JPH04344450A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH04344450A
JPH04344450A JP11636391A JP11636391A JPH04344450A JP H04344450 A JPH04344450 A JP H04344450A JP 11636391 A JP11636391 A JP 11636391A JP 11636391 A JP11636391 A JP 11636391A JP H04344450 A JPH04344450 A JP H04344450A
Authority
JP
Japan
Prior art keywords
gas
oxide semiconductor
catalyst
layer
sensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11636391A
Other languages
Japanese (ja)
Inventor
Takeshige Ichimura
市村 剛重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11636391A priority Critical patent/JPH04344450A/en
Publication of JPH04344450A publication Critical patent/JPH04344450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gas sensor of high sensitivity and excellent stability by providing a gas sensitive layer and a covering layer on a substrate, and forming the gas sensitive layer as a sintered film of an oxide semiconductor, and the covering layer as a sintered film of an oxide semiconductor containing a catalyst. CONSTITUTION:Electrodes 11, 12, a gas sensitive layer 2 made of tin oxide, a covering layer 4, lead wires 51, 52 are provided on the respective portions of one main face of an alumina substrate 3 and a heater 6 and lead wires 71, 72 are provided on the respective portions of the other main face of the substrate 3. The gas sensitive layer 2 is a sintered film of an oxide semiconductor and the covering layer 4 is a sintered film of an oxide semiconductor containing a catalyst. The oxide semiconductor of the layer 2 has its electric resistance varied on contact with combustible gas. The catalyst-containing oxide semiconductor of the layer 4 generates activated oxygen and supplies it to the oxide semiconductor of the layer 2 which has no catalyst.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はガスセンサの構造にか
かり特に安定性に優れるガスセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a gas sensor, and particularly to a gas sensor with excellent stability.

【0002】0002

【従来の技術】酸化物半導体を用いるガスセンサとして
は、例えば厚膜型のガスセンサが知られている。図5は
、従来の厚膜型のガスセンサを示す断面図である。厚膜
型のガスセンサは基板3の一主面の酸化スズのような感
ガス層2がまた他の主面には感ガス層2を加熱するため
のヒータ6が形成される。感ガス層2は一般に厚膜印刷
技術により所定形状に印刷した後基板に焼き付けられる
。11,12は電極、51,52,71,72はリード
線である。
2. Description of the Related Art As a gas sensor using an oxide semiconductor, for example, a thick film type gas sensor is known. FIG. 5 is a cross-sectional view showing a conventional thick film type gas sensor. In the thick film type gas sensor, a gas sensitive layer 2 such as tin oxide is formed on one main surface of a substrate 3, and a heater 6 for heating the gas sensitive layer 2 is formed on the other main surface. The gas-sensitive layer 2 is generally printed in a predetermined shape by thick film printing technology and then baked onto the substrate. 11 and 12 are electrodes, and 51, 52, 71, and 72 are lead wires.

【0003】酸化スズ,酸化亜鉛等のn型金属酸化物半
導体からなる感ガス層は大気中で300乃至500℃の
温度に加熱されると粒子表面に大気中の酸素が活性化吸
着して高抵抗化するが可燃性ガスが接触すると吸着酸素
と可燃性ガスとが反応して吸着酸素が除去され抵抗値が
減少する。このような性質を利用して酸化スズを利用し
たガスセンサはLPガス,都市ガス等のガス漏れ警報器
に広く用いられる。感ガス層2にはn型金属酸化物半導
体に吸着された酸素と可燃性ガスとの反応速度を高める
ためにPtやPd等の貴金属触媒が担持される。
When a gas-sensitive layer made of an n-type metal oxide semiconductor such as tin oxide or zinc oxide is heated in the atmosphere to a temperature of 300 to 500°C, oxygen in the atmosphere is activated and adsorbed on the particle surface, resulting in a high temperature. It becomes resistive, but when combustible gas comes into contact with it, the adsorbed oxygen and combustible gas react, the adsorbed oxygen is removed, and the resistance value decreases. Taking advantage of these properties, gas sensors using tin oxide are widely used in gas leak alarms for LP gas, city gas, and the like. A noble metal catalyst such as Pt or Pd is supported on the gas-sensitive layer 2 in order to increase the reaction rate between the oxygen adsorbed on the n-type metal oxide semiconductor and the combustible gas.

【0004】0004

【発明が解決しようとする課題】しかしながらこのよう
な従来のセンサにおいては可燃性ガスに対する感度は高
いものの感度が時間的に変化するという問題があった。 その理由は酸素の脱着に触媒が関与すると触媒の変化が
センサの安定性に影響を与えることになるからである。
However, although such conventional sensors have high sensitivity to combustible gases, there is a problem in that the sensitivity changes over time. The reason for this is that if a catalyst is involved in the desorption of oxygen, changes in the catalyst will affect the stability of the sensor.

【0005】この発明は上述の点に鑑みてなされ、その
目的は酸素の脱着に触媒が関与することがないようにし
可燃性ガスに対する感度が高く安定性にもすぐれるガス
センサを提供することにある。
The present invention has been made in view of the above-mentioned points, and its object is to provide a gas sensor that does not involve a catalyst in the desorption of oxygen and has high sensitivity to combustible gases and excellent stability. .

【0006】[0006]

【課題を解決するための手段】上述の目的はこの発明の
第一形態によれば基板の上に感ガス層と被覆層とを有し
、感ガス層は酸化物半導体の焼結膜であり、被覆層は触
媒を担持した酸化物半導体の焼結膜であるように構成す
ることにより達成される。また本発明の第二形態によれ
ば基板の上に感ガス層と被覆層とを有し、感ガス層は酸
化物半導体と触媒を担持した酸化物半導体の焼結膜であ
り、被覆層は触媒を担持した酸化物半導体の焼結膜であ
ることを特徴とする。さらに本発明の第三形態によれば
基板の上に感ガス層を有し感ガス層は酸化物半導体と触
媒を担持した酸化物半導体の焼結膜であるとすることを
特徴とする。
[Means for Solving the Problems] According to a first embodiment of the present invention, the above-mentioned object has a gas-sensitive layer and a coating layer on a substrate, the gas-sensitive layer being a sintered film of an oxide semiconductor, This is achieved by configuring the coating layer to be a sintered film of an oxide semiconductor supporting a catalyst. According to a second embodiment of the present invention, the substrate has a gas-sensitive layer and a coating layer, the gas-sensitive layer is a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst, and the coating layer is a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst. It is characterized by being a sintered film of an oxide semiconductor supporting. Furthermore, according to a third aspect of the present invention, a gas-sensitive layer is provided on the substrate, and the gas-sensitive layer is a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst.

【0007】[0007]

【作用】酸化物半導体は可燃性ガスと接触して電気抵抗
を変化させる。触媒を担持した酸化物半導体は活性化し
た酸素をつくり触媒を有しない酸化物半導体に供給する
。又この触媒を担持した酸化物半導体はアルコールの干
渉を除く働きもする。
[Operation] The oxide semiconductor changes its electrical resistance when it comes into contact with flammable gas. The oxide semiconductor supporting the catalyst produces activated oxygen and supplies it to the oxide semiconductor not having the catalyst. The oxide semiconductor supporting this catalyst also functions to remove alcohol interference.

【0008】[0008]

【実施例】次にこの発明の実施例を図面にもとづいて説
明する。図1はこの発明の実施例にかかるガスセンサを
示す断面図である。アルミナ基板3の一主面の上に電極
11,12、酸化スズからなる感ガス層2、被覆層4、
リード線51,52がまた他の主面にはヒータ6とリー
ド線71,72が設けられる。感ガス層2は次のように
して形成される。
Embodiments Next, embodiments of the present invention will be described based on the drawings. FIG. 1 is a sectional view showing a gas sensor according to an embodiment of the invention. On one main surface of the alumina substrate 3, electrodes 11 and 12, a gas-sensitive layer 2 made of tin oxide, a coating layer 4,
Lead wires 51 and 52 are provided, and a heater 6 and lead wires 71 and 72 are provided on the other main surface. The gas-sensitive layer 2 is formed as follows.

【0009】すなわち中心粒径2μmの酸化スズ粉末に
水とシリカゾルを加えペースト状としたのちアルミナ基
板3に設けた電極11,12上に厚さ60μmとなるよ
うに感ガス層2を塗布し750℃で30分加熱しアルミ
ナ基板上に焼き付けた。
That is, water and silica sol were added to tin oxide powder with a center particle diameter of 2 μm to form a paste, and then the gas-sensitive layer 2 was applied to a thickness of 60 μm on the electrodes 11 and 12 provided on the alumina substrate 3 (750). It was heated at ℃ for 30 minutes and baked onto an alumina substrate.

【0010】ついで前記と同様の酸化スズ粉末に塩化白
金酸を白金として1ないし10重量%となるように含浸
し600℃で2時間加熱して白金を分解させた。この白
金の担持された酸化スズ粉末に水とシリカゾルを加えペ
ースト状としたのち感ガス層2を被覆するように50μ
mの厚さに被覆層4を塗布した。これを常温で乾燥した
のち730℃で30分加熱して被覆層4を形成した。
Next, the same tin oxide powder as above was impregnated with chloroplatinic acid to a concentration of 1 to 10% by weight of platinum, and heated at 600° C. for 2 hours to decompose the platinum. Water and silica sol were added to this platinum-supported tin oxide powder to form a paste.
A coating layer 4 was applied to a thickness of m. This was dried at room temperature and then heated at 730° C. for 30 minutes to form a coating layer 4.

【0011】図2は可燃性ガス中のセンサ抵抗の通電特
性を示す線図である。センサをヒータ6を用いて所定温
度に保ち0.2%イソブタンガス中のセンサ特性をRg
,センサの初期特性をRg0としRg0を基準とするR
g の比Rg /Rg0の値につき時間変化を調べた。 特性線201は本発明のガスセンサ,特性線202はP
dを担持した感ガス層を用いる従来のガスセンサの特性
である。ガス感度Ra /Rg (Ra は空気中のセ
ンサの抵抗,Rg は0.2%イソブタンガス中のセン
サ抵抗)は10ないし30であり充分の感度である。触
媒を担持しないでセンサを構成した場合はガス感度が2
ないし10である。酸化スズに替えて酸化亜鉛を用いる
こともできる。
FIG. 2 is a diagram showing the current conduction characteristics of the sensor resistance in combustible gas. Keep the sensor at a predetermined temperature using the heater 6, and set the sensor characteristics in 0.2% isobutane gas to Rg.
, R with the initial characteristic of the sensor as Rg0 and Rg0 as the reference
The time change of the value of the ratio Rg/Rg0 of g was investigated. Characteristic line 201 is the gas sensor of the present invention, characteristic line 202 is P
These are the characteristics of a conventional gas sensor using a gas-sensitive layer carrying d. The gas sensitivity Ra/Rg (Ra is the resistance of the sensor in air, Rg is the resistance of the sensor in 0.2% isobutane gas) is 10 to 30, which is sufficient sensitivity. If the sensor is constructed without supporting a catalyst, the gas sensitivity will be 2.
It is between 10 and 10. Zinc oxide can also be used instead of tin oxide.

【0012】図3はこの発明の異なる実施例にかかるガ
スセンサを示す拡大断面図である。感ガス層が前述のガ
スセンサと異なる。感ガス層は次のようにして形成され
る。中心粒径2μmの酸化スズ粉末に水とシリカゾルを
加えペースト状とする(ペーストA)。酸化スズ粉末に
塩化白金酸を白金として1ないし10重量%となるよう
に含浸し600℃で2時間加熱して白金を分解させた。 この白金の担持された酸化スズ粉末に水とシリカゾルを
加えペースト状とした(ペーストB)。ペーストAとペ
ーストBを重量比で10対1に混合する。この混合ペー
ストを用いて感ガス層を形成する。このガスセンサは安
定性に優れる上に初期応答特性も短いという特徴がある
。初期応答時間は1.0ないし1.5分である。この初
期応答時間はペーストAとペーストBの混合比に依存し
10対2の場合は0.5ないし1.0分、10対5の場
合は0.5分以下である。触媒を担持した酸化スズが活
性化した酸素をつくり触媒を有しない酸化スズに供給す
る効率が良くなるからである。
FIG. 3 is an enlarged sectional view showing a gas sensor according to another embodiment of the invention. The gas sensitive layer is different from the above-mentioned gas sensor. The gas-sensitive layer is formed as follows. Water and silica sol are added to tin oxide powder with a center particle size of 2 μm to form a paste (paste A). Tin oxide powder was impregnated with chloroplatinic acid to a concentration of 1 to 10% by weight of platinum, and heated at 600° C. for 2 hours to decompose the platinum. Water and silica sol were added to this platinum-supported tin oxide powder to form a paste (paste B). Paste A and paste B are mixed in a weight ratio of 10:1. A gas-sensitive layer is formed using this mixed paste. This gas sensor is characterized by excellent stability and short initial response characteristics. Initial response time is 1.0 to 1.5 minutes. This initial response time depends on the mixing ratio of paste A and paste B, and is 0.5 to 1.0 minutes in the case of 10:2 and 0.5 minutes or less in the case of 10:5. This is because the catalyst-supported tin oxide produces activated oxygen and the efficiency of supplying it to the catalyst-free tin oxide is improved.

【0013】図4はこの発明のさらに異なる実施例にか
かるガスセンサを示す断面図である。被覆層を有しない
ことが前記のガスセンサと異なる。このガスセンサはア
ルコール,COガスなどにたいして有効である。安定性
に優れ初期応答時間も短い。
FIG. 4 is a sectional view showing a gas sensor according to still another embodiment of the present invention. It differs from the above-mentioned gas sensor in that it does not have a coating layer. This gas sensor is effective for alcohol, CO gas, etc. Excellent stability and short initial response time.

【0014】[0014]

【発明の効果】この発明によれば、基板の上に感ガス層
と被覆層とを有し、感ガス層は酸化物半導体の焼結膜で
あり、被覆層は触媒を担持した酸化物半導体の焼結膜と
して形成すること、又は基板の上に感ガス層と被覆層と
を有し、感ガス層は酸化物半導体と触媒を担持した酸化
物半導体の焼結膜であり、被覆層は触媒を担持した酸化
物半導体の焼結膜として形成すること、さらに基板の上
に感ガス層を有し感ガス層は酸化物半導体と触媒を担持
した酸化物半導体の焼結膜として形成することにより酸
化物半導体は可燃性ガスと接触して電気抵抗を変化させ
、触媒を担持した酸化物半導体は活性化した酸素をつく
り触媒を有しない酸化物半導体に供給することとなり、
感度と安定性に優れるガスセンサが得られる。
According to the present invention, a substrate has a gas-sensitive layer and a covering layer, the gas-sensitive layer is a sintered film of an oxide semiconductor, and the covering layer is a sintered film of an oxide semiconductor supporting a catalyst. Forming as a sintered film, or having a gas-sensitive layer and a covering layer on a substrate, the gas-sensitive layer being a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst, and the covering layer supporting a catalyst. The oxide semiconductor can be formed as a sintered film of an oxide semiconductor, which has a gas-sensitive layer on the substrate, and the gas-sensitive layer is formed as a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst. When it comes into contact with a flammable gas, the electrical resistance changes, and the catalyst-supported oxide semiconductor creates activated oxygen, which is supplied to the catalyst-free oxide semiconductor.
A gas sensor with excellent sensitivity and stability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施例にかかるガスセンサを示す断
面図
FIG. 1 is a sectional view showing a gas sensor according to an embodiment of the present invention.

【図2】この発明の実施例にかかるガスセンサの可燃性
ガス中におけるセンサ抵抗の通電特性を示す線図
FIG. 2 is a diagram showing the current conduction characteristics of the sensor resistance in flammable gas of the gas sensor according to the embodiment of the present invention.

【図3
】この発明の異なる実施例にかかるガスセンサを示す拡
大断面図
[Figure 3
] An enlarged sectional view showing a gas sensor according to a different embodiment of the present invention.

【図4】この発明のさらに異なる実施例にかかるガスセ
ンサを示す断面図
FIG. 4 is a sectional view showing a gas sensor according to still another embodiment of the present invention.

【図5】従来の厚膜型のガスセンサを示す断面図[Figure 5] Cross-sectional view showing a conventional thick-film gas sensor

【符号の説明】[Explanation of symbols]

2    感ガス層 3    基板 4    被覆層 6    ヒータ 11    電極 12    電極 51    リード線 52    リード線 71    リード線 72    リード線 2 Gas-sensitive layer 3    Substrate 4 Coating layer 6 Heater 11 Electrode 12 Electrode 51 Lead wire 52 Lead wire 71 Lead wire 72 Lead wire

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板の上に感ガス層と被覆層とを有し、感
ガス層は酸化物半導体の焼結膜であり、被覆層は触媒を
担持した酸化物半導体の焼結膜であることを特徴とする
ガスセンサ。
Claim 1: A gas-sensitive layer and a covering layer are provided on a substrate, the gas-sensitive layer is a sintered film of an oxide semiconductor, and the covering layer is a sintered film of an oxide semiconductor supporting a catalyst. Characteristic gas sensor.
【請求項2】基板の上に感ガス層と被覆層とを有し、感
ガス層は酸化物半導体と触媒を担持した酸化物半導体の
焼結膜であり、被覆層は触媒を担持した酸化物半導体の
焼結膜であることを特徴とするガスセンサ。
2. A gas-sensitive layer and a covering layer are provided on the substrate, the gas-sensitive layer is a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst, and the covering layer is a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst. A gas sensor characterized by being a sintered semiconductor film.
【請求項3】基板の上に感ガス層を有し、感ガス層は酸
化物半導体と触媒を担持した酸化物半導体の焼結膜であ
ることを特徴とするガスセンサ。
3. A gas sensor comprising a gas-sensitive layer on a substrate, the gas-sensitive layer being a sintered film of an oxide semiconductor supporting an oxide semiconductor and a catalyst.
【請求項4】請求項1,2,3記載のガスセンサにおい
て、酸化物半導体は、酸化スズであることを特徴とする
ガスセンサ。
4. The gas sensor according to claim 1, wherein the oxide semiconductor is tin oxide.
【請求項5】請求項1,2,3記載のガスセンサにおい
て、触媒は白金を1.0ないし10.0重量%担持する
ものであることを特徴とするガスセンサ。
5. A gas sensor according to claim 1, wherein the catalyst supports 1.0 to 10.0% by weight of platinum.
【請求項6】請求項2,3記載のガスセンサにおいて、
触媒を担持した酸化物半導体の焼結膜に占める割合は重
量で5ないし50%の範囲にあることを特徴とするガス
センサ。
6. The gas sensor according to claim 2 or 3,
A gas sensor characterized in that the proportion of the oxide semiconductor supporting the catalyst in the sintered film is in the range of 5 to 50% by weight.
JP11636391A 1991-05-22 1991-05-22 Gas sensor Pending JPH04344450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11636391A JPH04344450A (en) 1991-05-22 1991-05-22 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11636391A JPH04344450A (en) 1991-05-22 1991-05-22 Gas sensor

Publications (1)

Publication Number Publication Date
JPH04344450A true JPH04344450A (en) 1992-12-01

Family

ID=14685114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11636391A Pending JPH04344450A (en) 1991-05-22 1991-05-22 Gas sensor

Country Status (1)

Country Link
JP (1) JPH04344450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476003A (en) * 1993-10-05 1995-12-19 Robert Bosch Gmbh Measuring sensor for determining gas compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476003A (en) * 1993-10-05 1995-12-19 Robert Bosch Gmbh Measuring sensor for determining gas compositions

Similar Documents

Publication Publication Date Title
US4242303A (en) Gas detecting element
JP3075070B2 (en) Carbon monoxide gas sensor
JPH07128268A (en) Hydrogen gas sensor
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JPH04344450A (en) Gas sensor
JP3191544B2 (en) Thick film type gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JPH0444691B2 (en)
JP2570440B2 (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JP2980290B2 (en) Gas detection method and gas sensor used therefor
JPH0382945A (en) Semiconductor gas sensor
JPH0221256A (en) Gas sensor
JPH06288953A (en) Thick-film gas sensor
JPH0455747A (en) Gas sensor
JPH0252247A (en) Gas sensor
JPH06186191A (en) Thick-film gas sensor
JPS63233358A (en) Gas sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH0390848A (en) Gas sensor
JPH0743331A (en) Thick film gas sensor
JP3191523B2 (en) Thick film gas sensor
JP2575479B2 (en) Gas sensor
JPS59120946A (en) Gaseous freon detecting element