JPH0444691B2 - - Google Patents

Info

Publication number
JPH0444691B2
JPH0444691B2 JP57209687A JP20968782A JPH0444691B2 JP H0444691 B2 JPH0444691 B2 JP H0444691B2 JP 57209687 A JP57209687 A JP 57209687A JP 20968782 A JP20968782 A JP 20968782A JP H0444691 B2 JPH0444691 B2 JP H0444691B2
Authority
JP
Japan
Prior art keywords
gas
catalyst layer
sensitive body
gas sensitive
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57209687A
Other languages
Japanese (ja)
Other versions
JPS5999343A (en
Inventor
Masayuki Shiratori
Masaki Katsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP20968782A priority Critical patent/JPS5999343A/en
Publication of JPS5999343A publication Critical patent/JPS5999343A/en
Publication of JPH0444691B2 publication Critical patent/JPH0444691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明はガス検出素子の改良に関する。 〔発明の技術的背景とその問題点〕 従来、主に大気中の還元性ガスの検出には
SnO2,Zno,Fe2O3などのn型半導体に属する金
属酸化物半導体を主構成部材とするガス検知素子
が用いられている。こうしたガス検知素子の金属
酸化物半導体は還元性ガスが接触すると、正イオ
ン吸着がなされるため、その電気伝導度が増大
し、抵抗値が低下する。また、酸化性ガスが接触
すると、負イオン吸着がなされるため、逆に金属
酸化物半導体の電気伝導度が低下し、抵抗値は増
大する。しかしながら、一般的には金属酸化物半
導体のみでは感度が低く、ガス検知素子として必
ずしも充分満足するものではなかつた。 このようなことから、最近、金属酸化物半導体
にPt,Pd等の貴金属触媒を添加したり、該半導
体以上に貴金属をAl2O3等の担体で担持した触媒
層を被覆したりすることによつて、感度の向上化
を図ることが試みられている。しかしながら、こ
れらのガス検知素子は耐湿性の点で問題があつ
た。特に、90%以上の高湿中においては、低抵抗
化現象が生じたり、或いは長期間高湿中に曝すと
ガス感度特性が著しく劣化したりする場合があ
る。高湿度下での使用において問題があつた。 〔発明の目的〕 本発明は高感度性はもとより、耐湿性の優れた
ガス検知素子を提供することを目的とするもので
ある。 〔発明の概要〕 本発明は一対の対向電極及びヒータを設けた絶
縁基板又は絶縁管上に金属酸化物半導体からなる
ガス感応体を設け、この表面にPt,Pd,Rh,Ir,
Ruから選ばれた少なくとも1種以上の貴金属を
含むAl2O3,SiO2,ZrO2から選ばれた少なくとも
1種以上の絶縁材料からなる第1触媒層を設け、
更にこの第1触媒層上にAgを含む同絶縁材料か
らなる第2触媒層を設けることによつて、前記第
1触媒層によりガス感度が向上され、かつ前記第
2触媒層中のAgによる水分との反応により、水
分がその下の第1触媒層に拡散するのを阻止し、
ひいては高感度性を保持しつつ耐湿性の向上化が
なされたガス検知素子を得ることを骨子とする。 上記第1触媒中の貴金属の含有量は0.05〜40wt
%の範囲にすることが望ましい。この理由は貴金
属の含有量が0.05wt%未満にすると、十分な感度
向上が期待できず、かといつてその含有量が40wt
%を越えると、素子の感度向上に寄与しないう
え、初期の経時変化が大きくなる。 上記第2触媒中のAg含有量は0.05〜20wt%にす
ることが望ましい。この理由はAgの含有量を
0.05wt%未満にすると、耐湿効果が十分達成され
ず、かといつてその量が20wt%を越えると、添加
効果が現れず、むしろガス感度が減少する。 また、上記ガス感応体の厚さは0.2μm〜1μm、
各触媒層の厚さは10〜50μm程度にすることが望
ましい。 〔発明の実施例〕 次に、本発明の実施例を図面を参照して説明す
る。 実施例 1 まず、オクチル酸スズを所定量秤量し、n−ブ
タノールに溶解して10wt%のオクチル酸スズ溶液
を調製した。つづいて、この溶液を第1図に示す
如く一対の対向電極11,12を形成した絶縁管2
の外周面に塗布し、空気中で約30分間乾燥した
後、約120℃で30分間乾燥してn−ブタノールを
蒸発させた。ひきつづき、400〜700℃で30分間焼
成してSnO2薄膜からなる厚さ0.5μmの筒状ガス
感応体3を作製した。この場合、急熱急冷が好ま
しい。また、膜厚を制御するためには塗布、焼成
の工程を1〜4回繰り返すことが望ましい。 次いで、塩化白金酸水溶液にAl2O3粉末を所定
量加えて充分に混合した後、1〜2時間減圧乾燥
し、更に約100℃で充分に乾燥した。つづいて、
この乾燥物を粉体化し、石英ルツボ等を用いて
400〜800℃で焼成してPtを1wt%含む触媒を調製
した。ひきつづき、この触媒を前記ガス感応体3
の外周面に塗布し、約300〜400℃で焼成して厚さ
20μmの筒状第1触媒層4を作製した。 次いで、硝酸銀水溶液にAl2O3粉末を所定量加
えて充分混合した後、上記触媒と同様な手順によ
りAgを10wt%含む触媒を調製した。つづいて、
この触媒を前記第1触媒層4に塗布した後、約
300〜400℃で焼成して厚さ30μmの筒状第2触媒
層5を作製して素子本体を造つた(同第1図図
示)。 次いで、6本の端子7…が貫通支持された絶縁
板8上に第1図図示の素子本体を載置し、該本
の絶縁管2内にヒータコイル9を挿通させ、
該コイル9の両端を前記端子7…のうちの2本に
夫々接続した。つづいて、前記素子本体の一対
の対向電極11,12に夫々2本のリード線10…
を接続し、それらの他端を残りの端子7…に接続
してガス検知素子を組立てた(第2図図示)。 実施例 2〜12 第1触媒層としてPd,Rh,Ir,Pt−Pd,Pd−
Rh,Ir−Pt,Pt−Pd−Rh,Pd−Rh−Ir,Ir−
Pt−Pd,Pt−Pd−Rh−Irを夫々1wt%含むAl2O3
からなるものを用いた以外、実施例1と同様な工
程により11種のガス検知素子を組立てた。 しかして、前記実施例1〜12のガス検知素子に
ついてCOガス200ppm中での初期抵抗値及び40
℃,90%RHの同COガス中で1000時間放置後の
抵抗値を調べた。その結果を下記第1表に示す。
なお、参照例として第1触媒層のみからなるガス
検知素子の初期抵抗値及び40℃,90%RH中で
1000時間放置後の抵抗値を下記第1表に併記し
た。
[Technical Field of the Invention] The present invention relates to improvements in gas detection elements. [Technical background of the invention and its problems] Conventionally, mainly for detecting reducing gases in the atmosphere,
BACKGROUND OF THE INVENTION Gas detection elements whose main constituents are metal oxide semiconductors belonging to n-type semiconductors such as SnO 2 , Zno, and Fe 2 O 3 are used. When the metal oxide semiconductor of such a gas sensing element comes into contact with a reducing gas, positive ions are adsorbed, so its electrical conductivity increases and its resistance value decreases. Further, when an oxidizing gas comes into contact with the metal oxide semiconductor, negative ions are adsorbed, so that the electrical conductivity of the metal oxide semiconductor decreases and the resistance value increases. However, metal oxide semiconductors alone generally have low sensitivity and are not always fully satisfactory as gas detection elements. For these reasons, recently, efforts have been made to add noble metal catalysts such as Pt and Pd to metal oxide semiconductors, and to cover the semiconductors with catalyst layers that support noble metals on carriers such as Al 2 O 3 . Therefore, attempts have been made to improve the sensitivity. However, these gas sensing elements have had problems in terms of moisture resistance. In particular, in high humidity of 90% or more, a phenomenon of low resistance may occur, or if exposed to high humidity for a long period of time, gas sensitivity characteristics may deteriorate significantly. There were problems when using it under high humidity. [Object of the Invention] It is an object of the present invention to provide a gas sensing element that has not only high sensitivity but also excellent moisture resistance. [Summary of the invention] The present invention provides a gas sensitive body made of a metal oxide semiconductor on an insulating substrate or an insulating tube provided with a pair of opposing electrodes and a heater, and on the surface of the gas sensitive body, Pt, Pd, Rh, Ir,
providing a first catalyst layer made of at least one insulating material selected from Al 2 O 3 , SiO 2 , ZrO 2 containing at least one noble metal selected from Ru;
Further, by providing a second catalyst layer made of the same insulating material containing Ag on the first catalyst layer, gas sensitivity is improved by the first catalyst layer, and moisture due to Ag in the second catalyst layer is improved. The reaction with the catalyst prevents moisture from diffusing into the first catalyst layer below,
The goal is to obtain a gas sensing element that has improved moisture resistance while maintaining high sensitivity. The content of noble metal in the first catalyst is 0.05 to 40 wt.
It is desirable to set it in the range of %. The reason for this is that if the precious metal content is less than 0.05 wt %, sufficient sensitivity improvement cannot be expected;
If it exceeds %, it does not contribute to improving the sensitivity of the element, and the initial change over time increases. The Ag content in the second catalyst is preferably 0.05 to 20 wt %. The reason for this is that the Ag content
If the amount is less than 0.05 wt %, the moisture resistance effect will not be sufficiently achieved, while if the amount exceeds 20 wt %, the added effect will not be apparent and the gas sensitivity will rather decrease. In addition, the thickness of the above gas sensitive body is 0.2 μm to 1 μm,
The thickness of each catalyst layer is preferably about 10 to 50 μm. [Embodiments of the Invention] Next, embodiments of the present invention will be described with reference to the drawings. Example 1 First, a predetermined amount of tin octylate was weighed and dissolved in n-butanol to prepare a 10 wt % tin octylate solution. Next, this solution was applied to an insulating tube 2 in which a pair of opposing electrodes 1 1 and 1 2 were formed as shown in FIG.
It was applied to the outer circumferential surface of the container, dried in air for about 30 minutes, and then dried at about 120° C. for 30 minutes to evaporate the n-butanol. Subsequently, it was fired at 400 to 700°C for 30 minutes to produce a 0.5 μm thick cylindrical gas sensitive body 3 made of a SnO 2 thin film. In this case, rapid heating and cooling is preferred. Further, in order to control the film thickness, it is desirable to repeat the coating and baking steps 1 to 4 times. Next, a predetermined amount of Al 2 O 3 powder was added to the chloroplatinic acid aqueous solution and thoroughly mixed, followed by drying under reduced pressure for 1 to 2 hours, and then thoroughly drying at about 100°C. Continuing,
This dried material is powdered and used in a quartz crucible etc.
A catalyst containing 1 wt % Pt was prepared by calcining at 400-800°C. Subsequently, this catalyst is added to the gas sensitive body 3.
Coat it on the outer circumferential surface of the
A 20 μm cylindrical first catalyst layer 4 was produced. Next, a predetermined amount of Al 2 O 3 powder was added to the silver nitrate aqueous solution and thoroughly mixed, and then a catalyst containing 10 wt % Ag was prepared in the same manner as the above catalyst. Continuing,
After applying this catalyst to the first catalyst layer 4, approximately
A cylindrical second catalyst layer 5 having a thickness of 30 μm was prepared by firing at 300 to 400° C., and an element body 6 was manufactured (as shown in FIG. 1). Next, the element main body 6 shown in FIG. 1 is placed on the insulating plate 8 through which the six terminals 7 are supported, and the heater coil 9 is inserted into the insulating tube 2 of the main body 6 .
Both ends of the coil 9 were connected to two of the terminals 7, respectively. Next, two lead wires 10 are connected to the pair of opposing electrodes 1 1 and 1 2 of the element body 6 , respectively.
and connected their other ends to the remaining terminals 7... to assemble the gas detection element (as shown in Figure 2). Examples 2 to 12 Pd, Rh, Ir, Pt-Pd, Pd- as the first catalyst layer
Rh, Ir−Pt, Pt−Pd−Rh, Pd−Rh−Ir, Ir−
Al 2 O 3 containing 1 wt % each of Pt-Pd and Pt-Pd-Rh-Ir
Eleven types of gas sensing elements were assembled using the same steps as in Example 1, except that the elements consisting of the following were used. Therefore, for the gas detection elements of Examples 1 to 12, the initial resistance value in 200 ppm CO gas and 40
The resistance value was examined after being left in the same CO gas at 90% RH for 1000 hours. The results are shown in Table 1 below.
In addition, as a reference example, the initial resistance value of a gas detection element consisting only of the first catalyst layer and the temperature at 40℃ and 90%RH
The resistance values after being left for 1000 hours are also listed in Table 1 below.

【表】【table】

【表】 上記第1表から明らかな如く、本発明のガス検
知素子は高湿下で長期間放置後においても初期抵
抗値とほとんど変わらず、優れた耐湿性を有する
ことがわかる。 実施例 13〜24 実施例1と同様なガス感応体を一対の電極を有
する7L×4W×0.3tmmのAl2O3基板上に設け、この
ガス感応体上に実施例1〜12と同組成の第1触媒
層をスパツタ法により形成し、更に第1触媒層上
にAgを1wt%含むAl2O3からなる第2触媒層をス
パツタ法により設け、更に前記Al2O2基板の裏面
にヒータを形成して12種のガス検知素子を組立て
た。 しかして、前期実施例13〜24のガス検知素子に
ついてCOガス200ppm中での初期抵抗値及び40
℃,90%RHの同COガス中で1000時間放置後の
抵抗値を調べた。その結果を下記第2表に示す。
なお、参照例として実施例13〜24の第1触媒層の
みをスパツタ法により形成したガス検知素子を同
第2表に併記した。
[Table] As is clear from Table 1 above, the gas sensing element of the present invention has excellent moisture resistance, with almost no change in resistance from the initial resistance even after being left in high humidity for a long period of time. Examples 13 to 24 A gas sensitive body similar to that of Example 1 was provided on a 7 L × 4 W × 0.3 t mm Al 2 O 3 substrate having a pair of electrodes, and Examples 1 to 12 were placed on this gas sensitive body. A first catalyst layer having the same composition as that of Al 2 O 2 is formed by a sputtering method, and a second catalyst layer made of Al 2 O 3 containing 1 wt % of Ag is provided on the first catalyst layer by a sputtering method . Twelve types of gas detection elements were assembled by forming heaters on the back side of the substrate. Therefore, for the gas detection elements of Examples 13 to 24, the initial resistance value and 40
The resistance value was examined after being left in the same CO gas at 90% RH for 1000 hours. The results are shown in Table 2 below.
As reference examples, gas sensing elements of Examples 13 to 24 in which only the first catalyst layer was formed by sputtering are also listed in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば高感度性と
耐湿性とを備えた長期間安定したガス検出を行な
うことができるガス検知素子を提供できる。
As described in detail above, according to the present invention, it is possible to provide a gas detection element that has high sensitivity and moisture resistance and can perform stable gas detection over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガス検知素子に用いられる素子本体を
示す断面図、第2図は本発明の一実施例を示すガ
ス検知素子の斜視図である。 11,12……対向電極、2……絶縁管、3……
ガス感応体、4……第1触媒層、5……第2触媒
層、……素子本体、8……絶縁板、9……ヒー
タコイル。
FIG. 1 is a sectional view showing an element body used in a gas sensing element, and FIG. 2 is a perspective view of a gas sensing element showing an embodiment of the present invention. 1 1 , 1 2 ... Counter electrode, 2 ... Insulation tube, 3 ...
Gas sensitive body, 4...first catalyst layer, 5...second catalyst layer, 6 ...element body, 8...insulating plate, 9...heater coil.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上にガスに接触して抵抗値が変化す
る金属酸化物半導体からなるガス感応体、該ガス
感応体の抵抗を検出するための一対の電極、及び
該ガス感応体を主に加熱するヒータを設け、かつ
前記ガス感応体上に触媒層を設けた構造のガス検
出素子においてPt,Pd,Rh,Ir,Ruから選ばれ
た少なくとも1種以上の貴金属を含むAl2O3
SiO2,ZrO2から選ばれた少なくとも1種以上の
絶縁材料からなる第1触媒層を前記ガス感応体上
に設け、更に該第1触媒層上にAgを含むAl2O3
SiO2,ZrO2から選ばれた少なくとも1種以上の
絶縁材料からなる第2触媒層を設けたことを特徴
とするガス検知素子。
1. A gas sensitive body made of a metal oxide semiconductor whose resistance value changes when it comes into contact with gas on an insulating substrate, a pair of electrodes for detecting the resistance of the gas sensitive body, and a gas sensitive body that mainly heats the gas sensitive body. Al 2 O 3 containing at least one noble metal selected from Pt, Pd, Rh, Ir, and Ru in a gas detection element having a structure in which a heater is provided and a catalyst layer is provided on the gas sensitive body;
A first catalyst layer made of at least one insulating material selected from SiO 2 , ZrO 2 is provided on the gas sensitive body, and Al 2 O 3 containing Ag,
A gas sensing element comprising a second catalyst layer made of at least one insulating material selected from SiO 2 and ZrO 2 .
JP20968782A 1982-11-30 1982-11-30 Gas detecting element Granted JPS5999343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20968782A JPS5999343A (en) 1982-11-30 1982-11-30 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20968782A JPS5999343A (en) 1982-11-30 1982-11-30 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS5999343A JPS5999343A (en) 1984-06-08
JPH0444691B2 true JPH0444691B2 (en) 1992-07-22

Family

ID=16576957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20968782A Granted JPS5999343A (en) 1982-11-30 1982-11-30 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS5999343A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2980290B2 (en) * 1991-03-08 1999-11-22 フィガロ技研株式会社 Gas detection method and gas sensor used therefor
JP3091776B2 (en) * 1991-08-07 2000-09-25 大阪瓦斯株式会社 Gas sensor
JPH09269306A (en) * 1996-04-02 1997-10-14 New Cosmos Electric Corp Heat ray type semiconductor gas detection element and gas detector
JPH11142356A (en) * 1997-11-07 1999-05-28 Fis Kk Semiconductor gas sensor
JP7057629B2 (en) * 2016-09-21 2022-04-20 大阪瓦斯株式会社 Gas sensor and gas detector
JP6925146B2 (en) * 2016-09-21 2021-08-25 大阪瓦斯株式会社 Gas sensor and gas detector
JP7038472B2 (en) * 2016-09-21 2022-03-18 大阪瓦斯株式会社 Gas sensor and gas detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134697A (en) * 1978-04-12 1979-10-19 Toshiba Corp Gas sensitive element
JPS5578236A (en) * 1978-12-08 1980-06-12 Matsushita Electric Works Ltd Gas detection element
JPS5594153A (en) * 1979-01-11 1980-07-17 Fuigaro Giken Kk Methane gas detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54134697A (en) * 1978-04-12 1979-10-19 Toshiba Corp Gas sensitive element
JPS5578236A (en) * 1978-12-08 1980-06-12 Matsushita Electric Works Ltd Gas detection element
JPS5594153A (en) * 1979-01-11 1980-07-17 Fuigaro Giken Kk Methane gas detector

Also Published As

Publication number Publication date
JPS5999343A (en) 1984-06-08

Similar Documents

Publication Publication Date Title
JP2829416B2 (en) Gas sensing element
JPH0444691B2 (en)
JP3075070B2 (en) Carbon monoxide gas sensor
JPS6170449A (en) Gas detecting element
JPS6128936B2 (en)
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
JP3026523B2 (en) Gas sensor
EP0115953B1 (en) Gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP3046387B2 (en) Gas sensor
JPH07198651A (en) Thin film type gas sensor
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JP3191544B2 (en) Thick film type gas sensor
JPS6214921B2 (en)
JPH0815195A (en) Gas sensor
JPH06186191A (en) Thick-film gas sensor
JPS6128937B2 (en)
JPS5999341A (en) Gas detecting element
JPS6224136A (en) Gas detection element
JPS58118953A (en) Preparation of gas sensitive element
JPH0221256A (en) Gas sensor
JPS5847018B2 (en) gas sensing element
JPH01227954A (en) Production of gas sensor
JPH04344450A (en) Gas sensor
JPS63279150A (en) Semiconductor type gas sensor