JP3271635B2 - Thick film gas sensor and method of manufacturing the same - Google Patents

Thick film gas sensor and method of manufacturing the same

Info

Publication number
JP3271635B2
JP3271635B2 JP22766193A JP22766193A JP3271635B2 JP 3271635 B2 JP3271635 B2 JP 3271635B2 JP 22766193 A JP22766193 A JP 22766193A JP 22766193 A JP22766193 A JP 22766193A JP 3271635 B2 JP3271635 B2 JP 3271635B2
Authority
JP
Japan
Prior art keywords
oxide
gas sensor
gas
layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22766193A
Other languages
Japanese (ja)
Other versions
JPH0735716A (en
Inventor
孝一 津田
徳美 長瀬
孝志 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22766193A priority Critical patent/JP3271635B2/en
Publication of JPH0735716A publication Critical patent/JPH0735716A/en
Application granted granted Critical
Publication of JP3271635B2 publication Critical patent/JP3271635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はLPガス,都市ガス,
水素ガス等を検出するガス漏れ警報器用の厚膜ガスセン
サに係り、特に初期鳴動時間の短い圧膜ガスセンサの構
成に関する。
This invention relates to LP gas, city gas,
The present invention relates to a thick film gas sensor for a gas leak alarm that detects hydrogen gas and the like, and particularly relates to a configuration of a pressure film gas sensor having a short initial sounding time.

【0002】[0002]

【従来の技術】ガスセンサの一つとして酸化スズや酸化
亜鉛等の金属酸化物半導体を用いるものが知られてい
る。これら金属酸化物半導体は大気中において300な
いし500℃程度に加熱されると粒子表面に大気中の酸
素が活性化吸着し、高抵抗化するが還元性ガスである被
検ガス中では還元性ガスが吸着酸素に替えて金属酸化物
半導体に吸着され電気抵抗値が減少する。このような性
質を利用して金属酸化物半導体を利用するガスセンサが
LPガスや都市ガス等のガス漏れ警報器用に利用されて
いる。
2. Description of the Related Art As one of gas sensors, a sensor using a metal oxide semiconductor such as tin oxide or zinc oxide is known. When these metal oxide semiconductors are heated to about 300 to 500 ° C. in the air, the oxygen in the air is activated and adsorbed on the particle surface to increase the resistance, but the reducing gas is a reducing gas in the test gas which is a reducing gas. Is adsorbed by the metal oxide semiconductor instead of adsorbed oxygen, and the electric resistance value decreases. A gas sensor using a metal oxide semiconductor utilizing such properties is used for a gas leak alarm device for LP gas, city gas, and the like.

【0003】図7は従来の厚膜ガスセンサを示す平面図
である。図8は従来の厚膜ガスセンサを示す図7のC−
C矢視断面図である。従来の厚膜ガスセンサはアルミナ
等の絶縁性基板1の一主面上に感ガス層4と酸化燃焼層
3Aを積層して形成される。基板1の他の主面にはヒー
タ8が形成され厚膜ガスセンサを所定の温度に加熱す
る。感ガス層4は例えば酸化スズからなる層である。酸
化燃焼層3Aは酸化スズに白金のような貴金属触媒を担
持して形成される。この酸化燃焼層3Aは感ガス層4の
可燃性ガスに対する感度の経時的な安定性を高めるとと
もに、可燃ガスに対する選択性を高めてアルコール等に
対する感度を低減させる。感ガス層4またはヒータ8に
は電極2,2Aを介して商用電源が直接的に印加され
る。
FIG. 7 is a plan view showing a conventional thick film gas sensor. FIG. 8 shows a conventional thick film gas sensor.
It is arrow C sectional drawing. A conventional thick-film gas sensor is formed by laminating a gas-sensitive layer 4 and an oxidized combustion layer 3A on one main surface of an insulating substrate 1 such as alumina. A heater 8 is formed on the other main surface of the substrate 1 to heat the thick film gas sensor to a predetermined temperature. The gas-sensitive layer 4 is a layer made of, for example, tin oxide. The oxidation combustion layer 3A is formed by supporting a noble metal catalyst such as platinum on tin oxide. The oxidizing combustion layer 3A increases the stability of the gas-sensitive layer 4 with respect to the combustible gas over time, and also increases the selectivity with respect to the combustible gas to reduce the sensitivity with respect to alcohol and the like. Commercial power is directly applied to the gas-sensitive layer 4 or the heater 8 via the electrodes 2 and 2A.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の二層型厚膜ガスセンサにおいては初期鳴動時
間が長くなるという問題があった。図9は従来の厚膜ガ
スセンサの初期鳴動特性を示す線図である。この初期鳴
動はガスセンサに電源を投入してガスセンサの使用を開
始したときにセンサの抵抗が一旦減少してから上昇する
ために抵抗の減少している間は警報を発することとなり
初期鳴動時間はその警報を発している時間を指す。従っ
てこの鳴動時間中はガスセンサが警報を発しないように
制御するがこの初期鳴動時間が長くなるとガスセンサの
使用開始に手間取り好ましくないのである。二層型の厚
膜ガスセンサにおいて初期鳴動時間が長くなる原因は電
源投入後に感ガス層の金属酸化物半導体が酸素を吸着し
て電気抵抗値を増大するがこの酸素吸着に時間がかかる
ためである。従って酸素吸着速度を増大させる触媒を感
ガス層の金属酸化物半導体に担持すればよいが触媒の種
類によっては活性度の変化により金属酸化物半導体の酸
素吸着量を減少させて電気抵抗値の低下をもたらす。
However, the conventional two-layer thick film gas sensor as described above has a problem that the initial ringing time becomes long. FIG. 9 is a diagram showing initial ringing characteristics of a conventional thick film gas sensor. When the gas sensor is turned on and the gas sensor is started to be used, the resistance of the sensor temporarily decreases and then rises, so that an alarm is issued while the resistance is decreasing. Refers to the time during which an alarm is issued. Therefore, during this ringing time, control is performed so that the gas sensor does not issue an alarm. However, if the initial ringing time is long, it takes time to start using the gas sensor, which is not preferable. The reason why the initial ringing time is long in the two-layer type thick film gas sensor is that the metal oxide semiconductor of the gas-sensitive layer adsorbs oxygen and increases the electric resistance after power-on, but this oxygen adsorption takes time. . Therefore, a catalyst that increases the oxygen adsorption rate may be supported on the metal oxide semiconductor in the gas-sensitive layer. Bring.

【0005】この発明は上述の点に鑑みてなされ、その
目的は金属酸化物半導体の抵抗値は変動させないが酸素
吸着速度は増大させる触媒を用いることにより安定性と
初期鳴動特性に優れる厚膜ガスセンサおよびその製造方
法を提供することにある。
The present invention has been made in view of the above points, and has as its object to provide a thick film gas sensor which is excellent in stability and initial ringing characteristics by using a catalyst which does not change the resistance value of a metal oxide semiconductor but increases the oxygen adsorption rate. And a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上述の目的は第一の発明
によれば、金属酸化物半導体の抵抗値の変化を利用して
ガスの有無を検出する厚膜ガスセンサであって、基板
と、一対の電極と、第一の酸化燃焼層と、感ガス層と、
第二の酸化燃焼層とを包含し、基板はガスセンサの支持
体であり、一対の電極は基板上に離間して直接的に被着
され、第一の酸化燃焼層は基板と一対の電極上に選択的
に積層され、感ガス層は第一の酸化燃焼層と一対の電極
上に選択的に積層され、第二の酸化燃焼層は感ガス層の
全部を被覆して積層され、第一の酸化燃焼層は金属酸化
物担体に貴金属触媒を担持してなり、第二の酸化燃焼層
は金属酸化物担体に貴金属触媒を担持してなり、感ガス
層は金属酸化物半導体に酸化コバルト,酸化マンガン,
酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛,酸化クロ
ム,酸化バナジウム,酸化チタン,酸化アルミニウムの
群から選ばれた少なくとも一つを含有させてなるとする
ことにより達成される。
According to a first aspect of the present invention, there is provided a thick-film gas sensor for detecting the presence or absence of a gas by utilizing a change in the resistance value of a metal oxide semiconductor. A pair of electrodes, a first oxidation combustion layer, a gas-sensitive layer,
A second oxidized combustion layer, wherein the substrate is a support for the gas sensor, a pair of electrodes are directly deposited on the substrate at a distance, and a first oxidized combustion layer is formed on the substrate and the pair of electrodes. The gas-sensitive layer is selectively laminated on the first oxidizing combustion layer and the pair of electrodes, and the second oxidizing combustion layer is laminated so as to cover all of the gas-sensitive layer. The oxidized combustion layer of No. 1 has a noble metal catalyst supported on a metal oxide carrier, the second oxidized combustion layer has a noble metal catalyst supported on a metal oxide carrier, and the gas-sensitive layer is cobalt oxide, a metal oxide semiconductor. Manganese oxide,
This is achieved by including at least one selected from the group consisting of nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide.

【0008】また第二の発明によれば金属酸化物半導体
の抵抗値の変化を利用してガスの有無を検出する厚膜ガ
スセンサの製造方法であって、(1)酸化燃焼層の成膜
工程と、(2)感ガス層の成膜工程とを包含し、酸化燃
焼層の成膜工程は貴金属触媒を担持した金属酸化物粉体
のペーストを調製し、塗布乾燥し、熱処理する工程であ
り、感ガス層の成膜工程は金属酸化物半導体の粉体にニ
ッケル,鉄,アルミニウムまたはクロムの金属粉体を添
加したペーストを調製し、塗布乾燥し、熱処理する工程
であるとすることにより達成される。
According to a second aspect of the present invention, there is provided a method for manufacturing a thick-film gas sensor for detecting the presence or absence of gas by utilizing a change in the resistance value of a metal oxide semiconductor. And (2) the step of forming a gas-sensitive layer. The step of forming an oxidized combustion layer is a step of preparing a paste of a metal oxide powder supporting a noble metal catalyst, coating, drying and heat-treating the paste. The process of forming the gas-sensitive layer is achieved by preparing a paste obtained by adding a metal powder of nickel, iron, aluminum or chromium to a powder of a metal oxide semiconductor, coating, drying and heat-treating the paste. Is done.

【0009】酸化燃焼層はアルコール等の干渉ガスを酸
化燃焼して厚膜ガスセンサに対する干渉ガスの影響をな
くす。感ガス層はLPガス等の被検ガスを吸着して電気
抵抗値を減少し被検ガスを検出する。第一の酸化燃焼層
と第二の酸化燃焼層は感ガス層に対する空気の供給速度
を高める。
The oxidizing combustion layer oxidizes and combusts an interference gas such as alcohol to eliminate the influence of the interference gas on the thick film gas sensor. The gas-sensitive layer adsorbs a test gas such as LP gas, reduces the electric resistance value, and detects the test gas. The first oxidizing combustion layer and the second oxidizing combustion layer increase the supply rate of air to the gas-sensitive layer.

【0010】[0010]

【作用】酸化コバルト,酸化マンガン,酸化ニッケル,
酸化銅,酸化鉄,酸化亜鉛,酸化クロム,酸化バナジウ
ム,酸化チタン,酸化アルミニウム等の酸化物は感ガス
層の金属酸化物半導体中に含有された状態で金属酸化物
半導体が酸素吸着する際の触媒として機能する。
[Action] Cobalt oxide, manganese oxide, nickel oxide,
Oxides such as copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide are contained in the metal oxide semiconductor in the gas-sensitive layer when the metal oxide semiconductor adsorbs oxygen. Functions as a catalyst.

【0011】前記酸化物触媒は感ガス層の金属酸化物半
導体中に含有された状態で粒成長を起こさず、触媒活性
を一定に維持し金属酸化物半導体の酸素吸着量で決定さ
れる電気抵抗値を安定に維持する。
When the oxide catalyst is contained in the metal oxide semiconductor of the gas-sensitive layer, it does not cause grain growth, maintains a constant catalytic activity, and has an electric resistance determined by the amount of oxygen adsorbed on the metal oxide semiconductor. Keep the value stable.

【0012】[0012]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。 実施例1 図1は第一の発明の実施例に係る厚膜ガスセンサを示す
平面図である。図2は第一の発明の実施例に係る厚膜ガ
スセンサを示す図1のA−A矢視断面図である。
Next, an embodiment of the present invention will be described with reference to the drawings. Embodiment 1 FIG. 1 is a plan view showing a thick film gas sensor according to an embodiment of the first invention. FIG. 2 is a cross-sectional view of the thick-film gas sensor according to the first embodiment of the present invention, taken along line AA of FIG.

【0013】第一の発明の実施例に係る厚膜ガスセンサ
の構造は次の通りである。基板1の一主面上に離間して
二つの電極2が設けられる。基板1と電極2の上に第一
の酸化燃焼層3Bが選択的に設けられる。第一の酸化燃
焼層3Bと電極2の上に感ガス層4が選択的に形成され
る。感ガス層4を完全に被覆して第二の酸化燃焼層3C
が設けられる。電極2にリード線7が接続される。基板
1の他の主面には電極2Aが形成され、電極2Aと基板
1の上に選択的にヒータ8が形成され、電極2Aにはリ
ード線9が接続される。
The structure of the thick film gas sensor according to the embodiment of the first invention is as follows. Two electrodes 2 are provided separately on one main surface of the substrate 1. A first oxidation combustion layer 3B is selectively provided on the substrate 1 and the electrode 2. The gas-sensitive layer 4 is selectively formed on the first oxidation combustion layer 3B and the electrode 2. Completely cover the gas-sensitive layer 4 to form the second oxidized combustion layer 3C
Is provided. The lead wire 7 is connected to the electrode 2. An electrode 2A is formed on the other main surface of the substrate 1, a heater 8 is selectively formed on the electrode 2A and the substrate 1, and a lead wire 9 is connected to the electrode 2A.

【0014】基板1は厚さ0.5mmで縦3mm、横3
mmの研磨されたアルミナ基板である。ヒータは酸化ル
テニウム抵抗体からなる。このような厚膜ガスセンサは
次のようにして調製される。基板1の二つの主面に白金
電極ペーストを所定のパターンでスクリーン印刷し、乾
燥後約1100℃の温度で焼成した。酸化ルテニウムか
らなるヒータ用ペーストを所定のパターンでスクリーン
印刷し所定の温度で焼成した。
The substrate 1 is 0.5 mm thick, 3 mm long and 3 mm wide.
mm polished alumina substrate. The heater comprises a ruthenium oxide resistor. Such a thick film gas sensor is prepared as follows. A platinum electrode paste was screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, dried, and fired at a temperature of about 1100 ° C. A paste for a heater made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature.

【0015】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第一の酸化燃焼層用のペーストを得た。
得られた第一の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
[0015] Tin oxide powder in dry air at a temperature of 730 ° C
For 2 hours, and an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted to have a platinum content of 2% with respect to the tin oxide powder is added to the obtained tin oxide powder, kneaded, and dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose H 2 PtCl 6 chloroplatinate to support platinum on the tin oxide powder. After the obtained powder was pulverized with a ball mill, an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like were added and kneaded to obtain a paste for a first oxidation combustion layer.
The obtained paste for the first oxidation combustion layer was screen-printed in a predetermined pattern to a thickness of 20 μm, and dried at 120 ° C. for 2 hours.

【0016】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に酸化コバルトCo
O ,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,
酸化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3 ,酸化
バナジウムV2O5,酸化チタンTiO2もしくは酸化アルミニ
ウムAl2O3 の粉体を酸化スズ粉体に対して0.1重量%
の割合になるように加え混合しさらにエチルシリケー
ト,エチルセルロース,カルビトール等を適量加え混練
して感ガス層用のペーストを得た。得られたペーストを
所定のパターンにより50μm厚さにスクリーン印刷
し、120℃で2h乾燥した。
[0016] Tin oxide powder in dry air at a temperature of 730 ° C
For 2 hours, and the obtained tin oxide powder is treated with cobalt oxide Co.
O, manganese oxide MnO, nickel oxide NiO, copper oxide CuO,
Powder of iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 was added to tin oxide powder in an amount of 0.1%. weight%
, And mixed with an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like to obtain a paste for a gas-sensitive layer. The obtained paste was screen-printed to a thickness of 50 μm according to a predetermined pattern, and dried at 120 ° C. for 2 hours.

【0017】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体に白金の含有量が
酸化スズ粉体に対して2%になるように調整した塩化白
金酸H2PtCl6 の水溶液を加え、混練したのち、乾燥し
た。この粉体を温度600℃で3h熱処理し、塩化白金
酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持させ
た。得られた粉体をボールミルで粉砕したのち、エチル
シリケート,エチルセルロース,カルビトール等を適量
加え、混練して第二の酸化燃焼層用のペーストを得た。
得られた第二の酸化燃焼層用のペーストを所定のパター
ンにより20μm厚さにスクリーン印刷し、120℃で
2h乾燥した。
[0017] Tin oxide powder in dry air at a temperature of 730 ° C
For 2 hours, and an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted to have a platinum content of 2% with respect to the tin oxide powder is added to the obtained tin oxide powder, kneaded, and dried. did. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose H 2 PtCl 6 chloroplatinate to support platinum on the tin oxide powder. After the obtained powder was pulverized with a ball mill, an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like were added and kneaded to obtain a second paste for an oxidized combustion layer.
The obtained paste for the second oxidation combustion layer was screen-printed to a thickness of 20 μm according to a predetermined pattern, and dried at 120 ° C. for 2 hours.

【0018】第一の酸化燃焼層と感ガス層と第二の酸化
燃焼層を印刷し乾燥した後にこれらを630℃の温度で
3h同時に焼成して第一の酸化燃焼層3B、感ガス層
4、第二の酸化燃焼層3Cを形成した。続いて電極2,
2Aにそれぞれ白金リード線7,9を接続して厚膜ガス
センサを得た。それぞれのリード線を警報器の回路に接
続した。 比較例1 実施例1の厚膜ガスセンサと同一の構造のセンサを用い
た。
After printing and drying the first oxidized combustion layer, the gas-sensitive layer and the second oxidized combustion layer, they are simultaneously fired at a temperature of 630 ° C. for 3 hours to obtain a first oxidized combustion layer 3 B and a gas-sensitive layer 4. Thus, a second oxidation combustion layer 3C was formed. Then the electrodes 2,
Platinum leads 7 and 9 were connected to 2A, respectively, to obtain a thick film gas sensor. Each lead was connected to the alarm circuit. Comparative Example 1 A sensor having the same structure as the thick film gas sensor of Example 1 was used.

【0019】比較例1に係る厚膜ガスセンサ次のように
して調製される。基板1の二つの主面に白金電極ペース
トを所定のパターンでスクリーン印刷し、乾燥後約11
00℃の温度で焼成した。酸化ルテニウムからなるヒー
タ用ペーストを所定のパターンでスクリーン印刷し所定
の温度で焼成した。酸化スズ粉体を乾燥空気中で温度7
30℃で2h処理し、得られた酸化スズ粉体に白金の含
有量が酸化スズ粉体に対して2%になるように調整した
塩化白金酸H2PtCl6の水溶液を加え、混練したのち、乾
燥した。この粉体を温度600℃で3h熱処理し、塩化
白金酸H2PtCl6 を分解して酸化スズ粉体上に白金を担持
させた。得られた粉体をボールミルで粉砕したのち、エ
チルシリケート,エチルセルロース,カルビトール等を
適量加え、混練して第一の酸化燃焼層用のペーストを得
た。得られた第一の酸化燃焼層用のペーストを所定のパ
ターンにより20μm厚さにスクリーン印刷し、120
℃で2h乾燥した。
Thick film gas sensor according to comparative example 1 is prepared as follows. Platinum electrode paste is screen-printed on the two main surfaces of the substrate 1 in a predetermined pattern, and after drying, about 11
It was fired at a temperature of 00 ° C. A paste for a heater made of ruthenium oxide was screen-printed in a predetermined pattern and fired at a predetermined temperature. Tin oxide powder in dry air at a temperature of 7
The mixture was treated at 30 ° C. for 2 hours, and an aqueous solution of chloroplatinic acid H 2 PtCl 6 adjusted to have a platinum content of 2% with respect to the tin oxide powder was added to the obtained tin oxide powder, followed by kneading. And dried. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose H 2 PtCl 6 chloroplatinate to support platinum on the tin oxide powder. After the obtained powder was pulverized with a ball mill, an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like were added and kneaded to obtain a paste for a first oxidation combustion layer. The obtained paste for the first oxidation combustion layer was screen-printed in a predetermined pattern to a thickness of 20 μm,
It was dried at 2 ° C. for 2 hours.

【0020】酸化スズ粉体を乾燥空気中で温度730℃
で2h処理し、得られた酸化スズ粉体にエチルシリケー
ト,エチルセルロース,カルビトール等を適量加え混練
して感ガス層用のペーストを得た。得られたペーストを
所定のパターンにより50μm厚さにスクリーン印刷
し、120℃で2h乾燥した。酸化スズ粉体を乾燥空気
中で温度730℃で2h処理し、得られた酸化スズ粉体
に白金の含有量が酸化スズ粉体に対して2%になるよう
に調整した塩化白金酸H2PtCl6 の水溶液を加え、混練し
たのち、乾燥した。この粉体を温度600℃で3h熱処
理し、塩化白金酸H2PtCl6 を分解して酸化スズ粉体上に
白金を担持させた。得られた粉体をボールミルで粉砕し
たのち、エチルシリケート,エチルセルロース,カルビ
トール等を適量加え、混練して第二の酸化燃焼層用のペ
ーストを得た。得られた第二の酸化燃焼層用のペースト
を所定のパターンにより20μm厚さにスクリーン印刷
し、120℃で2h乾燥した。
[0020] Tin oxide powder in dry air at a temperature of 730 ° C
For 2 hours, and an appropriate amount of ethyl silicate, ethyl cellulose, carbitol or the like was added to the obtained tin oxide powder and kneaded to obtain a paste for a gas-sensitive layer. The obtained paste was screen-printed to a thickness of 50 μm according to a predetermined pattern, and dried at 120 ° C. for 2 hours. The tin oxide powder for 2h at a temperature 730 ° C. in dry air, chloroplatinic acid content was adjusted to 2% with respect to tin oxide powder of platinum obtained tin oxide powder H 2 An aqueous solution of PtCl 6 was added, kneaded, and dried. This powder was heat-treated at a temperature of 600 ° C. for 3 hours to decompose H 2 PtCl 6 chloroplatinate to support platinum on the tin oxide powder. After the obtained powder was pulverized with a ball mill, an appropriate amount of ethyl silicate, ethyl cellulose, carbitol and the like were added and kneaded to obtain a second paste for an oxidized combustion layer. The obtained paste for the second oxidation combustion layer was screen-printed to a thickness of 20 μm according to a predetermined pattern, and dried at 120 ° C. for 2 hours.

【0021】第一の酸化燃焼層と感ガス層と第二の酸化
燃焼層を印刷し乾燥した後にこれらを630℃の温度で
3h同時に焼成して第一の酸化燃焼層3B、感ガス層
4、第二の酸化燃焼層3Cを形成した。続いて電極2,
2Aにそれぞれ白金リード線7,9を接続して厚膜ガス
センサを得た。それぞれのリード線を警報器の回路に接
続した。
After printing and drying the first oxidized combustion layer, the gas-sensitive layer and the second oxidized combustion layer, they are simultaneously fired at a temperature of 630 ° C. for 3 hours to obtain a first oxidized combustion layer 3 B and a gas-sensitive layer 4. Thus, a second oxidation combustion layer 3C was formed. Then the electrodes 2,
Platinum leads 7 and 9 were connected to 2A, respectively, to obtain a thick film gas sensor. Each lead was connected to the alarm circuit.

【0022】実施例1と比較例1に係る厚膜ガスセンサ
につき30日間放置後の初期鳴動時間を測定した。結果
が表1に示される。
The initial ringing time of the thick film gas sensors according to Example 1 and Comparative Example 1 after being left for 30 days was measured. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】感ガス層に酸化物触媒を含む厚膜ガスセン
サは初期鳴動時間が短いことがわかる。これに対し感ガ
ス層に酸化物触媒を含まない厚膜ガスセンサは初期鳴動
時間が長いことがわかる。図3は第一の発明の実施例に
係る厚膜ガスセンサの抵抗特性を示す線図である。厚膜
ガスセンサの抵抗値は0.2%イソブタンガス中で測定
された。第一の発明の実施例に係る厚膜ガスセンサは感
ガス層に酸化物触媒を含むが長期にわたってセンサ抵抗
値が安定であることがわかる。
It can be seen that the thick-film gas sensor containing the oxide catalyst in the gas-sensitive layer has a short initial ringing time. On the other hand, it can be seen that the thick-film gas sensor having no oxide catalyst in the gas-sensitive layer has a long initial ringing time. FIG. 3 is a diagram showing resistance characteristics of the thick film gas sensor according to the embodiment of the first invention. The resistance of the thick film gas sensor was measured in 0.2% isobutane gas. It can be seen that the thick-film gas sensor according to the example of the first invention includes an oxide catalyst in the gas-sensitive layer, but has a stable sensor resistance value over a long period of time.

【0045】実施例2 感ガス層用のペーストの調製において酸化コバルトCoO
,酸化マンガMnO ,酸化ニッケルNiO, 酸化銅CuO ,酸
化鉄Fe2O3 ,酸化亜鉛ZnO ,酸化クロムCr2O3,酸化バ
ナジウムV2O5,酸化チタンTiO2もしくは酸化アルミニウ
ムAl2O3 の粉体を酸化スズ粉体に対して0.1重量%の
割合になるように加え混合することに替えて金属ニッケ
ル.金属クロム,金属鉄もしくは金属アルミニウムの粉
体を100ないし5000ppmの範囲で添加してエチ
ルアルコールを分散媒としてボールミルで20h混合し
アルコールを自然乾燥して混合することにする他は実施
例1と同様にして厚膜ガスセンサを調製した。上記金属
は熱処理により金属酸化物半導体中において酸化物に変
わり触媒として機能する。
Example 2 In preparing a paste for a gas-sensitive layer, cobalt oxide CoO was used.
Manganese oxide, nickel oxide NiO, copper oxide CuO, iron oxide Fe 2 O 3 , zinc oxide ZnO, chromium oxide Cr 2 O 3 , vanadium oxide V 2 O 5 , titanium oxide TiO 2 or aluminum oxide Al 2 O 3 Instead of adding and mixing the powder at a ratio of 0.1% by weight with respect to the tin oxide powder, metal nickel. Same as Example 1 except that powder of metal chromium, metal iron or metal aluminum is added in the range of 100 to 5000 ppm, mixed with ethyl alcohol as a dispersion medium in a ball mill for 20 hours, and alcohol is naturally dried and mixed. Thus, a thick-film gas sensor was prepared. The metal is converted into an oxide in the metal oxide semiconductor by heat treatment and functions as a catalyst.

【0046】図6は第二の発明の実施例に係る厚膜ガス
センサの初期鳴動特性(イ)を従来の厚膜ガスセンサの
特性(ア)と対比して示す線図である。触媒はニッケル
である。本発明の実施例に係る厚膜ガスセンサは無通電
時間の如何に係わらず初期鳴動時間は小さい。これに対
し従来の厚膜ガスセンサは初期鳴動時間が無通電時間と
ともに急速に増大することがわかる。
FIG. 6 is a diagram showing the initial ringing characteristic (A) of the thick film gas sensor according to the second embodiment of the present invention in comparison with the characteristic (A) of the conventional thick film gas sensor. The catalyst is nickel. The thick-film gas sensor according to the embodiment of the present invention has a small initial ringing time regardless of the non-energization time. In contrast, it can be seen that the conventional thick film gas sensor rapidly increases the initial ringing time with the non-energizing time.

【0047】図5は第二の発明の実施例に係る厚膜ガス
センサにつきセンサ抵抗値の経時安定性(ウ)を従来の
厚膜ガスセンサの特性(エ)と対比して示す線図であ
る。触媒はニッケルである。測定は0.2%のイソブタ
ンガス中で行われた。第一の発明の異なる実施例に係る
厚膜ガスセンサは7日間でほぼ抵抗値が安定するが従来
の厚膜ガスセンサは徐徐に抵抗値が減少することがわか
る。
FIG. 5 is a diagram showing the temporal stability (c) of the sensor resistance value of the thick film gas sensor according to the second embodiment of the present invention in comparison with the characteristic (d) of the conventional thick film gas sensor. The catalyst is nickel. The measurement was performed in 0.2% isobutane gas. It can be seen that the resistance value of the thick-film gas sensor according to the different embodiment of the first invention is almost stable in 7 days, but the resistance value of the conventional thick-film gas sensor gradually decreases.

【0048】図6は第二の発明の実施例に係る厚膜ガス
センサにつきセンサ抵抗値の電圧依存性(オ)を従来の
厚膜ガスセンサの特性(カ)と対比して示す線図であ
る。触媒はニッケルを用いた。第二の発明の実施例に係
る厚膜ガスセンサは空気中でのセンサ抵抗値が従来のも
のに比し大きい。この結果同一のセンサ抵抗値を示す電
圧が本発明の厚膜ガスセンサにおいては従来のものに比
し5V程度高くなり、厚膜ガスセンサの警報発信の電圧
依存性が少なくなる。
FIG. 6 is a diagram showing the voltage dependence (e) of the sensor resistance value of the thick film gas sensor according to the second embodiment of the present invention in comparison with the characteristic (f) of the conventional thick film gas sensor. Nickel was used as the catalyst. The thick film gas sensor according to the embodiment of the second invention has a larger sensor resistance value in air than the conventional one. As a result, the voltage showing the same sensor resistance value is about 5 V higher in the thick film gas sensor of the present invention than in the prior art, and the voltage dependency of the thick film gas sensor for issuing an alarm is reduced.

【0049】クロム,鉄もしくはアルミニウム等の触媒
についても同様の特性が観測される。
Similar characteristics are observed for catalysts such as chromium, iron or aluminum.

【0050】[0050]

【発明の効果】第一の発明によれば、金属酸化物半導体
の抵抗値の変化を利用してガスの有無を検出する厚膜ガ
スセンサであって、基板と、一対の電極と、第一の酸化
燃焼層と、感ガス層と、第二の酸化燃焼層とを包含し、
基板はガスセンサの支持体であり、一対の電極は基板上
に離間して直接的に被着され、第一の酸化燃焼層は基板
と一対の電極上に選択的に積層され、感ガス層は第一の
酸化燃焼層と一対の電極上に選択的に積層され、第二の
酸化燃焼層は感ガス層の全部を被覆して積層され、第一
の酸化燃焼層は金属酸化物担体に貴金属触媒を担持して
なり、第二の酸化燃焼層は金属酸化物担体に貴金属触媒
を担持してなり、感ガス層は金属酸化物半導体に酸化コ
バルト,酸化マンガン,酸化ニッケル,酸化銅,酸化
鉄,酸化亜鉛,酸化クロム,酸化バナジウム,酸化チタ
ン,酸化アルミニウムの群から選ばれた少なくとも一つ
を含有させてなるとし、また第二の発明によれば金属酸
化物半導体の抵抗値の変化を利用してガスの有無を検出
する厚膜ガスセンサの製造方法であって、(1)酸化燃
焼層の成膜工程と、(2)感ガス層の成膜工程とを包含
し、酸化燃焼層の成膜工程は貴金属触媒を担持した金属
酸化物粉体のペーストを調製し、塗布乾燥し、熱処理す
る工程であり、感ガス層の成膜工程は金属酸化物半導体
の粉体にニッケル,鉄,アルミニウムまたはクロムの金
属粉体を添加したペーストを調製し、塗布乾燥し、熱処
理する工程であるとするので、酸化コバルト,酸化マン
ガン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛,酸化
クロム,酸化バナジウム,酸化チタン,酸化アルミニウ
ム等の酸化物触媒は感ガス層の金属酸化物半導体中に含
有された状態で金属酸化物半導体が酸素吸着する際の触
媒として機能しまた前記酸化物触媒は感ガス層の金属酸
化物半導体中に含有された状態で粒成長を起こさず、触
媒活性を一定に維持し金属酸化物半導体の酸素吸着量を
安定に維持し、その結果初期鳴動特性と安定性に優れる
厚膜ガスセンサが得られる。
According to the first invention, there is provided a thick-film gas sensor for detecting the presence or absence of a gas by utilizing a change in the resistance value of a metal oxide semiconductor, comprising: a substrate; a pair of electrodes; Including an oxidizing combustion layer, a gas-sensitive layer, and a second oxidizing combustion layer,
The substrate is a support for the gas sensor, the pair of electrodes are directly deposited on the substrate at a distance, the first oxidized combustion layer is selectively laminated on the substrate and the pair of electrodes, and the gas-sensitive layer is The first oxidation combustion layer is selectively laminated on the pair of electrodes, the second oxidation combustion layer covers the entire gas-sensitive layer and laminated, and the first oxidation combustion layer is formed of a noble metal on a metal oxide carrier. A catalyst is supported, the second oxidized combustion layer is a metal oxide carrier, which carries a noble metal catalyst, and the gas-sensitive layer is a metal oxide semiconductor, which is formed of cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide. And at least one selected from the group consisting of zinc oxide, chromium oxide, vanadium oxide, titanium oxide, and aluminum oxide. According to the second invention, a change in the resistance value of a metal oxide semiconductor is used. Thick gas sensor that detects presence or absence of gas A manufacturing method, comprising: (1) a step of forming an oxidized combustion layer; and (2) a step of forming a gas-sensitive layer, wherein the step of forming an oxidized combustion layer comprises a metal oxide powder supporting a noble metal catalyst. In this process, a paste of the body is prepared, coated and dried, and then heat-treated. The gas-sensitive layer is formed by adding a powder of nickel, iron, aluminum or chromium to a powder of a metal oxide semiconductor. It is said that it is a process of coating, drying, and heat-treating. Therefore, oxide catalysts such as cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide, zinc oxide, chromium oxide, vanadium oxide, titanium oxide, aluminum oxide, etc. The metal oxide semiconductor functions as a catalyst when oxygen is adsorbed when contained in the metal oxide semiconductor of the gas-sensitive layer, and the oxide catalyst is contained in the metal oxide semiconductor of the gas-sensitive layer. Granulation The without causing the oxygen adsorption amount of maintaining the catalytic activity constant metal oxide semiconductor maintaining stable, thick film gas sensor excellent result initial sounding characteristics and stability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の発明の実施例に係る厚膜ガスセンサを示
す平面図
FIG. 1 is a plan view showing a thick-film gas sensor according to an embodiment of the first invention.

【図2】第一の発明の実施例に係る厚膜ガスセンサを示
す図1のA−A矢視断面図
FIG. 2 is a cross-sectional view of the thick-film gas sensor according to the embodiment of the first invention, taken along the line AA of FIG. 1;

【図3】第一の発明の実施例に係る厚膜ガスセンサの抵
抗特性を示す線図
FIG. 3 is a diagram showing resistance characteristics of the thick-film gas sensor according to the embodiment of the first invention.

【図4】第二の発明の実施例に係る厚膜ガスセンサの初
期鳴動特性(イ)を従来の厚膜ガスセンサの特性(ア)
と対比して示す線図
FIG. 4 shows the initial ringing characteristics (a) of the thick film gas sensor according to the embodiment of the second invention, and the characteristics (a) of the conventional thick film gas sensor.
Diagram shown in comparison with

【図5】第二の発明の実施例に係る厚膜ガスセンサにつ
きセンサ抵抗値の経時安定性(ウ)を従来の厚膜ガスセ
ンサの特性と対比して示す線図
FIG. 5 is a diagram showing the temporal stability (c) of the sensor resistance value of the thick film gas sensor according to the embodiment of the second invention in comparison with the characteristics of a conventional thick film gas sensor.

【図6】第二の発明の実施例に係る厚膜ガスセンサにつ
きセンサ抵抗値の電圧依存性(オ)を従来の厚膜ガスセ
ンサの特性(カ)と対比して示す線図
FIG. 6 is a diagram showing the voltage dependence (e) of the sensor resistance value of the thick film gas sensor according to the embodiment of the second invention in comparison with the characteristic (f) of the conventional thick film gas sensor.

【図7】従来の厚膜ガスセンサを示す平面図FIG. 7 is a plan view showing a conventional thick film gas sensor.

【図8】従来の厚膜ガスセンサを示す図7のC−C矢視
断面図
8 is a cross-sectional view of the conventional thick-film gas sensor taken along the line CC in FIG. 7;

【図9】厚膜ガスセンサの初期鳴動特性を示す線図FIG. 9 is a diagram showing initial ringing characteristics of a thick film gas sensor.

【符号の説明】[Explanation of symbols]

1 基板 2 電極 2A 電極 3A 酸化燃焼層 3B 第一の酸化燃焼層 3C 第二の酸化燃焼層 3D 第三の酸化燃焼層 4 感ガス層 7 リード線 8 ヒータ 9 リード線 Reference Signs List 1 substrate 2 electrode 2A electrode 3A oxidation combustion layer 3B first oxidation combustion layer 3C second oxidation combustion layer 3D third oxidation combustion layer 4 gas sensitive layer 7 lead 8 heater 9 lead

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−104396(JP,A) 特開 昭54−145200(JP,A) 特開 昭54−104395(JP,A) 特開 昭56−33535(JP,A) 特開 昭60−7353(JP,A) 特開 平5−45319(JP,A) 特開 平1−304350(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/12 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-54-104396 (JP, A) JP-A-54-145200 (JP, A) JP-A-54-104395 (JP, A) JP-A-56-104396 33535 (JP, A) JP-A-60-7353 (JP, A) JP-A-5-45319 (JP, A) JP-A-1-304350 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物半導体の抵抗値の変化を利用し
てガスの有無を検出する厚膜ガスセンサであって、 (1)基板と、 (2)一対の電極と、 (3)第一の酸化燃焼層と、 (4)感ガス層と、 (5)第二の酸化燃焼層とを包含し、 基板はガスセンサの支持体であり、 一対の電極は基板上に離間して直接的に被着され、 第一の酸化燃焼層は基板と一対の電極上に選択的に積層
され、 感ガス層は第一の酸化燃焼層と一対の電極上に選択的に
積層され、 第二の酸化燃焼層は感ガス層の全部を被覆して積層さ
れ、 第一の酸化燃焼層は金属酸化物担体に貴金属触媒を担持
してなり、 第二の酸化燃焼層は金属酸化物担体に貴金属触媒を担持
してなり、 感ガス層は金属酸化物半導体に酸化コバルト,酸化マン
ガン,酸化ニッケル,酸化銅,酸化鉄,酸化亜鉛,酸化
クロム,酸化バナジウム,酸化チタン,酸化アルミニウ
ムの群から選ばれた少なくとも一つを含有させてなるこ
とを特徴とする厚膜ガスセンサ。
1. A thick-film gas sensor for detecting the presence or absence of a gas by utilizing a change in the resistance value of a metal oxide semiconductor, comprising: (1) a substrate; (2) a pair of electrodes; And (4) a gas-sensitive layer, and (5) a second oxidative combustion layer, wherein the substrate is a support for the gas sensor, and the pair of electrodes are directly spaced apart from the substrate. A first oxidation combustion layer is selectively deposited on the substrate and the pair of electrodes; a gas-sensitive layer is selectively deposited on the first oxidation combustion layer and the pair of electrodes; The combustion layer covers the entire gas-sensitive layer and is laminated. The first oxidation combustion layer has a noble metal catalyst supported on a metal oxide carrier, and the second oxidation combustion layer has a noble metal catalyst supported on a metal oxide carrier. The gas-sensitive layer is made of metal oxide semiconductor, cobalt oxide, manganese oxide, nickel oxide, copper oxide, iron oxide A thick film gas sensor comprising at least one selected from the group consisting of zinc oxide, chromium oxide, vanadium oxide, titanium oxide and aluminum oxide.
【請求項2】金属酸化物半導体の抵抗値の変化を利用し
てガスの有無を検出する厚膜ガスセンサの製造方法であ
って、 (1)酸化燃焼層の成膜工程と、 (2)感ガス層の成膜工程とを包含し、 酸化燃焼層の成膜工程は貴金属触媒を担持した金属酸化
物粉体のペーストを調製し、塗布乾燥し、熱処理する工
程であり、 感ガス層の成膜工程は金属酸化物半導体の粉体にニッケ
ル,鉄,アルミニウムまたはクロムの金属粉体を添加し
たペーストを調製し、塗布乾燥し、熱処理する工程であ
ることを特徴とする厚膜ガスセンサの製造方法。
2. A method for manufacturing a thick-film gas sensor for detecting the presence or absence of gas by utilizing a change in resistance value of a metal oxide semiconductor, comprising: (1) a step of forming an oxidized combustion layer; And a gas layer forming step. The oxidizing and burning layer forming step is a step of preparing a paste of a metal oxide powder supporting a noble metal catalyst, coating and drying, and performing a heat treatment. The method of manufacturing a thick-film gas sensor, comprising: preparing a paste in which a metal powder of nickel, iron, aluminum or chromium is added to a powder of a metal oxide semiconductor, applying, drying and heat-treating the paste. .
【請求項3】請求項2に記載の厚膜ガスセンサの製造方
法において、 金属酸化物半導体の粉体に対する金属粉体の添加量は1
00ないし5000ppmの範囲にあることを特徴とす
る厚膜ガスセンサの製造方法。
3. The method of manufacturing a thick film gas sensor according to claim 2, wherein the amount of the metal powder added to the metal oxide semiconductor powder is one.
A method for manufacturing a thick film gas sensor, wherein the thickness is in the range of 00 to 5000 ppm.
JP22766193A 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same Expired - Fee Related JP3271635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22766193A JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-115082 1993-05-18
JP11508293 1993-05-18
JP22766193A JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0735716A JPH0735716A (en) 1995-02-07
JP3271635B2 true JP3271635B2 (en) 2002-04-02

Family

ID=26453685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22766193A Expired - Fee Related JP3271635B2 (en) 1993-05-18 1993-09-14 Thick film gas sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3271635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256166B (en) * 2008-04-16 2012-05-09 北京航空航天大学 Method of preparing zinc oxide/titanium dioxide composite self-assembly thin film gas sensitive device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483304B1 (en) * 2002-04-15 2005-04-15 한라산업개발 주식회사 Method for Making Thick Film Gas Sensors
KR101131702B1 (en) * 2009-02-27 2012-04-03 포항공과대학교 산학협력단 Gas sensor material, gas sensor having the same and method of manufacturing the gas sensor material
CN113433171B (en) * 2021-06-24 2022-11-22 兰州大学 Gas sensitive material, gas sensor and preparation method and application of gas sensitive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256166B (en) * 2008-04-16 2012-05-09 北京航空航天大学 Method of preparing zinc oxide/titanium dioxide composite self-assembly thin film gas sensitive device

Also Published As

Publication number Publication date
JPH0735716A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
JP3350686B2 (en) Tin oxide gas sensor and manufacturing method
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP3191544B2 (en) Thick film type gas sensor
JPH07128268A (en) Hydrogen gas sensor
JP3075070B2 (en) Carbon monoxide gas sensor
JPH07113618B2 (en) Oxygen gas detector
JPS6136175B2 (en)
JP3026523B2 (en) Gas sensor
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH0743331A (en) Thick film gas sensor
JPH07120425A (en) Contact combustion type gas sensor
JPH0221256A (en) Gas sensor
JPH0252247A (en) Gas sensor
JPH06288953A (en) Thick-film gas sensor
JPH0382945A (en) Semiconductor gas sensor
JPH07198650A (en) Thick film type gas sensor
JP2570440B2 (en) Gas sensor
JPH06186191A (en) Thick-film gas sensor
JP3486797B2 (en) Activation method of catalyst for gas sensor
JPH04344450A (en) Gas sensor
JPS63279150A (en) Semiconductor type gas sensor
JP3191523B2 (en) Thick film gas sensor
JPS6128937B2 (en)
JP2575479B2 (en) Gas sensor
JPH04279853A (en) Gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees