JPS63313048A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS63313048A
JPS63313048A JP14879087A JP14879087A JPS63313048A JP S63313048 A JPS63313048 A JP S63313048A JP 14879087 A JP14879087 A JP 14879087A JP 14879087 A JP14879087 A JP 14879087A JP S63313048 A JPS63313048 A JP S63313048A
Authority
JP
Japan
Prior art keywords
metal oxide
hydrogen sulfide
sensitivity
oxide semiconductor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14879087A
Other languages
Japanese (ja)
Other versions
JP2560033B2 (en
Inventor
Takeshi Nakahara
毅 中原
Takashi Takahata
高畠 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP62148790A priority Critical patent/JP2560033B2/en
Publication of JPS63313048A publication Critical patent/JPS63313048A/en
Application granted granted Critical
Publication of JP2560033B2 publication Critical patent/JP2560033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve sensitivity to hydrogen sulfide and the deriv. thereof, etc. by adding at least one element among 3 groups consisting of Zn, Pb, Ag, Na, Ba, In, and S to the surface of a metal oxide semiconductor. CONSTITUTION:For example, SnO2, etc., are used for the surface of the metal oxide semiconductor so that the semiconductor of the kind different from the compd. of Pb, etc., to be added is formed. The sensitivity to gases improves if Zn, Pb, Ag, etc., are added to such metal oxide semiconductor. The sensor formed by depositing said additives on the surface of the metal oxide semiconductor is effective. Although the structure of the semiconductor is arbitrary, the semiconductor is preferably formed as a thin film and is made into the thin film having the structure in which the many thin film-like small pieces of the metal oxide semiconductor are separated by cracks. The sensitivity to the hydrogen sulfide and the deriv., thereof, etc., is thus improved.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、金属酸化物半導体の抵抗値の変化を利用し
たガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gas sensor that utilizes changes in the resistance value of a metal oxide semiconductor.

[従来技術] 雰囲気中の悪臭物質や毒性ガス、口臭、あるいは半導体
の製造に用いるS i、H4や、PH3、A s H3
等のガスの検出が必要とされている。これらの場合の検
出対象は、硫化水素やメチルメルカプタン等の硫化水素
誘導体、あるいはS r H4、PH,、A s Hz
、またメチルアミン等のアミン化合物やアンモニア等と
なる。
[Prior art] Malodorous substances, toxic gases, bad breath in the atmosphere, or Si, H4, PH3, A s H3 used in semiconductor manufacturing
There is a need to detect gases such as: In these cases, the detection target is hydrogen sulfide, hydrogen sulfide derivatives such as methyl mercaptan, or S r H4, PH,, A s Hz
, and amine compounds such as methylamine, ammonia, etc.

しかし金属酸化物半導体ガスセンサの、これらのガスへ
の感度は一般に不充分である。これらのガスは1 pp
m程度の極く低い濃度で検出する必要が有る。そこで発
明者は、金属酸化物半導体への添加物を利用し、これら
のガスへの感度を高めることを検討した。
However, the sensitivity of metal oxide semiconductor gas sensors to these gases is generally insufficient. These gases are 1 pp
It is necessary to detect at an extremely low concentration of about m. Therefore, the inventor considered using additives to metal oxide semiconductors to increase the sensitivity to these gases.

[発明の課題] この発明の課題はガスセンサの感度の向上に有り、特に
硫化水素とその誘導体、SiH,、AsH3゜PH,等
の化合物とその誘導体、あるいはNOxやS OX% 
N H3やアミン化合物等のアンモニア誘導体等への感
度の向上を課題とする。
[Problem of the Invention] An object of the present invention is to improve the sensitivity of gas sensors, particularly for hydrogen sulfide and its derivatives, SiH, AsH3°PH, and other compounds and their derivatives, or NOx and SOx%.
The goal is to improve sensitivity to ammonia derivatives such as N H3 and amine compounds.

[発明の構成] この発明のガスセンサは、金属酸化物半導体の抵抗値の
変化を利用したガスセンサにおいて、金属酸化物半導体
の表面に、Z n、 P b、 Ag、 Na、 B 
a。
[Structure of the Invention] The gas sensor of the present invention is a gas sensor that utilizes a change in resistance value of a metal oxide semiconductor, and includes Zn, Pb, Ag, Na, and B on the surface of the metal oxide semiconductor.
a.

In、Sからなる群の少なくとも一員の元素を添加した
ことを特徴とする。
It is characterized by adding at least one element of the group consisting of In and S.

ここで金属酸化物半導体には、例えばSnowやI11
!03、ZnO,Fears等を用い、添加するpb等
の化合物とは異種の半導体とする。これらの金属酸化物
半導体にZn、Pb、Ag等を添加すると、種々のガス
への感度が増す。この効果は特に、硫化水素やメチルメ
ルカプタン、メチルアミン、PH,s、NOx等のガス
に対して著しい。
Here, metal oxide semiconductors include, for example, Snow and I11.
! 03, ZnO, Fears, etc., as a semiconductor different from the added compound such as PB. When Zn, Pb, Ag, etc. are added to these metal oxide semiconductors, the sensitivity to various gases increases. This effect is particularly remarkable for gases such as hydrogen sulfide, methyl mercaptan, methyl amine, PH, s, and NOx.

Zt+’PPb、Ag等の添加により、硫化水素等のガ
スへの感度が向上する。添加物の種類はスクリーニング
により定めたもので、これらの添加物が有効な理由は明
らかではない。しかし感度の向上は、添加する金属イオ
ンの電気陰性度と関係するようである。
The addition of Zt+'PPb, Ag, etc. improves the sensitivity to gases such as hydrogen sulfide. The types of additives were determined through screening, and it is not clear why these additives are effective. However, the improvement in sensitivity seems to be related to the electronegativity of the metal ions added.

次ぎにこれらの添加物は、金属酸化物半導体の表面に担
持させたものが有効である。例えば金属酸化物半導体の
出発原料中にこれらの化合物を添加しても、硫化水素等
への感度はあまり向上しな添加量は、ZnやPb、Ag
等の元素と金属酸化物半導体中の金属元素との原子比で
、0.3〜40 atm%が好ましい。しかし添加量を
増すと、ガスが消滅した後の、ガス中から清浄空気中へ
の応答速度が低下する。また添加量を1 stm%以上
とするとし効果が増すので、1〜30atm%の添加が
、より好ましい。
Next, it is effective to support these additives on the surface of the metal oxide semiconductor. For example, even if these compounds are added to the starting materials for metal oxide semiconductors, the sensitivity to hydrogen sulfide etc. will not improve much.
The atomic ratio between these elements and the metal elements in the metal oxide semiconductor is preferably 0.3 to 40 atm%. However, when the amount added is increased, the response speed from the gas to the clean air after the gas disappears decreases. Further, since the effect increases when the addition amount is 1 atm % or more, addition of 1 to 30 atm % is more preferable.

半導体の構造は任意であるが、好ましくは薄膜状とし、
多数の金属酸化物半導体の薄膜状小片をクラックで分離
した構造の薄膜とする。この種の薄膜で、は、通常の金
属酸化物半導体が連続的につながった薄膜や、厚膜、金
属酸化物半導体の焼結体よりも、硫化水素やNOX等の
ガスへの感度が高い。この薄膜ではクラック部付近の性
質がセンサの特性を支配し、硫化水素等のガスに高い感
度が得られる理由は、クラックと関連するようである。
Although the structure of the semiconductor is arbitrary, it is preferably in the form of a thin film,
The thin film has a structure in which a large number of thin film-like pieces of metal oxide semiconductor are separated by cracks. This type of thin film is more sensitive to gases such as hydrogen sulfide and NOx than ordinary thin films in which metal oxide semiconductors are continuously connected, thick films, or sintered bodies of metal oxide semiconductors. In this thin film, the properties near the cracks govern the sensor characteristics, and the reason why high sensitivity to gases such as hydrogen sulfide is obtained seems to be related to the cracks.

以下Snowを用いる場合に付いて、実施例を説明する
が、これに限るものではない。
Examples will be described below regarding the case where Snow is used, but the present invention is not limited thereto.

[実施例] アルミナの耐熱絶縁パイプ上に一対の金電極を印刷し、
パイプの内部にはコイル状のヒータを収容した。これを
ガスセンサの基体とした。なおこの基体は、出願人のガ
スセンサ“T G S 812”、“T G 5813
″等に用いられているもので、周知である。
[Example] A pair of gold electrodes were printed on an alumina heat-resistant insulated pipe,
A coiled heater was housed inside the pipe. This was used as the base of a gas sensor. Note that this base body is compatible with the applicant's gas sensors “T G S 812” and “T G 5813”.
'', etc., and is well known.

Snの有機金属化合物として、S n(OCHs)*(
o(cHt)sNHJを用い、イソブタノールの30w
t%溶液を調整した。有機金属化合物の種類は任意であ
り、例えば発明者は、5n(−〇〇〇−C7H+5)t
の23wt%溶液で同様の実験を行ったが、結果は同様
であった。金属酸化物半導体の出発材料は任意である。
As an organometallic compound of Sn, Sn(OCHs)*(
30w of isobutanol using o(cHt)sNHJ
A t% solution was prepared. The type of organometallic compound is arbitrary; for example, the inventor has proposed 5n(-〇〇〇-C7H+5)t
A similar experiment was conducted with a 23 wt% solution of , and the results were similar. The starting material for the metal oxide semiconductor is arbitrary.

Snの有機金属化合物の溶液を、絶縁基体に滴下し、1
10℃で溶媒を除去した後、500℃で有機金属化合物
を熱分解して、Snow膜とした。
A solution of an organometallic compound of Sn is dropped onto an insulating substrate, and 1
After removing the solvent at 10°C, the organometallic compound was thermally decomposed at 500°C to obtain a Snow film.

この工程を1〜5回繰り返し、薄膜を完成した。This process was repeated 1 to 5 times to complete a thin film.

得られた薄膜の膜厚は0.3〜2μm程度である。The thickness of the obtained thin film is about 0.3 to 2 μm.

焼成後の薄膜にZnやPb、Ag等のメトキシ化合物の
イソブタノール溶液を滴下し、500℃で熱分解してS
n0w膜に担持させた。これらの添加物は、酸化物ある
いは単体等として、SnO,に担持されている。また貴
金属触媒を添加する場合、ZnやPb等の添加後に、触
媒塩の水溶液を滴下し、500℃で熱分解した。
An isobutanol solution of a methoxy compound such as Zn, Pb, or Ag is added dropwise to the fired thin film and thermally decomposed at 500°C to form S.
It was supported on a n0w film. These additives are supported on SnO as oxides or simple substances. When adding a noble metal catalyst, an aqueous solution of catalyst salt was added dropwise after addition of Zn, Pb, etc., and thermally decomposed at 500°C.

Zn等の化合物はSnO,の表面に担持させ、Snow
に均一に加えると効果に乏しい。Zn/Snの原子比を
5 ata+%(Zn5:Snl 00)とした例に付
いて、ZnとSnの出発原料を均一に混合して熱分解し
たものを比較例に、結果を表1に示す。塗布回数は2回
で、センサ温度は210℃、結果は各3個やセンサの平
均値である。また測定は、センサの製造後に1週間21
0℃に保った後に行った。更に硫化水素等のガス濃度は
10ppmとした、(原則として以下同じ)。
Compounds such as Zn are supported on the surface of SnO,
If added uniformly to the water, the effect will be poor. For the example in which the Zn/Sn atomic ratio was 5 ata+% (Zn5:Snl 00), the results are shown in Table 1 for a comparison example in which the starting materials of Zn and Sn were uniformly mixed and thermally decomposed. . The number of applications was 2 times, the sensor temperature was 210° C., and the results are the average value of 3 sensors each. Measurements were also carried out 21 weeks after the sensor was manufactured.
This was done after keeping the temperature at 0°C. Furthermore, the concentration of gases such as hydrogen sulfide was set to 10 ppm (in principle, the same applies hereinafter).

表1* 5nOt単味     0.07  0.3実施例  
     0.04  0.4比較例       0
.06  0.4* ガス感度は、清浄空気中での抵抗
値Roとガス中での抵抗値Rを用いて示す、また実施例
では5nOtの膜の完成後にZnOを添加、比較例では
Sn材料とZn材料とを均一に混合して塗布、熱分解。
Table 1* 5nOt single 0.07 0.3 Example
0.04 0.4 Comparative example 0
.. 06 0.4* Gas sensitivity is shown using the resistance value Ro in clean air and the resistance value R in gas. In the example, ZnO was added after the completion of the 5nOt film, and in the comparative example, Sn material and Uniformly mixed with Zn material, applied and thermally decomposed.

第1図〜第3図にクラック形の薄膜の構造を示す。また
第4図に比較例として、SnO,膜が連続的につながっ
た薄膜を示す。これらの薄膜はいずれも5nOt単味で
ある。また比較例の薄膜は、500℃に加熱したガラス
基板に5n(CtHs)tの蒸気を接触させてS n(
CyHS)4を熱分解したものである。即ち5n(Ct
Hs)4を昇華させ、空気気流でガラス基板に導き、基
板上で直ちに熱分解した。
The structure of a crack-shaped thin film is shown in FIGS. 1 to 3. Furthermore, as a comparative example, FIG. 4 shows a thin film in which SnO films are continuously connected. All of these thin films are 5nOt. In addition, the thin film of the comparative example was made by contacting the vapor of 5n(CtHs)t to a glass substrate heated to 500°C.
CyHS)4 is thermally decomposed. That is, 5n(Ct
Hs)4 was sublimed, guided to a glass substrate with an air stream, and immediately pyrolyzed on the substrate.

第1図〜第3図は倍率1000倍、第4図は倍率500
0倍である。第4図の下部には基板のガラスが現れてお
り、膜は連続的につながっている。
Figures 1 to 3 are at 1000x magnification, Figure 4 is at 500x magnification.
It is 0 times. The glass substrate is visible at the bottom of FIG. 4, and the films are continuously connected.

これが通常の5nOt膜である。一方策1図〜第3図で
は、膜に多数のクラックが存在する。第1図は前記のS
n化合物の溶液を1回塗布したもの、第2図は2回塗布
したもの、第3図は5回塗布したものである。塗布回数
を1回としたものでは、膜には多数の小片が見られ、小
片の間にはクラックがある。なおこの小片の下地は、直
接アルミナ基体に接触している。各小片はクラック部で
の極く薄いSn0w膜や、小片相互の接触部を介して接
続しており、電気伝導度が存在する。塗布回数を2回と
したものでは(第2図)、上地に大きなSnO2小片が
存在する。この小片はクラックでほぼ完全に分離されて
おり、電気伝導度には寄与しないと考えられる。上地の
下部には第1層のS n Oを膜が存在し、その下部が
アルミナ基体である。第1層の5nOt膜にも多数のク
ラックが存在し、膜は多数の小片に分離されている。し
かし塗布回数を1回としたものに比べると、クラックは
目立たず小片相互の接続は強く、電気伝導度も高い。塗
布回数を5回としたものでは(第3図)、上地のSnO
2小片は更に大きく、下地にはクラックで分離されたS
now小片が見える。なおこのSn0w膜が2層で、図
の下地が直接アルミナ基体となっているかどうかは判明
していない。また第3図のSnO2膜は、第2図の5n
Ot膜よりも更に低抵抗である。
This is a normal 5nOt film. On the other hand, in FIGS. 1 to 3, there are many cracks in the film. Figure 1 shows the S
Figure 2 shows the result of applying the n-compound solution once, Figure 2 shows the result of applying the solution twice, and Figure 3 shows the result of applying the solution five times. When the coating was applied once, many small pieces were observed in the film, and there were cracks between the small pieces. Note that the base of this small piece is in direct contact with the alumina substrate. Each small piece is connected via an extremely thin Sn0w film at the crack portion or a contact portion between the small pieces, and there is electrical conductivity. When the coating was applied twice (FIG. 2), large pieces of SnO2 were present on the upper surface. These small pieces are almost completely separated by cracks and are considered not to contribute to electrical conductivity. A first layer of S.sub.nO is present below the upper layer, and the lower portion thereof is an alumina substrate. There are also many cracks in the first layer 5nOt film, and the film is separated into many small pieces. However, compared to the case where the coating is applied once, cracks are less noticeable, the connections between the small pieces are strong, and the electrical conductivity is high. In the case where the number of applications was 5 times (Fig. 3), the SnO on the upper layer
The second small piece is even larger, with S separated by a crack on the base.
I can now see small pieces. It is not known whether this Sn0w film is two-layered and the underlying layer in the figure is directly an alumina substrate. Moreover, the SnO2 film in FIG. 3 is 5n in FIG.
It has even lower resistance than the Ot film.

これらの膜は、次のようにして成長したものであろう。These films may have been grown as follows.

有機金属化合物の溶液を塗布し乾燥させると、液の乾燥
の過程で液膜は収縮し、多数の小片に分離する。これを
熱分解すると、第1図のように収縮した小片が金属酸化
物半導体の小片に変化し、収縮により生じたクラックは
そのまま維持される。この膜の上に再度、有機金属化合
物の溶液を塗布すると、溶液の乾燥により上地の小片が
生ずる。また溶液はクラック部に浸透し、下地のクラッ
クは部分的に埋められるであろう。このようにして多層
構造で、下地にクラックの残存した薄膜が成長するので
あろう。
When a solution of an organometallic compound is applied and dried, the liquid film contracts during the drying process and separates into many small pieces. When this is thermally decomposed, the shrunken pieces change into small pieces of metal oxide semiconductor, as shown in FIG. 1, and the cracks caused by the shrinkage remain as they are. When a solution of an organometallic compound is applied again onto this film, small pieces of the top layer are formed as the solution dries. The solution will also penetrate into the cracks and the underlying cracks will be partially filled. In this way, a thin film with cracks remaining in the underlying layer will grow in a multilayered structure.

センサの特性は、クラックの有無により変化する。第5
図に塗布回数とガス感度との関係を示す。
The characteristics of the sensor change depending on the presence or absence of cracks. Fifth
The figure shows the relationship between the number of applications and gas sensitivity.

なお5nOz膜は単味のものである。塗布回数と共に、
抵抗値は減少し、エタノールへの感度が増し、硫化水素
への感度が低下している。なお図での比較例として、第
4図のセンサの結果を示す。
Note that the 5nOz film is a simple one. Along with the number of applications,
Resistance is decreased, sensitivity to ethanol is increased, and sensitivity to hydrogen sulfide is decreased. As a comparative example in the figure, the results of the sensor in FIG. 4 are shown.

これらの結果は、膜厚の増加によるものではない。第6
図に塗布回数を2回として、Snの有機金属化合物濃度
を変えた際の結果を示す。Snの濃度は6倍程度変化し
膜厚の差が大きいにもかかわらず、特性はさして変わら
ない。第5図の特性は、膜厚の影響を示すものではなく
、クラックの充填による相対感度の変化を示すものと理
解できる。
These results are not due to an increase in film thickness. 6th
The figure shows the results when the number of coatings was set to two and the Sn organometallic compound concentration was varied. Although the concentration of Sn changes by about 6 times and the difference in film thickness is large, the characteristics do not change much. It can be understood that the characteristics shown in FIG. 5 do not indicate the influence of film thickness, but rather indicate changes in relative sensitivity due to crack filling.

金属酸化物半導体の薄膜状小片とクラックとを有する薄
膜を用いると、硫化水素等のガスへの感度が向上する。
The sensitivity to gases such as hydrogen sulfide is improved by using a thin film of metal oxide semiconductor having thin film-like pieces and cracks.

従って、この薄膜を用いて実験を進めた。勿論半導体の
構造は、これ以外のものでも良い。
Therefore, we proceeded with the experiment using this thin film. Of course, the semiconductor structure may be other than this.

第7図に、5 atm%の添加物を加えた5nOt膜に
付いて、21O℃での10ppmの硫化水素に対する感
度を示す。なおSn0w膜の塗布と焼成の回数は2回で
ある。横軸は添加化合物中の金属イオンの電気陰性度、
縦軸はガス感度であり、単味のSnO,の場合を比較例
として示す。Zn、Pb、Ag。
FIG. 7 shows the sensitivity to 10 ppm hydrogen sulfide at 210° C. for a 5nOt film with 5 atm % additive. Note that the number of times the Sn0w film was applied and baked was two times. The horizontal axis is the electronegativity of the metal ion in the additive compound,
The vertical axis represents gas sensitivity, and the case of plain SnO is shown as a comparative example. Zn, Pb, Ag.

Na、Ba、 I n、Sの場合に、硫化水素感度が向
上した。5nOtに替えIntO3を半導体として同種
のテストを行ったが、ZnやPb等の化合物が有効な、
  ことは共通であった。また図では硫化水素を示した
が、メチルメルカプタンやメチルアミン、NO2に付い
ても、同様の結果が得られた。
Hydrogen sulfide sensitivity improved in the case of Na, Ba, In, and S. Similar tests were conducted using IntO3 as a semiconductor instead of 5nOt, but compounds such as Zn and Pb are effective.
That was common. Although the figure shows hydrogen sulfide, similar results were obtained for methyl mercaptan, methylamine, and NO2.

第8図、第9図に各5 atm%の添加物を加えた5I
IOfに付いて、21O℃での硫化水素、メチルメルカ
プタン、エタノール、NO!に付いて、ガス濃度特性を
示す。なおS n Ox膜は、塗布と焼成の回数を2回
としたものである、(以下同じ)。
5I with 5 atm% additives added to Figures 8 and 9.
With IOf, hydrogen sulfide, methyl mercaptan, ethanol, NO at 21O℃! The gas concentration characteristics are shown below. Note that the S n Ox film was coated and fired twice (the same applies hereinafter).

Zn、PbSAg等の添加により、硫化水素等のガスへ
の感度が増している。N Ot、No、So、等の性質
は類似で、センサの感度も類似するので、No9で代表
させた。またエタノールやプロパツール等のアルコール
は、低温で最も大きな感度を示すガスであり、しかも極
くありふれたガスである。そこで妨害ガスを代表するも
のとして、エタノールを用いた。
Addition of Zn, PbSAg, etc. increases sensitivity to gases such as hydrogen sulfide. Since the properties of N Ot, No, So, etc. are similar, and the sensitivity of the sensor is also similar, No. 9 is used as a representative. Furthermore, alcohols such as ethanol and propatool are gases that exhibit the greatest sensitivity at low temperatures, and are also extremely common gases. Therefore, ethanol was used as a representative interfering gas.

Zn等の化合物の添加量は、これらの金属元素と金属酸
化物半導体中の金属元素との原子比で、0.3〜40a
tm%が好ましい。ガス中から清浄空気中へのセンサの
応答速度は添加量と共に減少するが、添加量が小さいと
効果に乏しく、1〜30atm%の添加がより好ましい
。ZnとPbとに付いて、21.0℃で添加量の効果を
表2、表3に示す。
The amount of compounds such as Zn to be added is 0.3 to 40a based on the atomic ratio of these metal elements to the metal elements in the metal oxide semiconductor.
tm% is preferred. The response speed of the sensor from gas to clean air decreases with the amount added, but if the amount added is small, the effect will be poor, so addition of 1 to 30 atm% is more preferable. Tables 2 and 3 show the effects of the amounts of Zn and Pb added at 21.0°C.

表2 0 0.07 0.5 0.30.3 1 0.05 0.4 0.4 2 0.05 0.4 0.4 5 0.04 0.4 0.60.1 15 0.03 0.2 0.8 35  Q、01 0.2 0.7 表3 0 0.07  G、5 0.30.30.50.04
 0.5 0,4 1 0.02 0.3 0,7 2 0.02 0.3 0.70.1 5 0.006 0.3 0.8 15 0.006  G、2 0.8 第1O図、第11図に、5 atIII%のZnやPb
を加えたSn0w膜に付いて、各10ppmのガスに対
する温度特性を示す。横軸はセンサ温度で、いずれの温
度でも、Zn″PPb等の添加により、硫化水素等のガ
スへの感度が向上している。
Table 2 0 0.07 0.5 0.30.3 1 0.05 0.4 0.4 2 0.05 0.4 0.4 5 0.04 0.4 0.60.1 15 0.03 0.2 0.8 35 Q, 01 0.2 0.7 Table 3 0 0.07 G, 5 0.30.30.50.04
0.5 0,4 1 0.02 0.3 0,7 2 0.02 0.3 0.70.1 5 0.006 0.3 0.8 15 0.006 G, 2 0.8 1st O Figure 11 shows that 5 atIII% Zn and Pb
The temperature characteristics for each 10 ppm gas are shown for the Sn0w film added with . The horizontal axis is the sensor temperature, and at any temperature, the sensitivity to gases such as hydrogen sulfide is improved by adding Zn''PPb, etc.

第12図に、toppIllの硫化水素へのセンサの応
答性能を示す。縦軸にガス感度を対数目盛りで表示し、
5 atn+%のpbを添加したものと、Znを添加し
たものとで1ケタ縦軸の位置をずらして表示する。硫化
水素を注入した後、時刻16分に硫化水素を除く。硫化
水素注入時の応答は速く、注入後の抵抗値も安定してい
る。しかし硫化水素を除いた際の応答は遅い。
FIG. 12 shows the response performance of the TOPPIll sensor to hydrogen sulfide. Gas sensitivity is displayed on a logarithmic scale on the vertical axis.
The position of the vertical axis is shifted by one digit between the case where 5 atn+% Pb is added and the case where Zn is added. After injecting hydrogen sulfide, remove the hydrogen sulfide at 16 minutes. The response to hydrogen sulfide injection is fast, and the resistance value after injection is stable. However, the response when hydrogen sulfide is removed is slow.

硫化水素を除去した際の応答は、Pd、Re、Pt。The responses when hydrogen sulfide was removed were Pd, Re, and Pt.

Rh、 I r、Au等の貴金属触媒を添加すると改善
できる。
This can be improved by adding a noble metal catalyst such as Rh, Ir, or Au.

第12図に示した記号ΔRとΔR′とを用い、硫化水素
除去時の応答速度を評価する。ここにΔRは硫化水素の
除去から16分後の抵抗値と清浄空気中での抵抗値との
比に対応し、ΔR°は硫化水素への感度に対応する。表
4に、結果を示す。
Using the symbols ΔR and ΔR' shown in FIG. 12, the response speed during hydrogen sulfide removal is evaluated. Here, ΔR corresponds to the ratio of the resistance value 16 minutes after hydrogen sulfide removal to the resistance value in clean air, and ΔR° corresponds to the sensitivity to hydrogen sulfide. Table 4 shows the results.

試料には全て5 atm%のPbO1またはZnOが添
加して有り、センサ温度は210℃である。なお貴金属
触媒は、いずれも0.02mol/1の溶液を用いて添
加した。
All samples were doped with 5 atm% of PbO1 or ZnO, and the sensor temperature was 210°C. Note that the noble metal catalysts were all added using a 0.02 mol/1 solution.

表4 センサ     応答速度(ΔR/ΔR’)S no 
t + P bo       0 、3S n Ot
 + P bO+ P d OO、I 5SnOt+Z
nOo、a Sn○、+ZnO+PdOO,15 SnOt+ZnO+Re    Q、I 5表5に貴金
属触媒無添加の試料に付いて、ZllやPb等の添加量
と、硫化水素除去時の応答速度との関係を示す。評価方
法は表4の場合と同一で、センサ温度は210℃である
Table 4 Sensor response speed (ΔR/ΔR') S no
t + P bo 0 , 3S n Ot
+ P bO+ P d OO, I 5SnOt+Z
nOo, a Sn○, +ZnO+PdOO, 15 SnOt+ZnO+Re Q, I 5 Table 5 shows the relationship between the amount of Zll, Pb, etc. added and the response speed during hydrogen sulfide removal for a sample without the addition of a noble metal catalyst. The evaluation method was the same as in Table 4, and the sensor temperature was 210°C.

表5 センサ      添加1   応答速度(atm%)
  (ΔR/ΔR’) SnOt  単味           0.15Sn
Ot+ZnO20,25 〃5     0.3 〃15     0.3 //、       35     0.5SnOt+
P bo      1      0.25〃5  
   0.3 〃      15’     0.35ガスを除いた
後の応答速度を更に改善するIこは、センサを一時的に
高温に加熱し、ヒートクリーニングするのが良い。ヒー
トクリーニングに対する挙動を、模式的に第13図に示
す。時刻■で硫化水素を注入し、時刻■で硫化水素を除
いたとする。
Table 5 Sensor addition 1 response speed (atm%)
(ΔR/ΔR') SnOt Single 0.15Sn
Ot+ZnO20,25 〃5 0.3 〃15 0.3 //, 35 0.5SnOt+
P bo 1 0.25〃5
0.3 〃 15' 0.35 To further improve the response speed after removing the gas, it is better to temporarily heat the sensor to a high temperature and perform heat cleaning. The behavior with respect to heat cleaning is schematically shown in FIG. Assume that hydrogen sulfide is injected at time ■, and hydrogen sulfide is removed at time ■.

次に時刻■から時刻■までヒートクリーニングを行うと
、ヒートクリーニングに伴いセンサ抵抗Rは一時的に低
下した後回復する。次いでヒータ電力を通常の値に戻す
と、センサ抵抗も清浄空気中の値に復帰する。なおヒー
トクリーニングを行わないと、センサ抵抗は破線のよう
に変化し、清浄空気中の値への復帰が遅い。
Next, when heat cleaning is performed from time ■ to time ■, the sensor resistance R temporarily decreases due to the heat cleaning and then recovers. When the heater power is then returned to its normal value, the sensor resistance also returns to its value in clean air. Note that if heat cleaning is not performed, the sensor resistance changes as shown by the broken line, and it is slow to return to the value in clean air.

第14図に、周期的にセンサのヒートクリーニングを行
うようにした付帯回路を示す。図において、2はガスセ
ンサ、4は金属酸化物半導体膜、6はヒータ、8は電池
等の電源である。10はスイッチングトランジスタ、1
2はセンサの負荷抵抗、14はノイズ除去用のコンデン
サ、16゜18は清浄空気中に対応したセンサ出力を補
償するための基準抵抗、20は差動増幅器である。22
はタイマで、例えば30秒程度の間ヒートクリーニング
信号を発しトランジスタlOを常時オンさける。このよ
うにして350℃程度でヒートクリーニングを行う。次
の30〜150秒程度の間程度kHz程度の周波数でト
ランジスタ10を間欠的にオンさせ、センサ温度を21
0℃程度の検出温度に保つ。24はADコンバータで、
タイマ22の信号によりセンサが検出温度にある間の差
動増幅器20の出力をデジタル値に変換し、デスプレイ
26により表示する。
FIG. 14 shows an auxiliary circuit that periodically heat-cleans the sensor. In the figure, 2 is a gas sensor, 4 is a metal oxide semiconductor film, 6 is a heater, and 8 is a power source such as a battery. 10 is a switching transistor, 1
2 is a load resistance of the sensor, 14 is a capacitor for noise removal, 16.degree. 18 is a reference resistor for compensating the sensor output corresponding to clean air, and 20 is a differential amplifier. 22
is a timer, which generates a heat cleaning signal for about 30 seconds, for example, to keep the transistor 10 on at all times. In this way, heat cleaning is performed at about 350°C. For the next 30 to 150 seconds, the transistor 10 is intermittently turned on at a frequency of about kHz to raise the sensor temperature to 21
Maintain the detection temperature around 0℃. 24 is an AD converter,
The output of the differential amplifier 20 while the sensor is at the detection temperature is converted into a digital value by the signal from the timer 22, and is displayed on the display 26.

第15図に、手動でヒートクリーニングを行うようにし
た付帯回路を示す。図において、28は発振回路で例え
ば1kHz程度で動作し、トランジスタ10を間欠的に
オンさせて、センサ4を検出温度に保つ。ガスを検出し
た後に手動でヒートクリーニングするようにし、スイッ
チ32をオンすると、30秒〜1分程度の開動作する単
安定マルチバイブレータ30がオンし、トランジスタI
Oはその間常時オンして、ヒートクリーニングする。
FIG. 15 shows an auxiliary circuit in which heat cleaning is performed manually. In the figure, 28 is an oscillation circuit that operates at about 1 kHz, for example, and turns on the transistor 10 intermittently to maintain the sensor 4 at the detection temperature. After gas is detected, heat cleaning is performed manually, and when the switch 32 is turned on, the monostable multivibrator 30, which opens for about 30 seconds to 1 minute, is turned on, and the transistor I
During that time, O is always turned on to perform heat cleaning.

単安定マルチバイブレータ30が通常状態に戻ると、ト
ランジスタlOは発振回路28の出力で駆動され検出状
態に戻る。またマルチバイブレーク30はADコンバー
タ24に接続してあり、ヒートクリーニングの間はコン
バータ24の動作を禁止し、誤検出を防止する。なお3
4.36は発振回路28とマルチバイブレーク30との
信号を分離するためのダイオードである。
When the monostable multivibrator 30 returns to the normal state, the transistor IO is driven by the output of the oscillation circuit 28 and returns to the detection state. Furthermore, the multi-by-break 30 is connected to the AD converter 24, and prohibits the operation of the converter 24 during heat cleaning to prevent false detection. Note 3
4.36 is a diode for separating signals between the oscillation circuit 28 and the multi-by-break 30.

なお実施例では硫化水素等の特定のガスへの感度に付い
て説明したが、これはこの発明のガスセンサの用途を限
定するものではない。
Although the embodiments have been described with respect to sensitivity to specific gases such as hydrogen sulfide, this does not limit the application of the gas sensor of the present invention.

[発明の効果] この発明のガスセンサは、種々のガスへの感度が高く、
特に硫化水素とその誘導体、S!H4,AsHs 、 
P Hs等の化合物とその誘導体、あるいはNOxやS
OX、NH3やアミン化合物等のアンモニア誘導体等の
ガスへの感度が高い。
[Effects of the Invention] The gas sensor of the present invention has high sensitivity to various gases,
Especially hydrogen sulfide and its derivatives, S! H4, AsHs,
Compounds such as PHs and their derivatives, or NOx and S
High sensitivity to gases such as ammonia derivatives such as OX, NH3, and amine compounds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、実施例のガスセンサの粒子構造を現
す電子顕微鏡写真、第4図は比較例のガスセンサの粒子
構造を現す電子顕微鏡写真、第5図、第6図は従来例の
特性図、第7図〜第13図は実施例の特性図、第14図
、第15図は付帯回路の回路図である。
Figures 1 to 3 are electron micrographs showing the particle structure of the gas sensor of the example, Figure 4 is an electron microscope picture showing the particle structure of the gas sensor of the comparative example, and Figures 5 and 6 are of the conventional example. Characteristic diagrams, FIGS. 7 to 13 are characteristic diagrams of the embodiment, and FIGS. 14 and 15 are circuit diagrams of ancillary circuits.

Claims (2)

【特許請求の範囲】[Claims] (1)金属酸化物半導体の抵抗値の変化を利用したガス
センサにおいて、 金属酸化物半導体の表面に、Zn、Pb、Ag、Na、
Ba、In、Sからなる群の少なくとも一員の元素を添
加したことを特徴とする、ガスセンサ。
(1) In a gas sensor that utilizes changes in the resistance value of a metal oxide semiconductor, Zn, Pb, Ag, Na,
A gas sensor characterized in that at least one element of the group consisting of Ba, In, and S is added.
(2)前記金属酸化物半導体を、クラックにより隔てら
れた多数の金属酸化物半導体の薄膜状小片からなる金属
酸化物半導体薄膜としたことを特徴とする、特許請求の
範囲第1項記載のガスセンサ。
(2) The gas sensor according to claim 1, wherein the metal oxide semiconductor is a metal oxide semiconductor thin film consisting of a large number of thin film-like pieces of metal oxide semiconductor separated by cracks. .
JP62148790A 1987-06-15 1987-06-15 Gas sensor Expired - Fee Related JP2560033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62148790A JP2560033B2 (en) 1987-06-15 1987-06-15 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62148790A JP2560033B2 (en) 1987-06-15 1987-06-15 Gas sensor

Publications (2)

Publication Number Publication Date
JPS63313048A true JPS63313048A (en) 1988-12-21
JP2560033B2 JP2560033B2 (en) 1996-12-04

Family

ID=15460749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62148790A Expired - Fee Related JP2560033B2 (en) 1987-06-15 1987-06-15 Gas sensor

Country Status (1)

Country Link
JP (1) JP2560033B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480845A (en) * 1987-09-24 1989-03-27 Toyota Motor Corp Catalyst carrying method for oxygen sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125685A (en) * 1974-11-12 1976-11-02 Matsushita Electric Ind Co Ltd Oxidation catalyst for inflammable gas
JPS6029651A (en) * 1983-07-27 1985-02-15 Hitachi Ltd Gas sensor for detecting many kinds of gases
JPS622145A (en) * 1985-06-27 1987-01-08 Toshiba Corp Gas detection element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125685A (en) * 1974-11-12 1976-11-02 Matsushita Electric Ind Co Ltd Oxidation catalyst for inflammable gas
JPS6029651A (en) * 1983-07-27 1985-02-15 Hitachi Ltd Gas sensor for detecting many kinds of gases
JPS622145A (en) * 1985-06-27 1987-01-08 Toshiba Corp Gas detection element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480845A (en) * 1987-09-24 1989-03-27 Toyota Motor Corp Catalyst carrying method for oxygen sensor

Also Published As

Publication number Publication date
JP2560033B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
JP3744539B2 (en) Gas detection method and apparatus
CA1044915A (en) Humidity sensor with negative coefficient of resistivity for relative humidity
JP5048221B2 (en) Gas sensor chip and manufacturing method thereof
JPS5815731B2 (en) Kemuri Oyobi Gasken Chisoshi
EP0395349A2 (en) Moisture sensitive element
Neri et al. Humidity sensing properties of Li–iron oxide based thin films
JP2921032B2 (en) Ammonia gas sensor
JPS60168044A (en) Moisture sensitive material
US5161085A (en) Moisture sensitive element and method of manufacturing the same
US4558393A (en) Moisture sensor
JPS63313048A (en) Gas sensor
JP3191420B2 (en) Gas sensor
CN112255272A (en) Gas sensor and preparation method thereof
WO2001055710A1 (en) Carbon monoxide detector
JPS63313047A (en) Gas sensor and its production
JP2844286B2 (en) Nitrogen oxide detecting element and method of manufacturing the same
JPH0765977B2 (en) Method for producing an inert, catalytic or gas-sensitive ceramic layer for gas sensors
EP0180577A1 (en) Humidity sensor comprised of compound metal oxides with perovskite structure
JPS6131417B2 (en)
JPH085591A (en) Gas sensor and its manufacture
JPH02190754A (en) Humidity sensor
JP2918393B2 (en) Nitrogen oxide detection sensor
JPH08233761A (en) Gas sensor and manufacture thereof
JPH03122591A (en) Thin film moisture-sensitive element
JPS6210380B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees