JPS6170449A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS6170449A
JPS6170449A JP59192339A JP19233984A JPS6170449A JP S6170449 A JPS6170449 A JP S6170449A JP 59192339 A JP59192339 A JP 59192339A JP 19233984 A JP19233984 A JP 19233984A JP S6170449 A JPS6170449 A JP S6170449A
Authority
JP
Japan
Prior art keywords
gas
thin film
sensitivity
catalyst layer
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59192339A
Other languages
Japanese (ja)
Inventor
Masayuki Shiratori
白鳥 昌之
Minoru Sunakawa
砂川 穣
Yuji Matsumura
松村 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59192339A priority Critical patent/JPS6170449A/en
Priority to KR1019850006138A priority patent/KR890000390B1/en
Priority to GB08522434A priority patent/GB2166549B/en
Priority to CA000490569A priority patent/CA1221736A/en
Publication of JPS6170449A publication Critical patent/JPS6170449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To detect reducing gas with high sensitivity and good selectivity by providing a thin In-Sn-O film on an insulating substrate and providing further a catalyst layer such as Pd thereon thereby constituting a gas detecting element. CONSTITUTION:A pair of electrodes 2 are provided on an insulating substrate 1 such as alumina. An org. soln. contg. indium octylate, etc. and tin octylate, etc. is coated thereon and is thermally decomposed to form a thin In-Sn-O film 3. The catalyst layer 4 deposited with at least one kind among Pt, Pd and Rh on Al2O3 is laminated thereon, by which the gas detecting element is obtd. The element is brought into contact with the reducing gas and the gas is detected from the change in the electric resistance. Since the thin In-Sn-O film is provided, the detection of the CO, CH4, C3H8, etc. which are the reducing gas with high sensitivity is made possible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガス検知素子に関し、特に、大気中の還元性
ガスを高感度でかつ選択性良く検出するガス検知素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas detection element, and particularly to a gas detection element that detects reducing gases in the atmosphere with high sensitivity and selectivity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、大気中の還元性ガスを検出する素子として、N型
半導体特性を示すsno   zno、2゛ Fe2O3などの金属酸化物半導体の焼結体を用いたガ
ス検知素子が知られている。これは、これら金属酸化物
半導体が還元性ガスに接触すると、その電気伝導度が増
大し、そのときの電気抵抗値の変化を測定することによ
ってガスを検知するものである。
Conventionally, gas detection elements using sintered bodies of metal oxide semiconductors such as sno zno and 2'Fe2O3, which exhibit N-type semiconductor characteristics, have been known as elements for detecting reducing gases in the atmosphere. When these metal oxide semiconductors come into contact with a reducing gas, their electrical conductivity increases, and the gas is detected by measuring the change in electrical resistance at that time.

ところで、近年、素子の小形化、多機能化の要請に対応
して、上記の焼結体型のガス検知素子に代り、薄膜型の
素子に関する研究が進められている。このような薄膜型
素子は、前述したごとき感ガス能を有する金属酸化物半
導体を、スパッタ法、蒸着法、CVD法などの薄膜形成
法を用いて被着けしめて薄膜WI造としたものである。
By the way, in recent years, in response to the demand for smaller devices and multi-functionality, research has been progressing on thin film type elements instead of the above-mentioned sintered type gas sensing elements. Such a thin film type element is made into a thin film WI structure by depositing a metal oxide semiconductor having the gas-sensitive ability as described above using a thin film forming method such as a sputtering method, a vapor deposition method, or a CVD method.

焼結体型、薄膜型のいずれのガス検知素子にあっても、
一般に、金属酸化物半導体のみではガス検知素子として
その感度が小さく、選択性も充分とはいえないため、通
常、白金(Pt)、パラジラム(Pd)等の負金属を触
媒として用いて、素子の感度を高めることが試みられて
いる。ずなわら、Pt、Pdを直接金属酸化物半導体に
添加したり、あるいはPt、Pdを担持する触媒層を金
属酸化物半導体の上に形成するといった方法がとられて
いる。
Regardless of whether the gas sensing element is a sintered type or a thin film type,
In general, metal oxide semiconductors alone have low sensitivity and insufficient selectivity as gas detection elements, so negative metals such as platinum (Pt) and palladium (Pd) are usually used as catalysts to detect gas detection elements. Attempts are being made to increase sensitivity. However, methods have been adopted in which Pt or Pd is directly added to a metal oxide semiconductor, or a catalyst layer supporting Pt or Pd is formed on the metal oxide semiconductor.

このような処置を施すと、無触媒の場合に比べて感度は
向上するが、それでも未だ低濃度の還元性ガスに対して
は充分な感度を示さない。しかも、各種の還元性ガスが
混在する場合、ある還元性ガスのみを高感度に選択的に
検出することは、他の還元性ガスの影響によって素子の
誤動作が誘発されるため、極めて困難である。とりわけ
、COのように低濃度でも人体に悪影響を及ぼすガスに
関しては、他の還元性ガスによる誤動作を排除して検出
することは極めて困難であった。ざらには、ガス検知素
子を一般家庭で使用することを想定した場合、雑ガス、
特にアルコール蒸気による誤動作を排除することが重要
な問題となる。
Although such treatment improves sensitivity compared to the case without catalyst, it still does not exhibit sufficient sensitivity to reducing gases at low concentrations. Moreover, when various reducing gases are mixed, it is extremely difficult to selectively detect only one reducing gas with high sensitivity because the influence of other reducing gases may induce malfunction of the element. . In particular, it has been extremely difficult to detect a gas such as CO, which has an adverse effect on the human body even at low concentrations, while excluding malfunctions caused by other reducing gases. Generally speaking, when it is assumed that the gas detection element will be used in a general household, miscellaneous gas,
In particular, eliminating malfunctions caused by alcohol vapor is an important issue.

このような観点で、従来提案されているガス検知素子と
して、酸化第二スズ薄膜を形成させた素子(特願昭59
−38641号公報)、あるいは酸化インジウム薄膜を
形成させた素子(特願昭59−38642号公報)が知
られているが、さらに一層の感度ならびに選択性の向上
が望まれている。
From this point of view, as a conventionally proposed gas detection element, an element in which a thin film of stannic oxide is formed (Japanese Patent Application No. 1983) has been proposed.
38641) or an element formed with an indium oxide thin film (Japanese Patent Application No. 59-38642), but further improvements in sensitivity and selectivity are desired.

〔発明の目的〕[Purpose of the invention]

本発明は上述した点に鑑みてなされたものであり、低濃
度の還元性ガスを高感度に検出し、特に、低温域(室温
〜約120’C)では−酸化炭素(Co)を、高温ti
i!(350〜450℃)ではメタン(CI−1>、プ
ロパン(C3H8)を選択的かつ高感度に検出する薄膜
型のガス検知素子を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and detects low concentration reducing gases with high sensitivity. Ti
i! The present invention aims to provide a thin film type gas detection element that selectively and sensitively detects methane (CI-1> and propane (C3H8) at 350 to 450°C).

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明に係るガス検知素子は、
一対の電極を設けた絶縁基体の表面に、該電極を被覆す
るようにして、inおよびSnを含有する有機化合物を
熱分解して作成された1n−Sn−0系薄膜を設け、さ
らに該i1股上に、Pt、PdおよびRilからなる群
から選ばれる少なくとも1種をAl2O3に担持させて
なる触媒層を積層させてなることを特徴とする。
In order to achieve the above object, the gas detection element according to the present invention includes:
A 1n-Sn-0 thin film created by thermally decomposing an organic compound containing in and Sn is provided on the surface of an insulating substrate provided with a pair of electrodes so as to cover the electrodes, and further the i1 It is characterized in that a catalyst layer in which Al2O3 supports at least one member selected from the group consisting of Pt, Pd, and Ril is laminated on the crotch.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明を、添付図面を参照しながらさらに具体的
に説明する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図および第2図は、本発明の具体例を表わしたもの
で、第1図は円筒状素子の断面図、第2図は該素子の使
用状態を示す斜視図である。
FIGS. 1 and 2 show a specific example of the present invention, with FIG. 1 being a cross-sectional view of a cylindrical element, and FIG. 2 being a perspective view of the element in use.

まず、第1図において符号1は、たとえばアルミナある
いはムライト等の絶縁性材料から成る筒状の基体であり
、該基体1の外周面には一対の電極2が設けられている
。該基体1および電極2を被覆して、In−Sn−0系
薄膜3が設けられ、さらにその上には全体を被覆して触
媒層4が積層されて本発明の素子が構成される。
First, in FIG. 1, reference numeral 1 denotes a cylindrical base made of an insulating material such as alumina or mullite, and a pair of electrodes 2 are provided on the outer peripheral surface of the base 1. An In-Sn-0 thin film 3 is provided covering the substrate 1 and the electrodes 2, and a catalyst layer 4 is laminated thereon to cover the entire structure, thereby forming the element of the present invention.

ここで、In−Sn−0系薄膜の膜厚は10o〇八〜1
μmの範囲にあることが好ましく、該薄膜が1μmを超
えるとその還元性ガスに対する感度が低下し、また1 
000人より小さい場合にも充分な感度が得られない。
Here, the thickness of the In-Sn-0-based thin film is 10o8 to 1
It is preferable that the thin film is in the range of 1 μm; if the thickness of the thin film exceeds 1 μm, its sensitivity to reducing gases will decrease;
Even when the number of people is smaller than 000, sufficient sensitivity cannot be obtained.

さらに触媒層4の厚みは10〜50μmrLの範囲にあ
ることが好ましく、この範囲を外れると感度、選択性等
の触媒効果が低下する。
Further, the thickness of the catalyst layer 4 is preferably in the range of 10 to 50 μmrL, and if it is outside this range, the catalyst effects such as sensitivity and selectivity will deteriorate.

このように構成された本発明の素子は、第2図に示すよ
うに絶縁板5に立設されたビン6の上に他の部品と接触
しない状態に取付けて保持される。
As shown in FIG. 2, the element of the present invention thus constructed is mounted and held on top of the bin 6 erected on the insulating plate 5 without contacting other parts.

図中7は電極用のリード線、8はヒータを表わし、該ヒ
ータは、素子の表面温度(動作温度)を調整するために
設けられる。
In the figure, 7 represents a lead wire for the electrode, and 8 represents a heater, which is provided to adjust the surface temperature (operating temperature) of the element.

次に、In−Sn−0系薄膜の作成方法について説明す
る。
Next, a method for creating an In-Sn-0 thin film will be described.

本発明に係るIn−Sn−0系薄膜は、inおよびSn
を含有する有機化合物を熱分解することにより形成され
る。まず、InやSnの金属石鹸(たとえば、オクチル
酸インジウム、オクチル酸スズ)あるいはSnまたはi
nを含有する樹脂塩、アルコキシド、さらにはSnや[
nを含有する有機金属化合物などのlnおよびSnを含
有する有機化合物の所定量を、トルエン、ベンゼン、n
−ブチルアルコールなどの適宜な溶剤を用いて溶解さけ
て所望濃度の薄膜形成用原料溶液を調整する。
The In-Sn-0 thin film according to the present invention has in and Sn
It is formed by thermally decomposing an organic compound containing . First, In or Sn metal soap (for example, indium octylate, tin octylate) or Sn or i
Resin salts and alkoxides containing n, as well as Sn and [
A predetermined amount of an organic compound containing ln and Sn, such as an organometallic compound containing n, is added to toluene, benzene, n
- Prepare a raw material solution for forming a thin film with a desired concentration by dissolving it using an appropriate solvent such as butyl alcohol.

つぎに、この溶液を一対の電極2を有する絶縁基体1の
外周面に塗布し、空気中で所定時間(通常30分〜1時
間)放置したのち、適宜な温度(通常的120℃)に加
熱して、用いた溶剤を気化せしめる。しかるのちに、全
体を空気中で30分〜1時間に亘り400〜700 ’
Cの温度で焼成すると、InおよびSnを含有する有機
化合物は熱分解し、In−Sn−0系薄膜が形成される
Next, this solution is applied to the outer peripheral surface of the insulating substrate 1 having a pair of electrodes 2, left in the air for a predetermined time (usually 30 minutes to 1 hour), and then heated to an appropriate temperature (usually 120°C). to vaporize the solvent used. After that, the whole thing was heated in air for 30 minutes to 1 hour at 400 to 700'.
When fired at a temperature of C, the organic compound containing In and Sn is thermally decomposed to form an In-Sn-0 thin film.

用いる原料溶液の濃度によって異なり一般的には定めら
れないが、この塗布−焼成の工程を1〜4回程度反復し
て所定の膜厚の薄膜が形成される。
This coating-baking process is repeated about 1 to 4 times to form a thin film with a predetermined thickness, although it varies depending on the concentration of the raw material solution used and is not generally determined.

薄膜の組成においてSnの含有母がinに対する含有率
1sn/In)xlOO)で、約10%以下ではSnは
酸化インジウムの不純物として作用し、10%以上では
酸化インジウムと酸化スズ1   、)多結晶が形成さ
ゎうと考えられ、。
In the composition of the thin film, the content ratio of Sn to in is 1sn/In)xlOO), and if it is less than about 10%, Sn acts as an impurity of indium oxide, and if it is more than 10%, it becomes indium oxide and tin oxide1,) polycrystalline. It is thought that .

ついで、このようにして設けられた簿膜3の上に以下の
方法により触媒層4を8に層する。
Next, a catalyst layer 4 is layered 8 on the membrane 3 thus provided by the following method.

本発明に係る触媒層4は、酸化アルミニウム(A120
3)にパラジウム(Pd)、白金(Pt)、ロジウム(
Rh)のいずれか1種またはパラジウム−白金(Pt−
Pt)、パラジウム−ロジウム(Pd−Rh)、白金−
ロジウム(Pt−Ril)のいずれか1種を担持させた
触媒から構成される。
The catalyst layer 4 according to the present invention is made of aluminum oxide (A120
3) Palladium (Pd), platinum (Pt), rhodium (
Rh) or palladium-platinum (Pt-
Pt), palladium-rhodium (Pd-Rh), platinum-
It is composed of a catalyst supporting any one of rhodium (Pt-Ril).

この触媒は以下のようにして製造される。This catalyst is manufactured as follows.

まず、たとえばト(,2PtCI6・61−120゜P
dCl   RhCl  −3H20などの塩化物2°
    3 または(NH4)2Pt016゜ (NH) PdC16(NH4)3RhC16などのア
ンモニウム塩を用いて、pdlRhの所定温度の水溶液
を調整する。Al2O3にPd、Pt、R11をそれぞ
れ単独で担持させるときにはそれぞれの水溶液に所定量
のA I 203を浸漬し、また、Pd−Pt、Pd−
Rh、Pt−RhをAl2O3に担持させる場合には、
Pd、Pt、Rhの水溶液を所定の割合で混合して混合
溶液とし、ここに所定mのAl2O3を浸漬する。
First, for example,
Chloride 2° such as dCl RhCl -3H20
3 or (NH4)2Pt016°(NH)PdC16(NH4)3RhC16 to prepare an aqueous solution of pdlRh at a predetermined temperature. When Pd, Pt, and R11 are individually supported on Al2O3, a predetermined amount of A I 203 is immersed in each aqueous solution, and Pd-Pt, Pd-
When Rh, Pt-Rh is supported on Al2O3,
Aqueous solutions of Pd, Pt, and Rh are mixed at a predetermined ratio to obtain a mixed solution, into which a predetermined m of Al2O3 is immersed.

充分両者を撹拌混合したのち、たとえば1〜2時間減圧
乾燥し、さらに約100℃で加熱乾燥する。これをたと
えば乳鉢で粉砕し粉末として、石英ルツボに入れて40
0〜800℃の温度で焼成する。かくして、A I 2
03に所定mのPd。
After sufficiently stirring and mixing the two, the mixture is dried under reduced pressure, for example, for 1 to 2 hours, and then heated and dried at about 100°C. For example, crush this in a mortar, make a powder, and put it in a quartz crucible for 40 minutes.
Calcinate at a temperature of 0 to 800°C. Thus, A I 2
Pd of predetermined m in 03.

Pt、Rh、Pt−Pt、Pd−Rh、Pt−R11を
それぞれ担持する触媒が得られる。
Catalysts supporting Pt, Rh, Pt-Pt, Pd-Rh, and Pt-R11 are obtained.

このとき、P(j、Pt、RhのA I 203への担
持mは、それぞれが単独の場合にはA I 203の重
役に対し0.05〜20.0重量%の範囲が好ましく、
この範囲を外れると素子の感度向上に寄与しない。また
、Pd−Pt1Pd−Rh1pt−RhのA I 20
3への担持ωに関しては、Pd−Pt、Pd−Rhの場
合、PdはA、1203の重量に対し0,05〜20.
0重量%でかつPt、RhはPdに対する原子比(Pt
/PdまたはRh/Pd )で0.05〜1.0の範囲
にあることが好ましく、Pt−Rhの場合には、Ptは
A 1203(7)Iffik:対1..,0.05〜
20.0tffi%でかつRhはPtに対する原子比(
Ph/Pt)rO,05〜1.0の範囲にあることが好
ましい。
At this time, when each of P(j, Pt, and Rh is supported on AI 203 alone, m is preferably in the range of 0.05 to 20.0% by weight based on the weight of AI 203,
Outside this range, it will not contribute to improving the sensitivity of the element. In addition, the A I 20 of Pd-Pt1Pd-Rh1pt-Rh
Regarding the loading ω on 3, in the case of Pd-Pt and Pd-Rh, Pd is 0.05 to 20.
0% by weight, and the atomic ratio of Pt and Rh to Pd (Pt
/Pd or Rh/Pd) is preferably in the range of 0.05 to 1.0, and in the case of Pt-Rh, Pt is A 1203(7) Iffik: vs. 1.0. .. ,0.05~
20.0tffi% and the atomic ratio of Rh to Pt (
Ph/Pt)rO is preferably in the range of 05 to 1.0.

このようにして調製された触媒を、つぎに、たとえばバ
インダとしてアルミニウムヒドロキシクロライドなどの
水溶液を用いてスラリーとし、このスラリーを薄膜の上
に所定の厚みで塗布・乾燥し、その後300〜400℃
の温度で焼成して本発明にかかる触媒層が形成される。
The catalyst thus prepared is then made into a slurry using, for example, an aqueous solution of aluminum hydroxychloride as a binder, and this slurry is applied onto a thin film to a predetermined thickness and dried, followed by heating at 300 to 400°C.
The catalyst layer according to the present invention is formed by firing at a temperature of .

(発明の実施例) 実施例1 1n−Sn−0系薄膜の原料として、オクチル酸インジ
ウムおよびオクチル酸スズを用い、金属P、 子(7)
 含有m カ、含有率((Sn/In ) Xi 00
)で50%となるようにトルエンに溶解して原料溶液を
調整した。
(Embodiments of the invention) Example 1 Indium octylate and tin octylate were used as raw materials for a 1n-Sn-0 thin film, and metal P, metal (7)
Content m, content rate ((Sn/In) Xi 00
) to prepare a raw material solution by dissolving it in toluene to a concentration of 50%.

次いで、第1図に示したような一対の電極2をあらかじ
め設けた絶縁基体1の筒の外側表面に塗布して空気中に
1時間放置したのち、120’Cに加熱してトルエンを
気化させた。
Next, a pair of electrodes 2 as shown in FIG. 1 were coated on the outer surface of the cylinder of the insulating base 1, which was left in the air for one hour, and then heated to 120'C to vaporize the toluene. Ta.

次いで、全体を500℃、1時間空気中で焼成した。こ
の塗布−焼成の工程を3回図復して厚み約3000人の
薄膜を形成した。
The whole was then fired at 500° C. for 1 hour in air. This coating-baking process was repeated three times to form a thin film with a thickness of about 3,000 layers.

続いて、この薄膜上に触媒層を形成した。まず、PdC
l2を水に溶解してPd1.O型組%の水溶液液を調整
した。ここに、表面積約100TIL/グのA I 2
03微粉を除去したのち、蒸発乾固した。ついで、乳鉢
で粉砕し、得られた粉末を石英ルツボの中に入れて40
0℃で焼成した。
Subsequently, a catalyst layer was formed on this thin film. First, PdC
Pd1 by dissolving Pd1 in water. An aqueous solution containing O type % was prepared. Here, A I 2 with a surface area of about 100 TIL/g
After removing the 03 fine powder, it was evaporated to dryness. Next, the powder was crushed in a mortar and placed in a quartz crucible for 40 minutes.
It was fired at 0°C.

この触媒の粉末を水とアルミニウムヒドロキシクロライ
ド水溶液(A12031%)の中に入れてスラリーとし
た。このスラリーを、In−Sn−0系R膜の上に塗布
したのち、乾燥し、全体を400℃で焼成した。このよ
うにして、厚み20μ卯のPd担持口1.0重量%のP
d−A I 203触媒層を形成した。
This catalyst powder was put into water and an aqueous aluminum hydroxychloride solution (A12031%) to form a slurry. This slurry was applied onto the In-Sn-0-based R film, dried, and the entire film was fired at 400°C. In this way, 1.0% by weight of Pd in the Pd supporting port with a thickness of 20μ
A d-AI 203 catalyst layer was formed.

同様にして、Pt−Al  ORh− 23・ A I 203触媒、ならびにPd−Pt−Al   
 OPd−Rh−At    OP’llニー2 3・
             2 3′Rh −A I 
20 s触媒を用いた素子を作成した。
Similarly, Pt-Al ORh-23・A I 203 catalyst and Pd-Pt-Al
OPd-Rh-At OP'll knee 2 3.
2 3'Rh -A I
A device using a 20 s catalyst was created.

なお、触媒において、Pd、Pt、Rhをそれぞれ単独
でAl2O3に担持させたものは、A I 203の重
囲に対してすべて1,0重量%であった。また、Pd−
Pt、Pd−Rhの場合には、PdのAl2O3に対す
る担持ハ)は1.0重但%でかつPt、RhはPdに対
する原子比で0.5であった。Pt−Rhについては、
PtがA I 203に対し1.0重量%、RhはPt
に対する原子比で0.5であった。
In addition, in the catalyst, Pd, Pt, and Rh supported individually on Al2O3 were all 1.0% by weight based on the weight of A I 203. Also, Pd-
In the case of Pt and Pd-Rh, the Pd supported on Al2O3 was 1.0% by weight, and the atomic ratio of Pt and Rh to Pd was 0.5. Regarding Pt-Rh,
Pt is 1.0% by weight based on A I 203, Rh is Pt
The atomic ratio was 0.5.

このようにして製造した、各々触媒層の種類の異なる6
種類のガス検知素子から第2図に示すような装置を組立
て、これを用いて濃度200 ppmのGo、)−I 
  CHCHおよび濃度2°  4° 38 1000 ppmの02 H5011の各ガスに対する
感度をR・ /Rとして測定した。動作温度air  
    gas 100℃と400℃について行なった。ここで、R、は
測定ガスを含まない空気中において素子R が示した抵抗値であり、Rは上記ガスを各々aS の濃度含有する空気中において素子が示した抵抗値であ
る。したがって、R,/Rが大きいair     g
as 程、高感度であることを意味する。
6 produced in this way, each with a different type of catalyst layer.
A device as shown in Fig. 2 was assembled from different types of gas detection elements, and this was used to detect Go, )-I at a concentration of 200 ppm.
The sensitivity to each gas of CHCH and 02 H5011 at concentrations of 2° 4° 38 1000 ppm was measured as R·/R. operating temperature air
Gas was conducted at 100°C and 400°C. Here, R is the resistance value exhibited by the element R in air that does not contain the measurement gas, and R is the resistance value exhibited by the element in air containing each of the above gases at a concentration of aS. Therefore, air g with large R,/R
As means higher sensitivity.

測定結果を下表に示す。The measurement results are shown in the table below.

表から明らかなように、いずれの触媒を用いた場合であ
っても、動作温度100℃においては、CO2001l
l)III感度がC2H3oH11000uよりも大で
あり、COガスに対して極めて高い感度を示すことがわ
かる。一方、400℃では、C3H8,CH4200p
pm @度がC2H5oH1000ppm感度よりも大
きいことがわかる。
As is clear from the table, no matter which catalyst is used, at an operating temperature of 100°C, CO2001l
l) It can be seen that the III sensitivity is higher than that of C2H3oH11000u, showing extremely high sensitivity to CO gas. On the other hand, at 400℃, C3H8, CH4200p
It can be seen that the pm@degree is greater than the C2H5oH1000ppm sensitivity.

実施例2 In−Sn−0系薄膜におイテ、InとSnの含有量を
各種変化させたものについて、実施例1と同様の方法で
素子を作成し、Inに対するSnの含有率に対する感度
を、実施例1と同様の条件で測定した。
Example 2 Elements were prepared in the same manner as in Example 1 using In-Sn-0-based thin films with varying amounts of In and Sn, and the sensitivity to the Sn content relative to In was determined. , was measured under the same conditions as in Example 1.

触媒層としてP d −A I 203触媒を適用した
素子について、400℃の動作温度でのCH4(200
DDffl)ガスに対する測定結果を一例として第3図
に示す。第3図から明らかなように、In203(In
−0系)単独、あるいはS n 02 (S n −0
系)単独で薄膜を形成した場合よりも、In−Sn−0
系11Qを用いた場合の方が感度が高くなり、特に、i
nに対するSnの含有率が約50%前後の領域ですぐれ
た感度を示すことがわかる。このような傾向は、触媒層
の種類や測定対象ガスを変えた場合においても同様に認
められた。
CH4 (200
FIG. 3 shows an example of the measurement results for the DDffl) gas. As is clear from Fig. 3, In203 (In
-0 series) alone or S n 02 (S n -0
system) than when forming a thin film alone, In-Sn-0
The sensitivity is higher when system 11Q is used, especially when i
It can be seen that excellent sensitivity is exhibited in a region where the Sn content relative to n is approximately 50%. Such a tendency was similarly observed even when the type of catalyst layer or the gas to be measured was changed.

〔発明の効果〕〔Effect of the invention〕

上記実施例の結果からも明らかなように、本発明のガス
検知素子は、低濃度の還元性ガスに対し高感度を示し、
しかも、室温〜約120℃の低温域ではCOガスに対す
る感度特性にすぐれ、約350〜450℃の高温域にお
いてはCH4。
As is clear from the results of the above examples, the gas sensing element of the present invention exhibits high sensitivity to low concentration reducing gases,
Furthermore, it has excellent sensitivity characteristics to CO gas in the low temperature range from room temperature to about 120°C, and CH4 in the high temperature range of about 350 to 450°C.

C3H8に対する高感度を示して選択性にすぐれている
。したがって、動作温度を変えることにより、02H5
0Hなどの雑ガスによる誤動作を排除して各)1還元性
ガスを高感度で検出することができる。
It shows high sensitivity to C3H8 and has excellent selectivity. Therefore, by changing the operating temperature, 02H5
Each) 1 reducing gas can be detected with high sensitivity while eliminating malfunctions caused by miscellaneous gases such as 0H.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガス検知素子の断面図、第2図は
該素子を適用したガス検知素子の斜視図、第3図はIn
とSnの組成比に対する感度特性の変化を示すグラフで
ある。 1・・・絶縁基体、2・・・電極、3・・・薄膜、4・
・・触媒層、5・・・絶縁板、6・・・ビン、7・・・
リード線、8・・・ヒーター。 出願人代理人  猪  股    清 第1図 第2図
FIG. 1 is a sectional view of a gas detection element according to the present invention, FIG. 2 is a perspective view of a gas detection element to which the element is applied, and FIG.
3 is a graph showing changes in sensitivity characteristics with respect to the composition ratio of Sn and Sn. DESCRIPTION OF SYMBOLS 1... Insulating base, 2... Electrode, 3... Thin film, 4...
...Catalyst layer, 5...Insulating plate, 6...Bin, 7...
Lead wire, 8...heater. Applicant's agent Kiyoshi Inomata Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 一対の電極を設けた絶縁基体の表面に、該電極を被覆す
るようにして、InおよびSnを含有する有機化合物を
熱分解して作成されたIn−Sn−O系薄膜を設け、さ
らに該薄膜上に、Pt、PdおよびRhからなる群から
選ばれる少なくとも1種をAl_2O_3に担持させて
なる触媒層を積層させてなることを特徴とするガス検知
素子。
An In-Sn-O thin film created by thermally decomposing an organic compound containing In and Sn is provided on the surface of an insulating substrate provided with a pair of electrodes so as to cover the electrodes, and further the thin film is A gas sensing element characterized in that a catalyst layer formed by supporting Al_2O_3 on at least one member selected from the group consisting of Pt, Pd, and Rh is laminated thereon.
JP59192339A 1984-09-13 1984-09-13 Gas detecting element Pending JPS6170449A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59192339A JPS6170449A (en) 1984-09-13 1984-09-13 Gas detecting element
KR1019850006138A KR890000390B1 (en) 1984-09-13 1985-08-24 Gas detecting apparatus
GB08522434A GB2166549B (en) 1984-09-13 1985-09-10 Gas detecting elements and process for producing the same
CA000490569A CA1221736A (en) 1984-09-13 1985-09-12 Gas detecting elements and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192339A JPS6170449A (en) 1984-09-13 1984-09-13 Gas detecting element

Publications (1)

Publication Number Publication Date
JPS6170449A true JPS6170449A (en) 1986-04-11

Family

ID=16289632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192339A Pending JPS6170449A (en) 1984-09-13 1984-09-13 Gas detecting element

Country Status (4)

Country Link
JP (1) JPS6170449A (en)
KR (1) KR890000390B1 (en)
CA (1) CA1221736A (en)
GB (1) GB2166549B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197551U (en) * 1985-05-30 1986-12-10
JPS6383650A (en) * 1986-09-29 1988-04-14 Toshiba Corp Gas sensor
JPH01118759A (en) * 1987-10-31 1989-05-11 Toshiba Corp Gas sensor
JPH0254157A (en) * 1988-08-18 1990-02-23 Toshiba Corp Gas sensor
JPH04152258A (en) * 1990-10-16 1992-05-26 Matsushita Electric Ind Co Ltd Ozone sensor
KR100551225B1 (en) * 2002-05-10 2006-02-09 전자부품연구원 Method for the preparation of catalyst-dopped tin oxide powders for a semiconductor-type gas sensor
JP2013531250A (en) * 2010-07-13 2013-08-01 エバーハルト カール ウニヴェルジテート テュービンゲン Gas sensor and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8804717D0 (en) * 1988-02-29 1988-03-30 Atomic Energy Authority Uk Gas sensing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE788501A (en) * 1971-09-17 1973-01-02 Libbey Owens Ford Co PROCESS FOR APPLYING TIN OXIDE COATINGS TO TRANSPARENT SUBSTRATES
US4030340A (en) * 1976-07-22 1977-06-21 General Monitors, Inc. Hydrogen gas detector
JPS5395097A (en) * 1977-01-31 1978-08-19 Toshiba Corp Gas-sensitive element
JPS5424096A (en) * 1977-07-26 1979-02-23 Fuji Electric Co Ltd Carbon monoxide detector
US4313338A (en) * 1978-08-18 1982-02-02 Matsushita Electric Industrial Co., Ltd. Gas sensing device
DE2942516C2 (en) * 1979-10-20 1982-11-11 Drägerwerk AG, 2400 Lübeck Gas detection element for the detection of hydrogen sulfide
SE8105260L (en) * 1980-09-13 1982-03-14 Matsushita Electric Works Ltd Gas Detector
AU558390B2 (en) * 1981-01-14 1987-01-29 Westinghouse Electric Corporation Thick film sensor for hydrogen and carbon monoxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197551U (en) * 1985-05-30 1986-12-10
JPS6383650A (en) * 1986-09-29 1988-04-14 Toshiba Corp Gas sensor
JPH01118759A (en) * 1987-10-31 1989-05-11 Toshiba Corp Gas sensor
JPH0254157A (en) * 1988-08-18 1990-02-23 Toshiba Corp Gas sensor
JPH04152258A (en) * 1990-10-16 1992-05-26 Matsushita Electric Ind Co Ltd Ozone sensor
KR100551225B1 (en) * 2002-05-10 2006-02-09 전자부품연구원 Method for the preparation of catalyst-dopped tin oxide powders for a semiconductor-type gas sensor
JP2013531250A (en) * 2010-07-13 2013-08-01 エバーハルト カール ウニヴェルジテート テュービンゲン Gas sensor and manufacturing method thereof

Also Published As

Publication number Publication date
GB2166549B (en) 1988-11-02
KR890000390B1 (en) 1989-03-16
CA1221736A (en) 1987-05-12
GB8522434D0 (en) 1985-10-16
KR860002716A (en) 1986-04-28
GB2166549A (en) 1986-05-08

Similar Documents

Publication Publication Date Title
JP3606874B2 (en) Sensor for detecting nitrogen oxides
JP2829416B2 (en) Gas sensing element
JPH10505911A (en) Gas detection method and apparatus
WO1992017773A1 (en) Tin oxide gas sensors
JPS6170449A (en) Gas detecting element
JPH03259736A (en) Gaseous hydrogen detecting element
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP3075070B2 (en) Carbon monoxide gas sensor
JPH0444691B2 (en)
KR870001034B1 (en) Gas detecting apparatus
JPS58221154A (en) Gas sensor element
JPH07198651A (en) Thin film type gas sensor
JPH0531104B2 (en)
JPS60149957A (en) Gas sensor
JP2980290B2 (en) Gas detection method and gas sensor used therefor
JPH051417B2 (en)
JPH05322821A (en) Gas sensor
JP2918393B2 (en) Nitrogen oxide detection sensor
Srivastava et al. Effect of SiO^ sub 2^ Overlayer on WO^ sub 3^ Sensitivity to Ammonia
Renault et al. Integration of a sensitive material to a silicon-based device for CO detection
JPH06148112A (en) Hydrogen gas detecting element
JPH0259948B2 (en)
JP2622144B2 (en) Method for producing gas-sensitive thin film
JP3000726B2 (en) Gas sensor
JPH0572162A (en) Gas sensor