JPS622145A - Gas detection element - Google Patents

Gas detection element

Info

Publication number
JPS622145A
JPS622145A JP14112185A JP14112185A JPS622145A JP S622145 A JPS622145 A JP S622145A JP 14112185 A JP14112185 A JP 14112185A JP 14112185 A JP14112185 A JP 14112185A JP S622145 A JPS622145 A JP S622145A
Authority
JP
Japan
Prior art keywords
thin film
electrodes
sensitivity
ethanol
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14112185A
Other languages
Japanese (ja)
Inventor
Masayuki Shiratori
白鳥 昌之
Minoru Sunakawa
砂川 穣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14112185A priority Critical patent/JPS622145A/en
Publication of JPS622145A publication Critical patent/JPS622145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To enable the detection of hydrogen, ethanol and nitrogen oxide at a low concentration with a high sensitivity and a high selecting property, by providing an SnO2 based thin film supporting Ag so as to cover a pair of electrodes arranged on the surface of an insulation substrate. CONSTITUTION:A specified amount of a metallic soap of Sn is dissolved by a solvent such as toluene to adjust a desired concentration of a material solution for forming a thin film, the mixture is applied on the circumferential surface of an insulation substrate 1 having a pair of electrodes 2 and 2 and then, after allowed to stand in the aid for a specified time, it is heated to vaporize the solvent. Thereafter, the element thus obtained is baked entirely in the air to form an SnO2 based thin film. This process is repeated to attain a desired thickness. Then, the element with a thin film formed is immersed into a solution containing silver nitrate or the like and baked to form an element supporing Ag. A gas is brought into contact with the element thus obtained and the electric resistance value varied is read out with the electrodes 2 and 2 thereby enabling a highly sensitive detection of ethanol, hydrogen and nitrogen oxide.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス検知素子に係り、特に水素、エタノールお
よび一酸化窒素ガスに対して高感度でかつ選択性良好に
検知するガス検知素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas detection element, and particularly to a gas detection element that detects hydrogen, ethanol, and nitrogen monoxide gases with high sensitivity and good selectivity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、大気中の還元性ガスを検出する素子として、N型
半導体特性を示t S n O2、Z r+ 0 。
Conventionally, t S n O2, Z r+ 0 , which exhibits N-type semiconductor characteristics, has been used as an element for detecting reducing gases in the atmosphere.

Fe2O2等の金属酸化物半導体の焼結体を用いたガス
検知素子が知られている。このガス検知素子は、上記全
屈i化物半導体が還元性ガスに接触すると電気伝導庭が
増大し、また、酸化性ガスに接触すると該伝導度が減少
するため、そのときの電気抵抗値の変化を測定すること
によりガスを検知するものである。
Gas sensing elements using sintered bodies of metal oxide semiconductors such as Fe2O2 are known. In this gas detection element, the electrical conductivity increases when the total i-ide semiconductor comes into contact with a reducing gas, and the conductivity decreases when it comes into contact with an oxidizing gas, so that the electrical resistance value changes at that time. Gas is detected by measuring .

また、近年、素子の小型化、多機能化のS請から上記焼
結体型のガス検知素子に代わり、薄膜型の素子が開発さ
れている。この薄膜型のガス検知素子は、感ガス能を右
する金属酸化物半導体を、スパッタ法、蒸着法、CVD
法等のill!J形成法を用いて被着することにより薄
膜構造としたbのである。
Furthermore, in recent years, thin film type elements have been developed in place of the sintered type gas sensing elements as described above in order to reduce the size and increase the functionality of elements. This thin film type gas sensing element uses a metal oxide semiconductor, which determines its gas sensitivity, by sputtering, vapor deposition, or CVD.
Law etc ill! A thin film structure was obtained by depositing using the J-forming method.

上記焼結体型および薄膜型のいずれのガス検知素子にお
いても、金属酸化物半導体のみでは、ガス検知素子とし
てその感度が小さく、選択性も十分とはいえないため、
通常、白金(Pt)、パラジウム(Pd)等の貴金属を
触媒として用い、素子の感度を高めるようになされてい
る。これには、例えばpt、pdを金属酸化物半導体に
直接添加したり、あるいはPt、Pdを担持する触媒層
を金[1化物半導体の上に形成するような手段がとられ
ている。
In both the sintered type and thin film type gas sensing elements mentioned above, metal oxide semiconductor alone has low sensitivity and insufficient selectivity as a gas sensing element.
Usually, a noble metal such as platinum (Pt) or palladium (Pd) is used as a catalyst to increase the sensitivity of the device. To achieve this, measures have been taken, for example, to directly add pt or pd to the metal oxide semiconductor, or to form a catalyst layer supporting Pt or Pd on the gold monoride semiconductor.

このような処理を施すと、無触媒の場合に比べて検知感
度は向上するが、低濃度の還元性ガスに対しては未だ十
分な感度を示さないという問題がある。しかも、各種の
ガスが混在するような場合、ある特定のガスのみを高感
度に選択的に検知することは、他のガスの′FI?、W
によって素子の誤動作が誘発されてしまうため、極めて
困難であるという問題を有している。
When such a treatment is performed, the detection sensitivity is improved compared to the case without a catalyst, but there is a problem in that it still does not exhibit sufficient sensitivity to low-concentration reducing gases. Moreover, when various gases are mixed, it is difficult to selectively detect only one specific gas with high sensitivity. ,W
This poses a problem in that it is extremely difficult because it induces malfunction of the element.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされたもので、低濃度の
水素、エタノールおよび酸化性ガスである一酸化窒素を
高感度にかつ選択性良く検知することのできるガス検知
素子を提供することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a gas detection element that can detect low concentrations of hydrogen, ethanol, and nitrogen monoxide, which is an oxidizing gas, with high sensitivity and selectivity. This is the purpose.

〔発明の概要〕[Summary of the invention]

上記目的達成のため本発明に係るガス検知素子は、絶縁
基体表面に設けられた一対の電極と、3nを含有する有
償金属化合物を熱分解するとともにΔqを含有する溶液
に浸漬、含浸することにより作成され上記電極を被覆す
るように設けられたAgを担持するSnO2系薄膜とを
右してなり、Agを触媒として作用するようになされて
いる。
In order to achieve the above object, the gas sensing element according to the present invention has a pair of electrodes provided on the surface of an insulating substrate, and a metal compound containing 3n that is thermally decomposed and immersed in a solution containing Δq. A SnO2-based thin film supporting Ag was prepared and provided to cover the electrode, and the Ag acts as a catalyst.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明を第1図および第2図を参照してさらに具
体的に説明する。
Hereinafter, the present invention will be explained in more detail with reference to FIGS. 1 and 2.

第1図は本発明の具体例を示したbので、アルミナヤム
ライト等の絶縁性材料からなる円筒状の絶縁基体1の外
周面には、一対の電極2.2が配設されており、さらに
、上記す体1の外周側には、上記基体1および電極2,
2を被覆するように、5no2系の7a膜3が設けられ
ている。この簿膜3の膜厚は、1000八〜1μmの範
囲にあることが好ましく、この膜厚が1μm以上の場合
はその還元性ガスに対する感度が低下し、1000Å以
下の場合にも十分な感度を得ることができないためであ
る。
Since FIG. 1b shows a specific example of the present invention, a pair of electrodes 2.2 are disposed on the outer peripheral surface of a cylindrical insulating base 1 made of an insulating material such as alumina yamlite. Further, on the outer peripheral side of the body 1, the base body 1 and the electrodes 2,
A 5no2 type 7a film 3 is provided to cover the 5no2 type 7a film 2. The film thickness of this film 3 is preferably in the range of 1,000 to 1 μm; if the film thickness is 1 μm or more, the sensitivity to the reducing gas decreases, and even if it is less than 1,000 Å, sufficient sensitivity can be achieved. This is because they cannot be obtained.

上記薄膜3は、Snを含有する有機金属化合物を熱分解
することにより形成されるもので、具体的には以下のよ
うな手段により薄膜3が作成される。
The thin film 3 is formed by thermally decomposing an organometallic compound containing Sn, and specifically, the thin film 3 is created by the following method.

まず、Snの金属石けん(例えばオクチル酸スズ)ある
いは3nを含有する樹脂塩やアルコキシド等を所定部、
トルエン、ベンゼン、n−ブチルアルコール等の溶剤を
用いて溶解させて、所望濃度の薄膜形成用原料溶液を調
整する。次に、この溶液を一対の電極2.2を有する絶
縁基体1の外周面に塗布し、空気中で所定時間(通常3
0分〜1時間)放置した後、適宜温度(通常約120℃
)に加熱して上記溶剤を気化させる。その後、素子全体
を空気中で30分〜1時間、400〜700℃の濃度で
焼成すると、Snを含有する有機化合物は熱分解してS
nO2系薄膜が形成される。この塗布−焼成の工程を1
〜4回(原料溶液の温度により異なる)程度くり返して
行なうことにより、所望の膜厚を得るものである。
First, a predetermined portion of Sn metal soap (for example, tin octylate) or a resin salt or alkoxide containing 3N is added to the
A raw material solution for forming a thin film having a desired concentration is prepared by dissolving it using a solvent such as toluene, benzene, or n-butyl alcohol. Next, this solution is applied to the outer peripheral surface of the insulating substrate 1 having a pair of electrodes 2.2, and the solution is applied to the outer peripheral surface of the insulating substrate 1 having a pair of electrodes 2.2.
0 minutes to 1 hour), then heat to an appropriate temperature (usually about 120°C).
) to vaporize the solvent. Thereafter, when the entire device is fired in air for 30 minutes to 1 hour at a concentration of 400 to 700°C, the organic compound containing Sn is thermally decomposed and the S
An nO2-based thin film is formed. This coating-firing process is 1
By repeating this process up to 4 times (depending on the temperature of the raw material solution), the desired film thickness can be obtained.

次に、上記のように薄膜が形成された素子を、例えば、
硝酸銀あるいは炭′fli銀等A ’Gを含有する溶液
中に浸漬するか、あるいは、上記素子に上記溶液を含浸
した後、400〜SnO℃の温度で焼成することにより
、Agを担持させて素子が形成される。
Next, the element on which the thin film was formed as described above, for example,
The element is made by supporting Ag by immersing it in a solution containing A'G such as silver nitrate or silver carbonate, or by impregnating the element with the solution and firing at a temperature of 400 to SnO°C. is formed.

このように構成された素子は、第2図に示すように、円
形の絶縁板4の上方に他の部品と接触しない状態に保持
されるもので、上記絶縁板4に立設された複数のビン5
,5・・・に接続される電極用リード線6,6により支
持されている。また、上記素子の内側には、素子の表面
温度(動作温度)を調整するためのヒータ7が設けられ
、このヒータ7の両端は上記ビン5に接続されている。
As shown in FIG. 2, the element configured in this way is held above a circular insulating plate 4 in a state where it does not come into contact with other parts. bottle 5
, 5 . . . are supported by electrode lead wires 6 , 6 . Furthermore, a heater 7 for adjusting the surface temperature (operating temperature) of the element is provided inside the element, and both ends of the heater 7 are connected to the bottle 5.

そして、本発明の場合、上記素子にガスが接触するとそ
の電気伝導度が変化して、そのときの電気抵抗値の変化
を電極2.2により読み取ることにより、特にエタノー
ル、水素、−M化窒素に対して高い感度で検出すること
ができるものである。
In the case of the present invention, when gas comes into contact with the element, its electrical conductivity changes, and by reading the change in electrical resistance value at that time with the electrode 2.2, it is possible to detect the presence of ethanol, hydrogen, -M nitrogen, etc. can be detected with high sensitivity.

したがって、例えば、本素子をアルコール検知器に適用
して飲酒運転の有無のチェックに使用すれば、極めて高
精度に作動し、誤動作も防ぐことができる。
Therefore, for example, if this device is applied to an alcohol detector and used to check for drunk driving, it will operate with extremely high accuracy and prevent malfunctions.

〔発明の実施例〕[Embodiments of the invention]

実施例1 SnO2系illの原料として、オクチル酸スズを3n
の含有量が1.0〜10wt%となるようにn−ブチル
アルコールを加えて十分撹拌したものを試料溶液とした
Example 1 3N tin octylate was used as a raw material for SnO2-based ill.
A sample solution was prepared by adding n-butyl alcohol so that the content was 1.0 to 10 wt% and stirring thoroughly.

次に、第1図に示すような電極2を設けた絶縁基体1の
外表面に、上記溶液を塗布して空気中に1時間放置した
後、120℃の温度に加熱してn−ブチルアルコールを
気化させた。
Next, the above solution was applied to the outer surface of the insulating substrate 1 provided with the electrode 2 as shown in FIG. vaporized.

次に、全体をSnO℃、1時間空気中で焼成し、この塗
布−焼成の工程を3回くり返して厚さ約3000人の薄
膜を形成した。
Next, the whole was baked in the air at SnO<0>C for 1 hour, and this coating-baking process was repeated three times to form a thin film with a thickness of about 3000.

さらに、上記のように薄膜を形成した絶縁基体を、0.
05規定の硝酸銀溶液中に浸漬する一方約1時間含浸を
行なった。含浸後、第2図に示すように、素子を組立て
ヒータ7の加熱により約SnO℃で熱処理を行なった。
Furthermore, the insulating substrate on which the thin film was formed as described above was coated with 0.
Impregnation was carried out for about 1 hour while immersed in a 0.05N silver nitrate solution. After the impregnation, the device was assembled and heat-treated at about SnO° C. using a heater 7, as shown in FIG.

上記のようにして作成された素子の感度特性およびへ〇
触媒を担持させイjい素子の感度特性を第1表に示す。
Table 1 shows the sensitivity characteristics of the device prepared as described above and the sensitivity characteristics of the device supported with the 〇 catalyst.

第1表 上記感度はR’air  (空気中抵抗値)とRgas
(ガス中抵抗値)との比で示し、動作温度は約400℃
の場合を、また、気体m度は、C2H50)1は100
p111II、Noは1oppm。
Table 1 The above sensitivity is R'air (in-air resistance value) and Rgas
(resistance value in gas), and the operating temperature is approximately 400℃.
In addition, the gas m degree is C2H50)1 is 100
p111II, No is 1 oppm.

1」2、C01CH、i So  c4H10は110
00ppの場合をそれぞれ示した。
1” 2, C01CH, i So c4H10 is 110
The case of 00pp is shown in each case.

第1表を見ると明らかなように、本素子はエタノールに
対する感度が極めて高く、次いで水素に対する感度が高
くなっており、Agを担持させない素子と比較してもエ
タノール、水素の感度が他のガスの感酊より大きく増加
していることがわがる。また、−酸化窒素に対しては、
還元性ガスとハ逆に抵抗値が高くなっており、その感度
も十分高いことを示しており、さらに、これらの感度特
性は含浸、浸漬いずれの手段によってもほぼ同様の効果
が得られる。
As is clear from Table 1, this element has an extremely high sensitivity to ethanol, followed by a high sensitivity to hydrogen, and even compared to elements that do not support Ag, the sensitivity to ethanol and hydrogen is higher than that to other gases. It can be seen that the increase is greater than that of drunkenness. Also, - for nitrogen oxide,
Contrary to the reducing gas, the resistance value is higher, indicating that the sensitivity is also sufficiently high.Furthermore, these sensitivity characteristics can be obtained by either impregnation or immersion, with almost the same effect.

実施例2 SnO2系薄膜の作成時に添加物としてNbおよびsb
を原子比で1.0%添加し、さらに、S n O2N 
b系について硝酸銀溶液濃度を変えて含浸させた素子の
感度特性を第2表に示す。その仙の素子作成工程および
測定条件は実施例1と同様である。
Example 2 Nb and sb as additives when creating SnO2-based thin film
was added at an atomic ratio of 1.0%, and further, S n O2N
Table 2 shows the sensitivity characteristics of the elements impregnated with different silver nitrate solution concentrations for the b series. The element fabrication process and measurement conditions are the same as in Example 1.

第2表 第2表を見れば明らか〈kように、添加物としてSb、
Nbのいずれを用いた場合でも、エタノール、水素およ
び一酸化窒素の感度が高いことがわかる。また、硝酸銀
溶液の濃度を変化させた場合、大きな感度の変化は生じ
ないが、エタノールおよび一酸化窒素に対しては低濃度
溶液を用い、水素に対しては高濃度溶液を用いる方がよ
り高い感度を示す傾向にあることがわかる。
Table 2 It is clear from Table 2 that Sb as an additive,
It can be seen that no matter which Nb is used, the sensitivity is high for ethanol, hydrogen, and nitrogen monoxide. Also, when changing the concentration of silver nitrate solution, there is no large change in sensitivity, but it is higher when using a low concentration solution for ethanol and nitric oxide, and using a high concentration solution for hydrogen. It can be seen that there is a tendency to show sensitivity.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係るガス検知素子は、低II
麿のエタノールに対して極めて高い感度を示し、かつ、
水素および一酸化窒素に対しても高い感度を示すため、
これらのガスを選択的に検出する例えばアルコール検出
器等の装置に適用すれば、極めて^精度にかつ感度よく
検出することができ有用性が高い等の効果を奏する。
As described above, the gas detection element according to the present invention has a low II
Shows extremely high sensitivity to Maro's ethanol, and
It also shows high sensitivity to hydrogen and nitric oxide,
If applied to a device that selectively detects these gases, such as an alcohol detector, it will be possible to detect these gases with extremely high accuracy and sensitivity, resulting in high usefulness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガス検知素子を示す縦断面図、第
2図は第1図の素子を適用したセンサの斜視図である。 1・・・絶縁基体、2・・・電橋、3・・・薄膜、4・
・・絶縁板、5・・・ビン、6・・・リード線、7・・
・ヒータ。 出願人代理人  猪  股    清 朱f図 奉2凹
FIG. 1 is a longitudinal sectional view showing a gas detection element according to the present invention, and FIG. 2 is a perspective view of a sensor to which the element of FIG. 1 is applied. DESCRIPTION OF SYMBOLS 1... Insulating base, 2... Electric bridge, 3... Thin film, 4...
...Insulating plate, 5...Bin, 6...Lead wire, 7...
·heater. Applicant's representative Inomata Seishu F Zuho 2 indents

Claims (1)

【特許請求の範囲】[Claims] 絶縁基体表面に設けられた一対の電極と、Snを含有す
る有機金属化合物を熱分解するとともにAgを含有する
溶液に浸漬、含浸することにより作成され上記電極を被
覆するように設けられたAgを担持するSnO_2系薄
膜とを有することを特徴とするガス検知素子。
A pair of electrodes provided on the surface of an insulating substrate, and Ag provided to cover the electrodes created by thermally decomposing an organometallic compound containing Sn and immersing it in a solution containing Ag. A gas sensing element characterized by having a supporting SnO_2-based thin film.
JP14112185A 1985-06-27 1985-06-27 Gas detection element Pending JPS622145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14112185A JPS622145A (en) 1985-06-27 1985-06-27 Gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14112185A JPS622145A (en) 1985-06-27 1985-06-27 Gas detection element

Publications (1)

Publication Number Publication Date
JPS622145A true JPS622145A (en) 1987-01-08

Family

ID=15284642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14112185A Pending JPS622145A (en) 1985-06-27 1985-06-27 Gas detection element

Country Status (1)

Country Link
JP (1) JPS622145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313048A (en) * 1987-06-15 1988-12-21 Figaro Eng Inc Gas sensor
JP2011112359A (en) * 2009-11-24 2011-06-09 Figaro Engineerign Inc METHOD OF MANUFACTURING SnO2 GAS SENSOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313048A (en) * 1987-06-15 1988-12-21 Figaro Eng Inc Gas sensor
JP2011112359A (en) * 2009-11-24 2011-06-09 Figaro Engineerign Inc METHOD OF MANUFACTURING SnO2 GAS SENSOR

Similar Documents

Publication Publication Date Title
JP3606874B2 (en) Sensor for detecting nitrogen oxides
JP2702279B2 (en) Gas detection element
JP2829416B2 (en) Gas sensing element
EP1693667B1 (en) Gas sensor
US20100012919A1 (en) Gas sensor having zinc oxide nano-structures and method of fabricating the same
JP4056987B2 (en) Hydrogen sensor and hydrogen detection method
EP3786627B1 (en) Mems type semiconductor gas detection element
KR870001258B1 (en) Gas sensor
KR890000390B1 (en) Gas detecting apparatus
JPS622145A (en) Gas detection element
RU2403563C1 (en) Differential sensor for gas analyser
JP2015040753A (en) Metal oxide semiconductor gas sensor
JPH07260728A (en) Carbon monoxide gas sensor
JPH0444691B2 (en)
JPH0531104B2 (en)
JPH06148115A (en) Gas sensor
KR870001034B1 (en) Gas detecting apparatus
JP3170396B2 (en) Semiconductor type ammonia gas sensor and method of manufacturing the same
JP3171734B2 (en) Carbon monoxide gas sensing element
RU91763U1 (en) DIFFERENTIAL GAS SENSOR
JPH07198651A (en) Thin film type gas sensor
JPH0572162A (en) Gas sensor
JPS62192644A (en) Gas detecting element
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JPS59120946A (en) Gaseous freon detecting element