNOx濃度に先行して変化する物理
量として1発電機出力の変化率によりS/F比率比率修
正量質出する手段を用いているが、燃料流量Cの変化率
によりS/F比率比率修正量質出する手段を用いても同
様の効果を得ることができる。
In the above embodiment, the S/F ratio correction amount is calculated based on the rate of change in one generator output as a physical quantity that changes prior to the NOx concentration, but the S/F ratio is adjusted based on the rate of change in the fuel flow rate C. A similar effect can be obtained by using means for correcting the F ratio ratio.

[発明の効果] 以上のように本発明によれば、プラントの負荷変動時の
ように大量のNOxが発生する場合においても、大気中
へ排出される排ガス中に含まれるNOx濃度を基準値以
下に制御することができる。
[Effects of the Invention] As described above, according to the present invention, even when a large amount of NOx is generated, such as when the plant load fluctuates, the NOx concentration contained in the exhaust gas discharged into the atmosphere can be kept below the standard value. can be controlled.

また、過渡的にS/I量を噴射するだけであり。Moreover, the S/I amount is only injected transiently.

経済面を考慮したS/I量にて負荷変動のない定常運転
が行なわれるため、効率の良い複合発電設備の脱硝制御
装置が得られる。
Since steady operation without load fluctuation is performed at an S/I amount that takes economic aspects into account, an efficient denitrification control device for combined power generation equipment can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による複合発電設備の脱硝制
御装置の構成図、第2図は第1図のS/F比率修正量演
算手段の内部構成図、第3図は第1図の脱硝制御装置を
用いたときの負荷変動時の主要状態量の変化説明図、第
4図は複合発電設備の構成図、第5図はNOx低減係数
のS/F比率に対する特性図、第6図は従来の脱硝制御
装置を用いたときの負荷変動時の主要状態量の変化説明
図である。 1・・・回転軸、2・・・空気圧縮器、3・・・燃焼器
。 4・・・ガスタービン、5・・・排熱回収蒸気発生器(
HR5G)、6・・・煙突、7・・・蒸気タービン。 8・・・コンデンサ、9・・・発電機、10・・・脱硝
装置、11・・・配管、12・・・バルブ、13・・・
蒸気噴射装置、14・・・脱硝制御装置、15・・・出
力変化検出手段。 16・・・S/F比率修正量演算手段、17・・・S/
F比率決定手段、18・・・S/I量設定設定値演算手
段9・・・S/I量設定手段、20・・・ゲイン選択手
段、21・・・S/F比率修正量算出手段、22・・・
変化率制限手段。 第2図 第5図 第6図
FIG. 1 is a block diagram of a denitrification control device for a combined cycle power generation facility according to an embodiment of the present invention, FIG. 2 is an internal block diagram of the S/F ratio correction amount calculation means of FIG. 1, and FIG. Fig. 4 is a configuration diagram of a combined power generation facility, Fig. 5 is a characteristic diagram of the NOx reduction coefficient versus S/F ratio, Fig. 6 The figure is an explanatory diagram of changes in main state quantities during load fluctuations when a conventional denitrification control device is used. 1...Rotating shaft, 2...Air compressor, 3...Combustor. 4...Gas turbine, 5...Exhaust heat recovery steam generator (
HR5G), 6...Chimney, 7...Steam turbine. 8... Capacitor, 9... Generator, 10... Denitrification device, 11... Piping, 12... Valve, 13...
Steam injection device, 14... Denitration control device, 15... Output change detection means. 16...S/F ratio correction amount calculation means, 17...S/
F ratio determining means, 18...S/I amount setting value calculation means 9...S/I amount setting means, 20...gain selection means, 21...S/F ratio correction amount calculation means, 22...
Rate of change limiting means. Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 ガスタービンと蒸気タービンより成る複合発電設備の排
熱回収蒸気発生器の中間部へのアンモニアの注入量を制
御すると共に、燃焼器への蒸気噴射量を予め設定される
蒸気噴射量/燃料流量の設定比率とそのときの燃料流量
に応じて制御することにより、排出ガス中のNO_x濃
度を抑制する複合発電設備の脱硝制御装置において、N
O_x濃度に先行して変化する物理量の変化率を検出す
る手段と、検出した変化率に応じて前記設定比率を修正
する手段とを設けたことを特徴とする複合発電設備の脱
硝制御装置。 (2)特許請求の範囲第1項記載において、前記設定比
率を修正する手段が前記NO_x濃度に先行して変化す
る物理量の変化率に応じて選択したゲインと変化率の積
に所定の変化率制限を加えて修正量として出力する比率
修正量演算手段と、この比率修正量演算手段からの修正
量を前記設定比率に加算する比率決定手段よりなること
を特徴とする複合発電設備の脱硝制御装置。 (3)特許請求の範囲第1項および第2項記載において
、前記NO_x濃度に先行して変化する物理量が発電機
出力若しくは燃料流量であることを特徴とする複合発電
設備の脱硝制御装置。
[Scope of Claims] Steam that controls the amount of ammonia injected into the intermediate part of the exhaust heat recovery steam generator of a combined power generation facility consisting of a gas turbine and a steam turbine, and also sets the amount of steam injection to the combustor in advance. In a denitrification control device for a combined cycle power generation facility that suppresses NO_x concentration in exhaust gas by controlling according to the set ratio of injection amount/fuel flow rate and the fuel flow rate at that time,
A denitrification control device for a combined power generation facility, comprising means for detecting a rate of change in a physical quantity that changes in advance of O_x concentration, and means for correcting the set ratio according to the detected rate of change. (2) In claim 1, the means for correcting the set ratio adjusts a predetermined rate of change to the product of a gain and a rate of change selected in accordance with a rate of change of a physical quantity that changes prior to the NO_x concentration. A denitrification control device for a combined power generation facility, comprising: a ratio correction amount calculation means for adding a limit and outputting it as a correction amount; and a ratio determination means for adding the correction amount from the ratio correction amount calculation means to the set ratio. . (3) A denitrification control device for a combined power generation facility according to claims 1 and 2, wherein the physical quantity that changes prior to the NO_x concentration is a generator output or a fuel flow rate.
JP30527486A 1986-12-23 1986-12-23 Denitration control device for composite power generation facility Pending JPS63159606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30527486A JPS63159606A (en) 1986-12-23 1986-12-23 Denitration control device for composite power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30527486A JPS63159606A (en) 1986-12-23 1986-12-23 Denitration control device for composite power generation facility

Publications (1)

Publication Number Publication Date
JPS63159606A true JPS63159606A (en) 1988-07-02

Family

ID=17943124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30527486A Pending JPS63159606A (en) 1986-12-23 1986-12-23 Denitration control device for composite power generation facility

Country Status (1)

Country Link
JP (1) JPS63159606A (en)

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
US4928478A (en) Water and steam injection in cogeneration system
US5487265A (en) Gas turbine coordinated fuel-air control method and apparatus therefor
US6202400B1 (en) Gas turbine exhaust recirculation method and apparatus
US4550565A (en) Gas turbine control systems
JP3415658B2 (en) Apparatus and method for controlling coolant injection into combustor in gas turbine power plant
JP3178055B2 (en) Control device for gas turbine combustor and gas turbine
JPS63159606A (en) Denitration control device for composite power generation facility
US7634914B2 (en) Corrected parameter control method for a two-shaft gas turbine
US5813212A (en) Nitrogen oxide removal control apparatus
JPS61286537A (en) Exhaust gas temperature control method of gas turbine
JP2693106B2 (en) DeNOx control device
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPS63106304A (en) Denitration control device for combined power plant
JPS6335814B2 (en)
JPS6340245B2 (en)
JPS627933A (en) Supercharger control device
JPH06605Y2 (en) Control device for gas turbine power generator
JP3263184B2 (en) DeNOx control device
JPH01285627A (en) Gas turbine fuel control device
JPH0674401A (en) Pressurized fluidized bed boiler composite generating plant, load control method and device thereof
CN115142952A (en) System and method for controlling efficiency improvement of hydrogen-doped gas unit based on standard emission
JPS62234528A (en) Method and apparatus for denitration of combined plant
JPS6172835A (en) Supercharger control device
JPH08257371A (en) Exhaust gas denitration apparatus