JPS63317753A - Gas sensor and manufacture thereof - Google Patents

Gas sensor and manufacture thereof

Info

Publication number
JPS63317753A
JPS63317753A JP15503187A JP15503187A JPS63317753A JP S63317753 A JPS63317753 A JP S63317753A JP 15503187 A JP15503187 A JP 15503187A JP 15503187 A JP15503187 A JP 15503187A JP S63317753 A JPS63317753 A JP S63317753A
Authority
JP
Japan
Prior art keywords
fluorine
added
metal oxide
sensor
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15503187A
Other languages
Japanese (ja)
Other versions
JP2544144B2 (en
Inventor
Taro Amamoto
天本 太郎
Yoshinobu Matsuura
松浦 吉展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP62155031A priority Critical patent/JP2544144B2/en
Publication of JPS63317753A publication Critical patent/JPS63317753A/en
Application granted granted Critical
Publication of JP2544144B2 publication Critical patent/JP2544144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To suppress the humidity dependence of a gas sensor, in a gas sensor, wherein a metal oxide semiconductor whose resistance value is changed with gas is used, by adding fluorine to the metal oxide semiconductor. CONSTITUTION:Fluorine, which is more than the amount of impurities, is added to the metal oxide semiconductor of a gas sensor. The added metal oxide semiconductor is substituted with a surface hydroxide group. Since the main cause of the humidity dependence of the sensor is the surface hydroxide group, the surface hydroxide group is decreased by said substitution, and the humidity dependence is decreased. When the fluorine is added, sensitivity for CO is improved. Concentration dependence of the output of the sensor on CO is improved. The responses of the sensor at low temperature, especially the response to CO, are improved with the fluorine.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、金属酸化物半導体の抵抗値の変化を用いたガ
スセンサと、その製造方法とに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas sensor using a change in resistance value of a metal oxide semiconductor, and a method for manufacturing the same.

本発明は特に、ガスセンサの湿度依存性の改善に関する
The present invention particularly relates to improving the humidity dependence of gas sensors.

[従来技術] 金属酸化物半導体ガスセンサの問題点として、周囲の湿
度の影響が大きいことが知られている。
[Prior Art] It is known that a problem with metal oxide semiconductor gas sensors is that they are greatly influenced by ambient humidity.

即ちガスセンサの抵抗値は、周囲の湿度、特に絶対、9
度の変動に伴って変化し、ガスの検出精度を低下させる
。これらのことは周知である。
In other words, the resistance value of the gas sensor depends on the ambient humidity, especially absolute, 9
changes with temperature fluctuations, reducing gas detection accuracy. These things are well known.

センサの湿度依存性は、センサの加熱温度を比較的低く
し、CO等のガスを検出する際に特に著しい。これはセ
ンサの加熱温度か低いため、湿度の影響か特に大きくな
るためである。
The humidity dependence of the sensor is particularly significant when heating the sensor to a relatively low temperature and detecting a gas such as CO. This is because the heating temperature of the sensor is low, so the influence of humidity becomes particularly large.

なおここで関連する先行技術を示す。特開昭50−56
.296号は、5nOtに1wt%以下の塩素を添加し
たCOセンサを開示している。この公報によると、塩素
の添加はCOへの感度を高めるとされるが、湿度依存性
への効果に付いては検討していない。
In addition, related prior art will be shown here. Japanese Unexamined Patent Publication 1986-56
.. No. 296 discloses a CO sensor in which 1 wt% or less of chlorine is added to 5 nOt. According to this publication, the addition of chlorine is said to increase the sensitivity to CO, but the effect on humidity dependence is not studied.

[発明の課題] 本発明の課題は、ガスセンサの湿度依存性を抑制する点
に有る。
[Problem of the Invention] An object of the present invention is to suppress the humidity dependence of a gas sensor.

[発明の構成] 本発明では、ガスセンサの金属酸化物半導体に不純物量
以上のフッ素を添加する。なお金属酸化物半導体の出発
材料としてフッ化物を用いることは希であり、金属酸化
物半導体中のフッ素の不純物濃度は極く低い。
[Structure of the Invention] In the present invention, fluorine is added to the metal oxide semiconductor of the gas sensor in an amount greater than the amount of impurities. Note that fluoride is rarely used as a starting material for metal oxide semiconductors, and the impurity concentration of fluorine in metal oxide semiconductors is extremely low.

フッ素の添加時期や添加形態は任意であるが、好ましく
は金属酸化物半導体の調整後に添加する。
Although the timing and form of addition of fluorine are arbitrary, it is preferably added after the metal oxide semiconductor is adjusted.

調整前の金属酸化物半導体、例えば金属水酸化物のゾル
に添加すると、フッ素は後の焼成の段階で失われてしま
う。
When added to a sol of a metal oxide semiconductor, such as a metal hydroxide, before preparation, fluorine will be lost during the subsequent firing step.

またフッ素は好ましくは、フッ素単体、あるいはフッ素
の非金属化合物として添加する。周知のように、金属酸
化物半導体の特性は微量の金属不純物に敏感である。そ
こでフッ素を金属化合物として添加すると、同時に添加
した金属不純物の影響が問題となる。勿論、ガスセンサ
の金属酸化物半導体には、PdやPt、 I r、Ru
、Au等の貴金属触媒を添加することが知られている。
Further, fluorine is preferably added as simple fluorine or a nonmetallic compound of fluorine. As is well known, the properties of metal oxide semiconductors are sensitive to trace amounts of metal impurities. Therefore, when fluorine is added as a metal compound, the influence of metal impurities added at the same time becomes a problem. Of course, the metal oxide semiconductor of the gas sensor includes Pd, Pt, Ir, Ru.
It is known to add a noble metal catalyst such as , Au or the like.

貴金属触媒の添加は、センサの応答特性の改善や相対感
度の調整等に有効である。そこでフッ素をこれらの貴金
属触媒と同時に添加しても良い。また金属酸化物半導体
には、バナディウムVやレニウムRe等の、経時変化の
抑制剤を添加することも知られている。
Addition of a noble metal catalyst is effective for improving the response characteristics of the sensor, adjusting the relative sensitivity, etc. Therefore, fluorine may be added simultaneously with these noble metal catalysts. It is also known to add a time-dependent deterioration inhibitor such as vanadium V or rhenium Re to the metal oxide semiconductor.

このようなものを添加する場合、フッ素をこれらのもの
と同時に添加しても良い。
When such substances are added, fluorine may be added at the same time as these substances.

フッ素の効果は、ガスセンサの湿度依存性を抑制する点
に有る。この効果は、COや水素、エタノール、イソブ
タン、メタン等の種々のガスに対して生じる。発明者は
、フッ素による湿度依存性の改簿機構を、以下のように
推定した。即ち、添加したフッ素は金属酸化物半導体の
表面水酸基と置換する。センサの湿度依存性の主因は表
面水酸基に有り、表面水酸基が減少すると、湿度依存性
ら減少する。
The effect of fluorine is to suppress the humidity dependence of the gas sensor. This effect occurs for various gases such as CO, hydrogen, ethanol, isobutane, and methane. The inventor estimated the humidity-dependent bookkeeping mechanism due to fluorine as follows. That is, the added fluorine replaces the surface hydroxyl groups of the metal oxide semiconductor. The main cause of the humidity dependence of the sensor is the surface hydroxyl groups, and as the surface hydroxyl groups decrease, the humidity dependence decreases.

フッ素を添加すると、COへの感度も向上し、センサ出
力のCOへの濃度依存性も向上する。またフッ素は、低
温でのセンサの応答特性、特にCOに対する応答特性を
改善する。従ってフッ素は、COへの検出性能を向上す
る点で、特に優れている。
Adding fluorine also improves the sensitivity to CO and also improves the concentration dependence of the sensor output on CO. Fluorine also improves the response characteristics of the sensor at low temperatures, especially the response characteristics to CO. Therefore, fluorine is particularly excellent in improving the detection performance for CO.

フッ素の好ましい添加量は、SnSn0t1当たりのフ
ッ素の原子換算で、0.5〜100 Illgr、更に
好ましい添加量は2〜60mgrである。
The preferred amount of fluorine added is 0.5 to 100 Illgr, and the more preferred amount is 2 to 60 mgr in terms of fluorine atoms per SnSn0t1.

用いる金属酸化物半導体の種類や調製条件、またガスセ
ンサの形状や構造は任意である。以下に、金属酸化物半
導体としてSnO,を用いた場合を例に実施例を説明す
る。
The type of metal oxide semiconductor used, the preparation conditions, and the shape and structure of the gas sensor are arbitrary. Examples will be described below using an example in which SnO is used as the metal oxide semiconductor.

[実施例] 准樵火 実施例では添加物の量を以下の用語法で示す。[Example] Associate woodcutter In the examples, the amounts of additives are indicated using the following nomenclature.

添加量は全て原子、ある′いは単体に換算して示し、S
nO,1gr当たりlOn+grの添加を1%とする。
All additive amounts are shown in terms of atoms or simple substances, and S
The addition of lOn+gr per nO, 1gr is 1%.

例えば1%のフッ素添加とは、金属酸化物半導体Igr
に原子換算で10mgrのフッ素を加えたことを意味す
る。
For example, 1% fluorine addition means metal oxide semiconductor Igr.
This means that 10mgr of fluorine was added in terms of atoms.

ガスセンサの調整 S nC14の水溶液をアンモニアで中和し、スズ酸の
ゾルを得た。ゾルに水を加えて遠心分離し、硝酸銀試験
紙で塩素イオンが検出できなくなるまで、洗浄した。洗
浄後のゾルを乾燥し、600℃で1時間空気中で熱分解
し、SnO,とした。
Adjustment of gas sensor An aqueous solution of S nC14 was neutralized with ammonia to obtain a sol of stannic acid. Water was added to the sol, centrifuged, and washed until chloride ions could no longer be detected using silver nitrate test paper. The washed sol was dried and thermally decomposed in air at 600° C. for 1 hour to obtain SnO.

得られたSnO,をボールミルで4時間粉砕し、HFの
水溶液をSnow粉体に加えて、1時間放置した。その
後200℃で粉体を乾燥し、さらに450℃に1時間空
気中で加熱して、フッ素をSnO!に担持させた。フッ
素は主としてフッ素イオンとして、Sn0w粒子の表面
に存在する。実施例ではフッ素の添加量を、0.1%、
0.25%、0゜5%、2%、3%の5者とした。なお
以下では特に断らない限り、フッ素添加量は0.5%と
する。
The obtained SnO was ground in a ball mill for 4 hours, and an aqueous solution of HF was added to the Snow powder and left for 1 hour. The powder was then dried at 200°C and further heated in air at 450°C for 1 hour to remove fluorine from SnO! It was carried by Fluorine exists mainly as fluorine ions on the surface of Sn0w particles. In the example, the amount of fluorine added was 0.1%,
There were five participants: 0.25%, 0°5%, 2%, and 3%. In the following, unless otherwise specified, the amount of fluorine added is 0.5%.

フッ素添加後のS n Otを再度ボールミルで4時間
粉砕し、低温でのガス感度を高めるため、貴金属触媒を
添加した。貴金属触媒は添加しなくても良い。ここでは
触媒として、0,5%のPdを用い、Pdの王水溶液を
Snowに含浸させ、乾燥後に1時間600℃で熱分解
した。Pdは、Au、 Pt。
After fluorine addition, S n Ot was ground again in a ball mill for 4 hours, and a noble metal catalyst was added to increase the gas sensitivity at low temperatures. It is not necessary to add a noble metal catalyst. Here, 0.5% Pd was used as a catalyst, and Snow was impregnated with an aqua regia solution of Pd, and after drying, it was thermally decomposed at 600° C. for 1 hour. Pd is Au, Pt.

Rh、Ir、Re等の任意の貴金属に変えることができ
る。
It can be changed to any noble metal such as Rh, Ir, or Re.

貴金属触媒の添加後に、材料をボールミルで・1時間粉
砕した後、絶縁パイプの表面に塗布し、シリカゾルバイ
ンダーを含浸させて、550℃で10分間焼結しガスセ
ンサとした。センサの形状は、絶縁パイプの表面に一対
の金電極を印刷し、5nO7の膜を設けたものである。
After adding the noble metal catalyst, the material was ground in a ball mill for 1 hour, then applied to the surface of an insulated pipe, impregnated with a silica sol binder, and sintered at 550° C. for 10 minutes to produce a gas sensor. The shape of the sensor is such that a pair of gold electrodes are printed on the surface of an insulated pipe and a 5nO7 film is provided.

なお5nOtの膜厚は数十μm程度である。またパイプ
の内部にはコイル状のヒータを配置し、センサを加熱で
きるようにした。このセンサの形状は、出願人のガスセ
ンサ“T G S 711”として周知である。なおシ
リカゾル等のバインダーは用いなくても良い。
Note that the film thickness of 5nOt is approximately several tens of μm. A coil-shaped heater was also placed inside the pipe to heat the sensor. This sensor configuration is known as the applicant's gas sensor "T G S 711". Note that a binder such as silica sol may not be used.

フッ素の添加条件に付いて、補足する。発明者は、乾燥
後のスズ酸ゾルを2wt%濃度のHF水溶液に浸し、乾
燥後に600℃で1時間焼成してSnowとした。得ら
れたSnowの元素分析では、フッ素は検出できなかっ
た。従ってフッ素は5nOtが得られた段階で添加する
。これ以外の点に付いては、フッ素の添加時期や添加方
法は任叡である。例えばフッ素はセンサの焼結後に添加
しても良く、水溶媒に変え有機溶媒に溶解したものを用
いても良い。またフッ素は例えば5nOt粉体をHP気
流中にさらすこと等で添加しても良い。
Please provide additional information regarding the conditions for adding fluorine. The inventor immersed the dried stannic acid sol in an HF aqueous solution with a concentration of 2 wt%, and after drying, baked it at 600° C. for 1 hour to obtain Snow. In elemental analysis of the obtained Snow, fluorine could not be detected. Therefore, fluorine is added at the stage when 5 nOt is obtained. Regarding other points, the timing and method of adding fluorine is up to the discretion of the user. For example, fluorine may be added after sintering the sensor, or it may be dissolved in an organic solvent instead of an aqueous solvent. Fluorine may also be added, for example, by exposing 5nOt powder to a HP air stream.

フッ素はHPとして添加したが、他の添加形態でも良い
。好ましい添加形態は、HPや、HFのアンモニウム塩
、アミン化合物のHF塩等の、フッ素の非金属化合物、
もしくは貴金属触媒を添加する場合には貴金属触媒のフ
ッ素塩等である。フッ素とこれ以外の金属との塩を添加
すると、添加した金属の影響が問題となる。そこでこの
ような添加形態は、好ましくない。例えばSnowに、
Bi(N O3)3やPb(NOa)tの水溶液を含浸
させ、3nO1%程度のBiやpbを添加すると、湿度
依存性は著しく悪化した。これはフッ素無添加の例であ
るが、仮にB i F 3やPbPe等としてフッ素を
添加すると、HPで加えた場合に比べ、センサの湿度依
存性は悪化するであろう。
Fluorine was added as HP, but other forms of addition may be used. Preferred forms of addition include HP, ammonium salts of HF, HF salts of amine compounds, and other nonmetallic fluorine compounds;
Alternatively, when a noble metal catalyst is added, a fluorine salt of the noble metal catalyst is used. When a salt of fluorine and other metals is added, the influence of the added metal becomes a problem. Therefore, such an addition form is not preferable. For example, in Snow,
When an aqueous solution of Bi(N O3) 3 or Pb(NOa)t was impregnated and about 1% of 3nO Bi or Pb was added, the humidity dependence was significantly worsened. This is an example in which no fluorine is added, but if fluorine were added as B i F 3 or PbPe, the humidity dependence of the sensor would be worse than when it was added as HP.

センサの完成後に、元素分析によりフッ素の含有量を測
定した。表1に、フッ素含有量を示す。
After the sensor was completed, the fluorine content was measured by elemental analysis. Table 1 shows the fluorine content.

表中水溶液濃度は添加に用いたI−HF水溶液の濃度を
示し、フッ素含有量は5nOe中のフッ素の量を示す。
In the table, the aqueous solution concentration indicates the concentration of the I-HF aqueous solution used for addition, and the fluorine content indicates the amount of fluorine in 5 nOe.

なおフッ素含有量は、加えたHFの全てか5nOtに移
行した場合に、1%のHF水溶液で0゜5wt%となる
。またHF処理後に450℃で焼成した時点でのフッ素
含有量は、HF水溶液濃度が2wt%で0.7%であっ
た。更に、210℃では5nOt中のフッ素は安定で、
フッ素含有量はセンサを使用しても経時的に変化しない
と考えられる。
Note that the fluorine content becomes 0.5 wt% in a 1% aqueous HF solution when all of the added HF is transferred to 5 nOt. Further, the fluorine content at the time of firing at 450° C. after the HF treatment was 0.7% when the HF aqueous solution concentration was 2 wt%. Furthermore, at 210°C, fluorine in 5nOt is stable;
It is believed that the fluorine content does not change over time even with the use of the sensor.

0.4           0.1 1             0.252      
     0.5 ガスセンサの特性 センサ特性は原則としてセンサの加熱温度を210℃と
して評価し、各4個〜8個のセンサの平均値で結果を示
す。また測定はいずれら空気中で行った。
0.4 0.1 1 0.252
0.5 Characteristics of Gas Sensor Sensor characteristics are evaluated assuming that the heating temperature of the sensor is 210° C., and the results are shown as the average value of each 4 to 8 sensors. Furthermore, all measurements were performed in air.

第1図、第2図にセンサの湿度依存性を示す。Figures 1 and 2 show the humidity dependence of the sensor.

横軸はCOa度をppm単位で現し、縦軸は、各条件で
のセンサの抵抗値Rと20°CR,ll65%でCC0
1O0pp中のセンサの抵抗値R’oとの比R/Roを
現す。また湿度の条件は、−10’CR,l−1100
%と、20°CR,H65%、50°Cr1.065%
の3者とした。周知のようにセンサの温度依存性はわず
かであり、これらの温湿度条件によるセンサ抵抗の差は
、大部分センサの湿度依存性、特にセンサの絶対湿度依
存性によるものである。
The horizontal axis represents the COa degree in ppm, and the vertical axis represents the resistance value R of the sensor under each condition and the CC0 at 20°CR, 1165%.
It represents the ratio R/Ro with the resistance value R'o of the sensor in 100pp. Also, the humidity conditions are -10'CR, l-1100
%, 20°CR, H65%, 50°Cr1.065%
There were three parties. As is well known, the temperature dependence of the sensor is slight, and the difference in sensor resistance due to these temperature and humidity conditions is mostly due to the humidity dependence of the sensor, particularly the absolute humidity dependence of the sensor.

第1図は0.5%のフッ素を添加した際の結果を、第2
図はフッ素無添加の比較例での結果を示す。実施例では
湿度依存性は小さく、例えば200 ppmのCOを検
出する場合、湿度が変動しても60〜700 ppmの
範囲でCOを検出できる。一方比較例で200 ppm
のCOを検出すると、湿度の変動により実際の検出濃度
はIOppmから20ooppm程度までの範囲を変動
する。
Figure 1 shows the results when 0.5% fluorine was added.
The figure shows the results of a comparative example with no fluorine added. In the example, humidity dependence is small; for example, when detecting 200 ppm of CO, CO can be detected in the range of 60 to 700 ppm even if the humidity fluctuates. On the other hand, 200 ppm in the comparative example
When CO is detected, the actual detected concentration varies from 10ppm to about 200ppm due to changes in humidity.

表2に、センサの湿度依存性を示す。フッ素に変え塩素
を添加した比較例を検討したか、湿度依ct性は改善で
きていない。フッ素の作用はハロゲン一般の性質ではな
く、フッ素に固有の性質であると考えられる。
Table 2 shows the humidity dependence of the sensor. A comparative example in which chlorine was added instead of fluorine was considered, but the humidity dependence could not be improved. The action of fluorine is considered to be a property unique to fluorine, rather than a property of halogens in general.

F0形*     7 F O,1%     3.5 F O,25%     3.2 1015%     3.0 F2形      3.0 F3形      3.0 C1O,5%*   7 **印は比較例を現し、CIo、5%の系はフッ素に変
え、■I CI溶液を用いて塩素をSnowに担持させ
た試料を現す、湿度依存性は100 ppmのCOに対
する一1O℃R,H100%での抵抗値と、50°CR
,H65%での抵抗値との比を示す。なお測定温度は2
10℃である。
F0 type* 7 FO, 1% 3.5 FO, 25% 3.2 1015% 3.0 F2 type 3.0 F3 type 3.0 C1O, 5%* 7 ** indicates a comparative example, The CIo, 5% system is changed to fluorine, and ■I shows a sample in which chlorine is supported on Snow using a CI solution.The humidity dependence is the resistance value at -10℃R,H100% against 100 ppm CO. ,50°CR
, shows the ratio with the resistance value at H65%. The measured temperature is 2
The temperature is 10°C.

フッ素の添加は、他のガスへの湿度依存性も抑制する。Addition of fluorine also suppresses the humidity dependence of other gases.

210℃ではcoの検出か主となるので、水素の検出に
適した300℃での結果を表3に示す。湿度依存性には
、11000ppの水素に対する一10°CR,H10
0%での抵抗値と、50℃R,H65%での抵抗値との
比を示す。
At 210°C, the main detection is co, so Table 3 shows the results at 300°C, which is suitable for hydrogen detection. Humidity dependence includes -10°CR, H10 for 11000pp of hydrogen.
The ratio of the resistance value at 0% and the resistance value at 50° C.R, H65% is shown.

FO%*3.5 FO11%     2.5 F025%     2.2 1015%     2.0 F2形      2、O F3形      2.0 CIo、5%*   4 * データのき味や測定法は、表2と同じ、測定温度は
300℃。
FO%*3.5 FO11% 2.5 F025% 2.2 1015% 2.0 F2 type 2,O F3 type 2.0 CIo, 5%* 4 *For data quality and measurement method, see Table 2. Same, measurement temperature is 300℃.

フッ素の添加は、低温での、例えば210℃でのCOへ
の感度とセンサ出力のCOa度依存性を向上させる。そ
してこの温度では、エタノールや水素等のガスへの感度
は、フッ素を加えても変化しない。結果を表4に示す。
Addition of fluorine improves the sensitivity to CO and the COa degree dependence of the sensor output at low temperatures, for example at 210°C. At this temperature, the sensitivity to gases such as ethanol and hydrogen does not change even when fluorine is added. The results are shown in Table 4.

測定条件等は、表2の場合と同様である。表中、COへ
のガス感度は清浄空気中の抵抗値と、GO100ppm
中の抵抗値との比を現す。またエタノールや水素へのガ
ス感度は、C0I00ppIIl中の抵抗値と、各to
oppmのエタノールや水素中の抵抗値との比を現す。
The measurement conditions, etc. are the same as in Table 2. In the table, gas sensitivity to CO is the resistance value in clean air and GO100ppm.
Expresses the ratio to the resistance value inside. In addition, the gas sensitivity to ethanol and hydrogen is determined by the resistance value in C0I00ppIIl and each to
Expresses the ratio to the resistance value in oppm ethanol or hydrogen.

この比が小さいほどCOへの相対感度が高く、エタノー
ルや水素への相対感度が小さい。また勾配は、センサ出
力のガス濃度依存性を示し、co100〜300 pp
mの区間で測定した。勾配は、LogR=に−n−Lo
g(Pco)    Kは定数とした際のnの値を示す
。周囲の温湿度は全て、20℃R,H65%である(以
下同じ)。
The smaller this ratio is, the higher the relative sensitivity to CO, and the lower the relative sensitivity to ethanol and hydrogen. The slope also indicates the dependence of the sensor output on gas concentration, with CO100 to 300 pp
It was measured in an interval of m. The slope is LogR=to-n-Lo
g(Pco) K indicates the value of n when it is a constant. The ambient temperature and humidity are all 20° C.R and 65% H (the same applies below).

表 4 ガス感度* FO%*    7   5  1.50.40F0.
1%   8   4  1.00.45F 0.25
%  9   3  0.80.45F0.5%   
10   2  0.9 0.45F2%    10
   2  0.7 0.45F3%目 CIo、5%* 10  3 **印は比較例を現す、測定温度は210°00表から
、フッ素の添加によりCOへの感度やCOへのセンサ出
力のガス濃度依存性が増すことが分かる。
Table 4 Gas sensitivity* FO%* 7 5 1.50.40F0.
1% 8 4 1.00.45F 0.25
% 9 3 0.80.45F0.5%
10 2 0.9 0.45F2% 10
2 0.7 0.45F 3% CIo, 5%* 10 3 ** indicates a comparative example, the measurement temperature is 210°00 From the table, the addition of fluorine increases the sensitivity to CO and the gas of the sensor output to CO It can be seen that the concentration dependence increases.

第3図〜第4図に、センサ抵抗の加熱電圧依存性を示す
。横軸はセンサのヒータへの印加電圧を示し、5■印加
時にセンサ温度は210℃となる。
FIGS. 3 and 4 show the heating voltage dependence of the sensor resistance. The horizontal axis indicates the voltage applied to the heater of the sensor, and the sensor temperature becomes 210° C. when the voltage is applied for 5×.

縦軸はヒータ電圧5vでのGOlooppmへの抵抗値
Roを基準とする、各100 ppmのガス中での抵抗
値を示す。なお温湿度条件は、20°C65%である。
The vertical axis indicates the resistance value in each 100 ppm gas based on the resistance value Ro to GOlooppm at a heater voltage of 5V. The temperature and humidity conditions were 20°C and 65%.

第3図に0.5%のフッ素を添加した試料の結果を、第
4図にフッ素無添加の試料の結果を示す。
FIG. 3 shows the results of a sample with 0.5% fluorine added, and FIG. 4 shows the results of a sample with no fluorine added.

フッ素の添加により、センサ抵抗の加熱温度依存性は増
している。
Addition of fluorine increases the heating temperature dependence of sensor resistance.

第5図に加熱温度210℃での、COへの応答特性を示
す。図の上部にはフッ素無添加の比較例の結果を、下部
には0.5%のフッ素を添加した実施例の結果を示す。
FIG. 5 shows the response characteristics to CO at a heating temperature of 210°C. The upper part of the figure shows the results of a comparative example in which no fluorine was added, and the lower part shows the results of an example in which 0.5% fluorine was added.

時刻2分にCOを注入し、その後COを除いた。実施例
の方がCOへの応答が速やかである。なお周囲の温、恨
度は20℃、65%である。
CO was injected at 2 minutes and then removed. The response to CO is faster in the embodiment. The surrounding temperature and grudge level were 20°C and 65%.

なおここではガスセンサ単独での特性を示したが、これ
は実際のガス検出装置の特性とは異なる。
Note that although the characteristics of the gas sensor alone are shown here, these are different from the characteristics of an actual gas detection device.

例えば絶対湿度の変動は、気温の変動による飽和蒸気圧
の変動と、相対湿度の変動とに分離することができる。
For example, changes in absolute humidity can be separated into changes in saturated vapor pressure due to changes in temperature and changes in relative humidity.

そして気温の変動をサーミスタ等で検出して補償すれば
、ガス検出装置の湿度依存性は減少する。
If temperature fluctuations are detected and compensated for using a thermistor or the like, the humidity dependence of the gas detection device can be reduced.

またここでは特定の金属酸化物半導体に関する結果を示
したが、他の金属酸化物半導体を用いる場合も同様であ
る。またセンサの構造や、フッ素以外の添加物の使用は
任意である。
Further, although the results regarding a specific metal oxide semiconductor are shown here, the same applies to the case where other metal oxide semiconductors are used. Furthermore, the structure of the sensor and the use of additives other than fluorine are arbitrary.

[発明の効果] この発明では、ガスセンサの湿度依存性を抑制できる。[Effect of the invention] In this invention, the humidity dependence of the gas sensor can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の特性図、第2図は従来例の特性図、第
3図は実施例の特性図、第4図従来例の特性図、第5図
は実施例の特性図である。
Fig. 1 is a characteristic diagram of the embodiment, Fig. 2 is a characteristic diagram of the conventional example, Fig. 3 is a characteristic diagram of the embodiment, Fig. 4 is a characteristic diagram of the conventional example, and Fig. 5 is a characteristic diagram of the embodiment. .

Claims (8)

【特許請求の範囲】[Claims] (1)ガスにより抵抗値が変化する金属酸化物半導体を
用いたガスセンサにおいて、 金属酸化物半導体にフッ素を添加したことを特徴とする
、ガスセンサ。
(1) A gas sensor using a metal oxide semiconductor whose resistance value changes depending on gas, characterized in that fluorine is added to the metal oxide semiconductor.
(2)前記金属酸化物半導体をSnO_2としたことを
特徴とする、特許請求の範囲第1項記載のガスセンサ。
(2) The gas sensor according to claim 1, wherein the metal oxide semiconductor is SnO_2.
(3)前記SnO_2へのフッ素添加量を、SnO_2
1gr当たりのフッ素原子換算で、0.5〜100mg
rとしたことを特徴とする、特許請求の範囲第2項記載
のガスセンサ。
(3) The amount of fluorine added to SnO_2 is
0.5 to 100 mg in terms of fluorine atoms per 1 gr
The gas sensor according to claim 2, characterized in that r.
(4)前記SnO_2へのフッ素添加量を、SnO_2
1gr当たりのフッ素原子換算で、0.5〜50mgr
としたことを特徴とする、特許請求の範囲第3項記載の
ガスセンサ。
(4) The amount of fluorine added to SnO_2 is
0.5 to 50 mgr in terms of fluorine atoms per 1gr
The gas sensor according to claim 3, characterized in that:
(5)ガスにより抵抗値が変化する金属酸化物半導体を
用いたガスセンサの製造方法において、金属酸化物半導
体にフッ素を添加する工程を設けたことを特徴とする、
ガスセンサの製造方法。
(5) A method for manufacturing a gas sensor using a metal oxide semiconductor whose resistance value changes depending on gas, characterized by including a step of adding fluorine to the metal oxide semiconductor.
Gas sensor manufacturing method.
(6)前記フッ素を、フッ素単体及びフッ素の非金属化
合物からなる群の少なくとも一員の物質として、金属酸
化物半導体に添加することを特徴とする、特許請求の範
囲第5項記載のガスセンサの製造方法。
(6) Manufacturing the gas sensor according to claim 5, characterized in that the fluorine is added to a metal oxide semiconductor as at least one member of the group consisting of simple fluorine and nonmetallic compounds of fluorine. Method.
(7)前記金属酸化物半導体をSnO_2とし、前記フ
ッ素をフッ素の非金属化合物の溶液として、SnO_2
に添加することを特徴とする、特許請求の範囲第6項記
載のガスセンサの製造方法。
(7) The metal oxide semiconductor is SnO_2, the fluorine is a solution of a nonmetallic compound of fluorine, and the metal oxide semiconductor is SnO_2.
7. The method for manufacturing a gas sensor according to claim 6, wherein the gas sensor is added to.
(8)前記フッ素の溶液をフッ素の非金属化合物の水溶
液とし、フッ素濃度をフッ素原子の濃度に着目して、0
.2mol/l〜12mol/lとしたことを特徴とす
る、特許請求の範囲第7項記載のガスセンサの製造方法
(8) The fluorine solution is an aqueous solution of a nonmetallic compound of fluorine, and the fluorine concentration is determined to be 0 by focusing on the concentration of fluorine atoms.
.. The method for manufacturing a gas sensor according to claim 7, characterized in that the concentration is 2 mol/l to 12 mol/l.
JP62155031A 1987-06-22 1987-06-22 Gas sensor and manufacturing method thereof Expired - Lifetime JP2544144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62155031A JP2544144B2 (en) 1987-06-22 1987-06-22 Gas sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62155031A JP2544144B2 (en) 1987-06-22 1987-06-22 Gas sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63317753A true JPS63317753A (en) 1988-12-26
JP2544144B2 JP2544144B2 (en) 1996-10-16

Family

ID=15597158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62155031A Expired - Lifetime JP2544144B2 (en) 1987-06-22 1987-06-22 Gas sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2544144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537945B1 (en) * 2013-12-30 2015-07-20 한국세라믹기술원 Device for complex gas sensing and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537945B1 (en) * 2013-12-30 2015-07-20 한국세라믹기술원 Device for complex gas sensing and manufacturing method of the same

Also Published As

Publication number Publication date
JP2544144B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
Fryburg et al. Kinetics of the Oxidation of Platinum
JPH04208847A (en) Gas detection element
JP3097287B2 (en) Gas sensor and method of manufacturing the same
JP3795944B2 (en) Manufacturing method of semiconductor gas sensor
JPH05505465A (en) gas sensor
US2510018A (en) Electrolytic humidostat
JPS63317753A (en) Gas sensor and manufacture thereof
JPH0618467A (en) Gas sensor
JP2517291B2 (en) Gas sensor
JP7403232B2 (en) Semiconductor gas detection element
JP2868845B2 (en) Amine sensor
Švadlena et al. Corrosion of silver in environment containing halides, pseudohalides, or thiourea
JP7500283B2 (en) Semiconductor gas detector
JP2000111507A (en) Chlorofluorocarbon sensor and its manufacturing method
JPH0225456B2 (en)
JP3170396B2 (en) Semiconductor type ammonia gas sensor and method of manufacturing the same
JP3171734B2 (en) Carbon monoxide gas sensing element
JP3050696B2 (en) Oxidizing gas sensor
JP3919306B2 (en) Hydrocarbon gas detector
JP3933500B2 (en) Semiconductor gas detector
GB1578769A (en) Method of preparing gas sensor elements and sensor elements and sensor elements produced thereby
JP3087972B2 (en) Gas sensor manufacturing method
JPH11287781A (en) Hydrogen gas detection element and its manufacture
JPS63313048A (en) Gas sensor
RU2308713C2 (en) Ammonia concentration sensor and a method for forming sensitive layer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term