JPH0252247A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0252247A
JPH0252247A JP20405388A JP20405388A JPH0252247A JP H0252247 A JPH0252247 A JP H0252247A JP 20405388 A JP20405388 A JP 20405388A JP 20405388 A JP20405388 A JP 20405388A JP H0252247 A JPH0252247 A JP H0252247A
Authority
JP
Japan
Prior art keywords
gas
layer
coating layer
tin oxide
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20405388A
Other languages
Japanese (ja)
Inventor
Shinichi Ochiwa
小知和 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20405388A priority Critical patent/JPH0252247A/en
Publication of JPH0252247A publication Critical patent/JPH0252247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To selectively oxidize only the alcohol vapor which is a disturbing gas by coating the outside surface of a gas sensitive layer with an n type oxide semiconductor added with a noble metal and increasing the concn. of the noble metal in this coating layer to the concn. higher than the concn. of the catalyst in the gas sensitive layer. CONSTITUTION:A tin oxide layer 2 which is the gas sensitive layer and is added with about 0.1-1.0% platinum, palladium, etc., is provided on electrodes 11, 12 provided to an alumina substrate 3 and the coating layer 4 consisting of tin oxide powder added with the platinum, palladium, etc., at the ratio higher by about 2-10% than the concn. in the tin oxide layer 2 is formed by firing on the outside surface thereof. The alcohol vapor is oxidized away by this coating layer and the detecting gas is hardly oxidized. The sensitivity to the alcohol vapor is thus suppressed. The alcohol oxidation activity of the coating layer 4 decreases if the concn. of the platinum, etc., in the coating layer 4 is about <=2% and the alcohol sensitivity exceeds isobutane sensitivity at about <=500 deg.C. The isobutane oxidation activity of the coating layer 4 is significant at a high temp. if the concn. is about >=10% and therefore, the usable temp. region narrows.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化スズ、酸化亜鉛等のn型金属酸化物半
導体を感ガス層とし、検知対象ガス以外の妨害ガス、例
えばLPガス用センサでのアルコール蒸気に対する感度
を抑制してガス選択性を高めたガスセンサに関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses an n-type metal oxide semiconductor such as tin oxide or zinc oxide as a gas-sensitive layer, and is used as a sensor for interfering gases other than the target gas, such as LP gas. The present invention relates to a gas sensor that suppresses sensitivity to alcohol vapor and increases gas selectivity.

〔従来の技術〕[Conventional technology]

酸化スズ、酸化亜鉛等のn型金属酸化物半導体は、大気
中で300〜500℃の温度に加熱されると粒子表面に
大気中の酸素が活性化吸着して高抵抗化しているが、可
燃性ガスが接触すると吸着酸素と可燃性ガスとが反応し
て吸着酸素が除去され抵抗値が減少する。この様な性質
を利用して、酸化スズを用いたガスセンサはLPガス、
都市ガスなどのガス漏れ警報器に広く用いられている。
When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 300 to 500°C in the atmosphere, atmospheric oxygen is activated and adsorbed onto the particle surface, resulting in a high resistance, but they are not flammable. When a flammable gas comes into contact with the adsorbed oxygen, the adsorbed oxygen reacts with the combustible gas, the adsorbed oxygen is removed, and the resistance value decreases. Utilizing these properties, gas sensors using tin oxide can detect LP gas,
Widely used in gas leak alarms such as city gas.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この種のガスセンサでは大気中のアルコール蒸気に対し
ても大きな抵抗値の変化を示すことが知られており、調
理、燗等から発生するアルコール蒸気による誤動作を防
ぐためアルコール蒸気に対する感度(大気中の抵抗値/
アルコール蒸気接触時の抵抗値)を極力低減させ、LP
ガス、都市ガスなどを選択的に検知できるガスセンサが
必要とされる。
It is known that this type of gas sensor exhibits a large change in resistance value even when exposed to alcohol vapor in the atmosphere. Resistance value/
By minimizing the resistance value (when in contact with alcohol vapor), LP
A gas sensor that can selectively detect gas, city gas, etc. is needed.

上記の問題を解決する方法のひとつとして、アルコール
を酸化除去する機能をもつ酸化触媒層で感ガス層の外表
面を被覆する方法がある。一般にアルコール蒸気は貴金
属を担持した酸化触媒上ではLPガスに比べ、より低温
で接触酸化される性質があり、上記の方法はこの性質を
利用して酸化触媒層にアルコール蒸気を選択的に除去す
るフィルタの役割をもたせたものである。通常、この酸
化触媒としては白金、パラジウムなどの貴金属を活性ア
ルミナに担持した活性アルミナ担持貴金属触媒が高活性
を示すとされている。
One method for solving the above problem is to coat the outer surface of the gas-sensitive layer with an oxidation catalyst layer that has the function of oxidizing and removing alcohol. In general, alcohol vapor has the property of being catalytically oxidized at a lower temperature on an oxidation catalyst supporting a noble metal than LP gas, and the above method utilizes this property to selectively remove alcohol vapor to the oxidation catalyst layer. It also has the role of a filter. Usually, as this oxidation catalyst, an activated alumina-supported noble metal catalyst in which a noble metal such as platinum or palladium is supported on activated alumina is said to exhibit high activity.

しかしながら、本発明者らがアルコール除去用酸化触媒
につき種々検討を重ねたところ、活性アルミナに貴金属
を担持した触媒には以下の様な問題のあることが判明し
た。
However, as a result of various studies conducted by the present inventors on oxidation catalysts for alcohol removal, it has been found that catalysts in which noble metals are supported on activated alumina have the following problems.

(イ) アルコール蒸気に対して充分な酸化活性を示す
もののLPガスに対しても一部酸化活性があるためセン
サ温度が上昇すると触媒層でのLPガスの酸化反応が進
行し易くなり、LPガスに対する感度が低下し易い。こ
の結果ガスセンサの使用可能な温度範囲が狭くなる。
(b) Although it shows sufficient oxidizing activity for alcohol vapor, it also has some oxidizing activity for LP gas, so when the sensor temperature rises, the oxidation reaction of LP gas in the catalyst layer tends to proceed, and LP gas Sensitivity tends to decrease. As a result, the usable temperature range of the gas sensor becomes narrower.

(ロ)酸化スズ層の付着強度に比べ、この外周面を被覆
する酸化触媒層の付着強度が低い。例えば絶縁基板上に
酸化スズ層を形成する厚晩型センザの製法としては、貴
金属を添加した酸化スズ粉末を溶媒、コロイド状無機バ
インダと共に混練してペースト化し、これを絶縁基板上
lこ印刷した後高温で焼き付ける。次いで活性アルミナ
に貴金属を担持した酸化触媒粉末を上記と同様に溶媒、
バインダと共に混練してペースト化し、酸化スズ層の外
周部tこ塗布し加熱して焼き付けるという方法がある。
(b) The adhesion strength of the oxidation catalyst layer covering this outer peripheral surface is lower than the adhesion strength of the tin oxide layer. For example, a method for producing a late-night type sensor that forms a tin oxide layer on an insulating substrate is to knead tin oxide powder containing precious metals with a solvent and a colloidal inorganic binder to form a paste, and then print this on an insulating substrate. Then bake at high temperature. Next, oxidation catalyst powder in which precious metals are supported on activated alumina is mixed with a solvent and a solvent in the same manner as above.
There is a method of kneading it with a binder to form a paste, applying it to the outer circumference of the tin oxide layer, and baking it by heating.

しかしながら上記の方法で製作したガスセンサは酸化ス
ズ層に比べ酸化触媒層の付着強度が低くなる。このこと
は警報器に組込んだ場合、落下、振動等により酸化触媒
層の剥離が起こる可能性があり信頼性を確保する上で好
ましくない。酸化スズ層に比べ酸化触媒層の付着強度が
低い原因についての詳細は不明だが活性アルミナの方が
酸化スズに比べ、バインダ存在下での焼結性が低いこと
と関係があるものと考えられる。
However, in the gas sensor manufactured by the above method, the adhesion strength of the oxidation catalyst layer is lower than that of the tin oxide layer. If this is incorporated into an alarm, the oxidation catalyst layer may peel off due to falling, vibration, etc., which is undesirable from the viewpoint of ensuring reliability. The details of the reason why the adhesion strength of the oxidation catalyst layer is lower than that of the tin oxide layer are unknown, but it is thought to be related to the fact that activated alumina has lower sinterability in the presence of a binder than tin oxide.

そこで本発明の目的は上述の従来の欠点を除去し、感ガ
ス層の外周面に被覆した被覆層が、広い温度範囲にわた
って検知ガスの酸化が抑制でき妨害ガスであるアルコー
ル蒸気のみを選択的に酸化することができかつ付着強度
の高いガスセンサを得ること(こある。
Therefore, the purpose of the present invention is to eliminate the above-mentioned conventional drawbacks, and to provide a coating layer coated on the outer peripheral surface of the gas-sensitive layer that can suppress the oxidation of the detection gas over a wide temperature range and selectively remove only alcohol vapor, which is an interfering gas. To obtain a gas sensor that can be oxidized and has high adhesive strength.

〔課題を解決する。ための手段〕[Solve the problem. means for

この目的は本発明によれば、貴金属を添加したn型酸化
物半導体を感ガス層とするガスセンサにおいて、感ガス
層の外表面を貴金属を添加したn型酸化物半導体で被覆
し、かつこの被覆層の貴金属濃度を感ガス層の触媒濃度
よりも高くすることによって達成される。
According to the present invention, the present invention provides a gas sensor having a gas-sensitive layer made of an n-type oxide semiconductor doped with a noble metal, in which the outer surface of the gas-sensitive layer is coated with an n-type oxide semiconductor doped with a noble metal; This is achieved by making the noble metal concentration in the layer higher than the catalyst concentration in the gas sensitive layer.

一般に酸化スズは、それ自身ではアルコール蒸気に対す
る酸化活性は活性アルミナに貴金属を担持した酸化触媒
に比べ極めて低いとされている。
It is generally believed that tin oxide itself has extremely low oxidation activity against alcohol vapor compared to an oxidation catalyst made of active alumina supporting noble metals.

一方、可燃性ガスセンサに用いられる酸化スズは通常ガ
ス感度を高める為、増感剤として白金、パラジウム等の
白金族元素を0.1〜1チ程度添加することが行なわれ
ている。しかしながら上記の様な0.1〜1チの添加量
の増減剤を添加した酸化スズ感ガス層のみでは、例えば
検知ガスであるLPガスの感度に比ベアルコール蒸気に
対する感度が2〜5倍高く、アルコール蒸気による妨害
が太き過ぎる。本発明者らはアルコール蒸気の妨害を低
減する方法について検討を重ねた結果、酸化スズ゛に白
金、パラジウム等を添加した貴金属・酸化スズ層の貴金
属添加量を2%以上とすることによって、アルコール蒸
気の酸化活性を有することをつきとめた。すなわち、感
ガス層に白金、パラジウム等を0.1〜1%添加した酸
化スズ層を形成し、その外周部に白金、パラジウム等を
2〜10%添加した酸化スズ層を被覆することによって
被覆層でアルコール蒸気が酸化除去され、かつ検知ガス
であるLPガスの酸化を抑制するようにしたものである
On the other hand, in order to increase the gas sensitivity of tin oxide used in combustible gas sensors, approximately 0.1 to 1 trich of a platinum group element such as platinum or palladium is added as a sensitizer. However, with only a tin oxide sensitive gas layer to which an increase/decrease agent is added in an amount of 0.1 to 1 as described above, the sensitivity to alcohol vapor is 2 to 5 times higher than the sensitivity of LP gas, which is a detection gas. , alcohol vapor interference is too thick. As a result of repeated studies by the present inventors on methods for reducing the interference of alcohol vapor, we found that by increasing the amount of noble metal added to the tin oxide layer, which is made by adding platinum, palladium, etc. to tin oxide, to 2% or more, alcohol vapor interference can be reduced. It was found that it has steam oxidation activity. That is, a tin oxide layer containing 0.1-1% of platinum, palladium, etc. is formed on the gas-sensitive layer, and a tin oxide layer containing 2-10% of platinum, palladium, etc. is coated on the outer periphery of the layer. Alcohol vapor is oxidized and removed in the layer, and oxidation of LP gas, which is the detection gas, is suppressed.

〔作用〕[Effect]

本発明は感ガス層である白金、パラジウムを0.1〜1
.0%添加した酸化スズ層の外表面に白金、パラジウム
を2〜10%添加した被覆層が形成されているのでこの
被覆層によりアルコール蒸気が酸化除去され、かつ検知
ガスは殆んど酸化せずアルコール蒸気に対する感度を抑
制することができる。
In the present invention, the amount of platinum and palladium in the gas-sensitive layer is 0.1 to 1.
.. A coating layer containing 2 to 10% of platinum and palladium is formed on the outer surface of the 0% tin oxide layer, so alcohol vapor is oxidized and removed by this coating layer, and the detection gas is hardly oxidized. Sensitivity to alcohol vapor can be suppressed.

また、被覆層の材質を酸化スズとしたことによって、活
性アルミナから成る被覆層のものに比べて大巾に付着強
度が高まる。
Furthermore, by using tin oxide as the material for the coating layer, the adhesion strength is greatly increased compared to a coating layer made of activated alumina.

〔実施例〕〔Example〕

以下に本発明の一実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示すガスセンサの断面図で
ある。感ガス層としての酸化スズ層2は次のようにして
形成される。すなわち、中心粒径2μの酸化スズ粉末に
パラジウムとして0.5重iチとなるように塩化パラジ
ウムを含浸させ、乾燥後600℃で2時間加熱し、塩化
パラジウムを分解させた。次いでこの粉末に水とシリカ
ゾルを加えペースト状としだ後第1図に示すアルミナ基
板1上に設けた電極11.12上に厚さ約70μとなる
様に酸化スズ層2を塗布し、  750’Cで30分加
熱してアルミナ基板3上lこ酸化スズ層2を焼き付けた
。次いで前記と同様の酸化スズ粉末に塩化白金酸を白金
として3重量%となるように含浸し、 60.0°Cで
2時間加熱して白金を分解させた。この白金付き酸化ス
ズ粉末に水とシリカゾルを加えペースト状とした後第1
図の酸化スズ層2を被覆するように約50μの厚さ(こ
被覆層4を塗布した。これを常温で乾燥後730 ’Q
で30分加熱して被覆層4を形成した(これを検知素子
とする。)。
FIG. 1 is a sectional view of a gas sensor showing one embodiment of the present invention. The tin oxide layer 2 as a gas-sensitive layer is formed as follows. That is, tin oxide powder having a center particle size of 2 μm was impregnated with palladium chloride to a weight of 0.5 parts as palladium, and after drying, it was heated at 600° C. for 2 hours to decompose the palladium chloride. Next, water and silica sol were added to this powder to form a paste, and a tin oxide layer 2 was applied to the electrode 11.12 provided on the alumina substrate 1 shown in FIG. 1 to a thickness of about 70 μm. The tin oxide layer 2 on the alumina substrate 3 was baked by heating with C for 30 minutes. Next, the same tin oxide powder as above was impregnated with chloroplatinic acid to a concentration of 3% by weight of platinum, and heated at 60.0°C for 2 hours to decompose the platinum. After adding water and silica sol to this platinized tin oxide powder and making it into a paste,
A coating layer 4 of approximately 50 μm was applied to cover the tin oxide layer 2 shown in the figure. After drying at room temperature,
was heated for 30 minutes to form a coating layer 4 (this is used as a sensing element).

一方比較のため上記の製法の中で被覆層として3重量%
の白金を担持したγ−アルミナ粉末のみを用いて上記と
同様にペースト化し、これを酸化スズ層2の外周面を被
覆した素子を作成した(これを比較素子とする)。次い
で検知素子及び比較素子に抵抗値検出用リード51.5
2を電極11゜12に接続し、更にアルミナ基板1の下
面に設けた素子加熱用ヒータ6に電流を流す為のリード
71゜72を溶接し、素子のガス感度を測定した。
On the other hand, for comparison, 3% by weight as a coating layer in the above manufacturing method.
A device was prepared in which the platinum-supported γ-alumina powder was used to form a paste in the same manner as above, and the outer peripheral surface of the tin oxide layer 2 was coated with the paste (this was used as a comparative device). Next, a resistance value detection lead 51.5 is connected to the detection element and comparison element.
2 were connected to electrodes 11.degree. 12, and leads 71.degree. 72 were welded to the heater 6 for heating the element provided on the lower surface of the alumina substrate 1, and the gas sensitivity of the element was measured.

ガス感度の測定は、素子をヒータ6を用いて所定温度に
保ち大気中の抵抗値(Ro)と0.2 %イソブタンガ
ス、又は0.2%エチルアルコール蒸気中での抵抗値を
夫々By (B) +”f (A)とし、下式によりガ
ス感度を求めた。ここでイソブタンガスはLPガスに対
する素子の特性を評価する際に指標ガスとして一般に用
いられるものである。
To measure gas sensitivity, the element is kept at a predetermined temperature using a heater 6, and the resistance value in the atmosphere (Ro) and the resistance value in 0.2% isobutane gas or 0.2% ethyl alcohol vapor are determined by By ( B) +"f (A), and the gas sensitivity was determined using the following formula. Here, isobutane gas is generally used as an index gas when evaluating the characteristics of an element with respect to LP gas.

第2図は本発明の検知素子と比較素子のセンサ温度に対
するガス感度の依存性を比較したものである。実線A 
、 Bは夫々検知素子のγB、γ人 の温度依存性を、
また破線C,Dは夫々比較素子のγBr人の温度依存性
を示す。第2図から、被覆層が白金3チ・酸化スズから
成る機知素子は、白金3%・活性アルミナから成る比較
素子ζこ比べ、高温側でのイソブタン感度の低下が大幅
に抑制され、例えば1人が5以上でかつ1人がγBより
低い温度領域14が比較素子の温度領域1,4’に比べ
広くなる。
FIG. 2 compares the dependence of gas sensitivity on sensor temperature between the sensing element of the present invention and a comparative element. Solid line A
, B are the temperature dependence of γB and γ of the sensing element, respectively,
Further, broken lines C and D indicate the temperature dependence of γBr of the comparative element, respectively. From FIG. 2, it can be seen that the reduction in isobutane sensitivity at high temperatures is significantly suppressed in the smart element whose coating layer is made of trithiplatinum and tin oxide compared to the comparative element made of 3% platinum and activated alumina. The temperature region 14 where the number of people is 5 or more and where one person is lower than γB is wider than the temperature regions 1 and 4' of the comparison element.

次に検知素子の特性を調べるため前記実施例と同様の製
法で被覆層の触媒濃度を変えて得た数種の素子につきガ
ス感度の温度依存性を測定した。
Next, in order to examine the characteristics of the sensing elements, the temperature dependence of gas sensitivity was measured for several types of elements obtained by the same manufacturing method as in the previous example but with different catalyst concentrations in the coating layer.

この結果を第1表に示す。第1表では比較のためrB之
5かつへ〈rBを満たす温度幅(△T)及びγB=−と
なる温度(T)を示した。
The results are shown in Table 1. For comparison, Table 1 shows the temperature range (ΔT) that satisfies rB to <rB and the temperature (T) at which γB=-.

第1表 被覆層の触媒濃度と特性との関係第1表のよう
に被覆層中の白金濃度が2%以下では被覆層のアルコー
ル酸化活性が低下して500′C以下ではアルコール感
度がイソブタン感度を上回ってしまう。また、10%以
上では被覆層でのイソブタン酸化活性が高温で顕著にな
るため使用可能な温度領域(△Tに相当)が狭くなる。
Table 1 Relationship between catalyst concentration and properties of the coating layer As shown in Table 1, when the platinum concentration in the coating layer is less than 2%, the alcohol oxidation activity of the coating layer decreases, and below 500'C, the alcohol sensitivity is lower than the isobutane sensitivity. It exceeds. Moreover, if it is 10% or more, the isobutane oxidation activity in the coating layer becomes significant at high temperatures, so the usable temperature range (corresponding to ΔT) becomes narrow.

従ってガスセンサとして好ましい濃度は2〜10%であ
ることがわかる。
Therefore, it can be seen that the preferable concentration for a gas sensor is 2 to 10%.

次に前記実施例で作成した検知素子を×経用ガス漏れ警
報器に組み込み、これをコンクリートの床上50CTL
の高さから落下させる操作を5回繰り返した後検知素子
を取り出して被積層の剥離の有無を目視により調査した
。この結果を第2表に示す。なお、この試験は検知素子
と比較素子を各10個ずつ用いて行いlfIJM1シた
素子の割合を求めた。
Next, the detection element created in the above example was incorporated into a gas leak alarm device for normal use, and this was placed on a concrete floor at a height of 50 CTL.
After repeating the dropping operation from a height of 5 times, the sensing element was taken out and visually inspected for peeling of the laminated layer. The results are shown in Table 2. This test was conducted using 10 detection elements and 10 comparison elements, and the proportion of elements that achieved lfIJM1 was determined.

第2表 落下試験による被覆層の剥離頻度第2表の様に
活性アルミナから成る酸化触媒層に比べ本発明の貴金属
−酸化スズから成る被覆層は高い付着強度が得られ実用
上高い信頼性が得られることがわかった。
Table 2 Peeling frequency of coating layer in drop test As shown in Table 2, compared to the oxidation catalyst layer made of activated alumina, the coating layer made of the noble metal-tin oxide of the present invention has a higher adhesion strength and is more reliable in practice. I found out that I can get it.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、金属酸化物から成る感ガス層の表面
を談感ガス層と同一の材質でかつ貴金属濃度を感ガス層
よりも尚い濃度、例えば2〜10%添加した被覆層で覆
うことによって高温での検知対象ガスの酸化による感度
低下を抑制し、アルコール蒸気のみを選択的に酸化除去
することが可能となりセンサの使用可能な温夏領域を広
くすることができる。これにより、例えば電源電圧の変
動に伴なうカス検知感度の変動幅を狭くできるという極
めて大きな効果が得られる。
According to this invention, the surface of the gas-sensitive layer made of a metal oxide is covered with a coating layer made of the same material as the gas-sensing layer and containing a noble metal at a higher concentration than that of the gas-sensitive layer, for example, 2 to 10%. This suppresses the decrease in sensitivity due to oxidation of the detection target gas at high temperatures, makes it possible to selectively oxidize and remove only alcohol vapor, and widens the warm summer range in which the sensor can be used. As a result, a very large effect can be obtained, such as narrowing the range of fluctuations in the scum detection sensitivity due to fluctuations in the power supply voltage, for example.

また1本発明では被覆層として感ガス層と同一の材質を
使用することによって被覆層の付着強度を高くすること
が可能となり、落下衝撃、振動等に対し高い信頼性が得
られる。
Furthermore, in the present invention, by using the same material as the gas-sensitive layer for the coating layer, it is possible to increase the adhesion strength of the coating layer, and high reliability against drop impact, vibration, etc. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すガスセンサの断面図、
第2図は本発明のガスセンサのガス感度の温度依存性を
示す特性図である。 2・・酸化スズ層、4 貴金属・酸化スズ被覆層。 4θD    UO,9σθ サンづ 1h席 (′C) 第21¥1
FIG. 1 is a sectional view of a gas sensor showing an embodiment of the present invention;
FIG. 2 is a characteristic diagram showing the temperature dependence of gas sensitivity of the gas sensor of the present invention. 2. Tin oxide layer, 4 Noble metal/tin oxide coating layer. 4θD UO, 9σθ Sanzu 1h seat ('C) No. 21 ¥1

Claims (1)

【特許請求の範囲】[Claims] 1)貴金属を添加したn型酸化物半導体を感ガス層とす
るガスセンサにおいて、感ガス層の外周部を貴金属を添
加したn型酸化物半導体で被覆し、かつこの被覆層の貴
金属濃度を感ガス層の触媒濃度より高めたことを特徴と
するガスセンサ。
1) In a gas sensor whose gas-sensitive layer is an n-type oxide semiconductor doped with a noble metal, the outer periphery of the gas-sensitive layer is coated with an n-type oxide semiconductor doped with a noble metal, and the noble metal concentration of this coating layer is determined as the gas-sensitive layer. A gas sensor characterized by having a catalyst concentration higher than that of the layer.
JP20405388A 1988-08-17 1988-08-17 Gas sensor Pending JPH0252247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20405388A JPH0252247A (en) 1988-08-17 1988-08-17 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20405388A JPH0252247A (en) 1988-08-17 1988-08-17 Gas sensor

Publications (1)

Publication Number Publication Date
JPH0252247A true JPH0252247A (en) 1990-02-21

Family

ID=16483970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20405388A Pending JPH0252247A (en) 1988-08-17 1988-08-17 Gas sensor

Country Status (1)

Country Link
JP (1) JPH0252247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870219A (en) * 1981-07-13 1983-04-26 イーストマン コダック カンパニー Automatic winder/unwider camera
US5476003A (en) * 1993-10-05 1995-12-19 Robert Bosch Gmbh Measuring sensor for determining gas compositions
JP2010217139A (en) * 2009-03-19 2010-09-30 Figaro Eng Inc Gas sensor and gas detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870219A (en) * 1981-07-13 1983-04-26 イーストマン コダック カンパニー Automatic winder/unwider camera
US5476003A (en) * 1993-10-05 1995-12-19 Robert Bosch Gmbh Measuring sensor for determining gas compositions
JP2010217139A (en) * 2009-03-19 2010-09-30 Figaro Eng Inc Gas sensor and gas detection method

Similar Documents

Publication Publication Date Title
US4397888A (en) Thick film sensor for hydrogen and carbon monoxide
JPH0252247A (en) Gas sensor
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP3191544B2 (en) Thick film type gas sensor
JP2570440B2 (en) Gas sensor
JP3393504B2 (en) Contact combustion type carbon monoxide sensor
JPH02263145A (en) Semiconductor type gas sensor
JPH0221256A (en) Gas sensor
JP3191523B2 (en) Thick film gas sensor
JP2513274B2 (en) Gas sensor
JP3065182B2 (en) Catalyst purification rate detector
JPS63279150A (en) Semiconductor type gas sensor
JPH02208549A (en) Gas sensor
JPH03248054A (en) Gas sensor
JPH0743331A (en) Thick film gas sensor
JPH0455747A (en) Gas sensor
JPH0382945A (en) Semiconductor gas sensor
JPH0390848A (en) Gas sensor
JPS59120946A (en) Gaseous freon detecting element
JPS6363064B2 (en)
JPH04344450A (en) Gas sensor
JPH11132980A (en) Hydrocarbon gas detection element
JPS6128932B2 (en)