JP3393504B2 - Contact combustion type carbon monoxide sensor - Google Patents

Contact combustion type carbon monoxide sensor

Info

Publication number
JP3393504B2
JP3393504B2 JP16392097A JP16392097A JP3393504B2 JP 3393504 B2 JP3393504 B2 JP 3393504B2 JP 16392097 A JP16392097 A JP 16392097A JP 16392097 A JP16392097 A JP 16392097A JP 3393504 B2 JP3393504 B2 JP 3393504B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
carrier layer
combustion type
sensor
type carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16392097A
Other languages
Japanese (ja)
Other versions
JPH1114579A (en
Inventor
和広 大石
英子 杉本
薫 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP16392097A priority Critical patent/JP3393504B2/en
Publication of JPH1114579A publication Critical patent/JPH1114579A/en
Application granted granted Critical
Publication of JP3393504B2 publication Critical patent/JP3393504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、接触燃焼式一酸化
炭素センサに関する。 【0002】 【従来の技術】一酸化炭素センサは給湯器等の燃焼器具
に搭載され、その燃焼を排気中の一酸化炭素の有無によ
って監視し、不完全燃焼を検出した場合、これら燃焼器
具を停止したり、あるいは、燃焼条件をコントロールす
るのに用いられる。これら一酸化炭素センサの内、接触
燃焼式一酸化炭素センサは感度が良好でコンパクト化が
可能であるため広く用いられる。この接触燃焼式一酸化
炭素センサの検出素子は白金などからなる細い導線の周
囲に雰囲気中の一酸化炭素に対して活性を有する触媒を
担持させた担体(通常、アルミナを用いる)を配したも
ので、通常、雰囲気温度の変動による検出値への影響を
排除するため、一酸化炭素に対して活性を有しない担体
を配した同寸の温度補償素子とともに図1にモデル的に
示すようなブリッジ回路を形成して用いられる。図中符
号1が温度補償素子、符号2が検出素子である。 【0003】しかしながら、このような接触燃焼式一酸
化炭素センサでは、原理的には影響を及ぼさないはずの
二酸化炭素及び水蒸気などにより測定誤差が発生する。
図2(a)に一般的な接触燃焼式一酸化炭素センサの一
酸化炭素に対するセンサ出力の関係を示す。この図から
判るようにこのセンサは一酸化炭素の濃度変化に対して
良い直線性がある。一方、このセンサの二酸化炭素に対
するセンサ出力について、20%酸素−80%窒素混合
気体に様々な濃度になるよう二酸化炭素を添加したサン
プルガスを使用して調べた。その結果を図2(b)に示
す。図2(b)により、このセンサは二酸化炭素によっ
て出力低下することが判る。すなわち、二酸化炭素が5
%併存するとおよそ−0.6Vの出力低下が生じ、図2
(a)により換算すれば、一酸化炭素が250ppm程
低く検出されてしまう。このように従来の接触燃焼式一
酸化炭素センサを用いた場合、二酸化炭素が併存する環
境では一酸化炭素の正確な測定ができなかった。 【0004】 【発明が解決しようとする課題】本発明は、上記従来技
術に係る欠点を防止し、二酸化炭素、あるいは水蒸気な
どの影響を受けずに、雰囲気中の一酸化炭素を正確に検
出することができる接触燃焼式一酸化炭素センサを提供
することを目的とする。 【0005】 【課題を解決するための手段】すなわち、本発明の接触
燃焼式一酸化炭素センサは、請求項1に記載の通り、一
酸化炭素に対し活性を有する担体層を導線の周囲に有す
る検出素子と、一酸化炭素に対し活性を有しない担体層
を導線の周囲に有する温度補償素子とを有する接触燃焼
式一酸化炭素センサであって、検出素子の担体層の大き
さが温度補償素子の担体層の大きさと異なり、上記温度
補償素子の担体層及び検知素子の担体層の形状が共に粒
形であって、かつ、温度補償素子の担体層の粒径が検知
素子の担体層の粒径の1.05倍以上1.4倍以下であ
る構成を有する。 【0006】 【発明の実施の形態】本発明において、温度補償素子の
担体層及び検知素子の担体層の形状が共に粒形であり、
温度補償素子の担体層の粒径が検知素子の担体層の粒径
の1.05倍以上1.4倍以下であることが望ましい。
なお、上記において粒形とは、球、卵形、米粒形、略円
筒形を指す。また、温度補償素子の担体層及び検知素子
の担体層の形状は互いに相似形であることが好ましい。
これら形状が異なると本発明の効果を得られにくくな
る。本発明において、担体層素材としては、通常アルミ
ナが用いられ、検出素子には触媒を担持させたγ−アル
ミナ、熱補償素子にはα−アルミナを用いる。ここで、
ベーマイト形水酸化アルミニウムを800〜900℃で
熱処理することによりγ−アルミナが、1000〜12
00℃で熱処理を行うことによりα−アルミナが、それ
ぞれ得られる。なお、検出素子で用いる触媒を担持させ
たγ−アルミナはパラジウム、ロジウムや白金などの触
媒金属を含浸法等の常法により担持させて作製する。 【0007】次いで、これらアルミナに若干の水、また
必要に応じてバインダー等を加えて混練しペースト状に
する。このペースト状物を導線周囲に粒状に成形し、そ
の後加熱して焼き付けて得られる。用いる導線は耐酸化
性、耐久性、耐熱性、価格とを勘案してその材質を決定
するが、通常は白金線を用いることが望ましい。なお、
コイル状に巻き上げた白金線を用い、このコイル部に上
記ペースト状物を粒状に成形することにより、感度を良
好なものとすることができる。 【0008】 【実施例】 (検知素子の作製)白金の量が5重量%に調製された塩
化白金酸塩水溶液、パラジウムの量が5重量%に調製さ
れた塩化パラジウムの塩酸酸性水溶液、及びこれら水溶
液を等量混合し触媒担持用水溶液の3種を作製した。こ
れら触媒担持用水溶液それぞれにベーマイト形水酸化ア
ルミニウムを850℃で熱処理して得られたγ−アルミ
ナ(X線回折分析によりγ−アルミナであることを確認
した)を浸漬した後濾別して取り出し、乾燥後、若干の
水を加えて混練し、このペーストをコイル状に巻き上げ
た白金線(コイル部外径:0.6mm)(導線)のコイ
ル部を覆うように直径1〜2mmの球状になるよう付着
させ、風乾後、通電して700℃付近で焼き付けを行っ
て3種の検知素子を得た。 【0009】(温度補償素子の作製)検知素子作製に用
いたのと同じベーマイト形水酸化アルミニウムを110
0℃で熱処理して得たα−アルミナ(X線回折分析によ
りα−アルミナであることを確認した)に若干の水を添
加し、混練してペースト状にしたのち、検知素子で用い
たのと同様の白金線(導線)のコイル部を覆うように球
状に付着させ、風乾した。なお、この球の直径の異なる
サンプルを数種作製した。その後、これら白金線に通電
を行って発熱させて700℃付近で焼き付けを行って温
度補償素子とした。なお、同様にして、いくつか粒径の
異なる温度補償素子を作製した。 【0010】(接触燃焼式一酸化炭素センサの組立とそ
の評価)上記で得た検知素子のうち、パラジウムを担持
させた検知素子及び粒径の異なる数種の温度補償素子を
用いてそれぞれ図1に示すようなブリッジ回路を形成
し、接触燃焼式一酸化炭素センサとした。次いでこれら
接触燃焼式一酸化炭素センサの両素子をヒータにより2
50℃に保ち、一酸化炭素と水素混合ガスに対するセン
サ出力について調べたところ、図2(a)に示したのと
同じ結果が得られた。さらに、これら接触燃焼式一酸化
炭素センサの20%酸素−80%窒素混合気体に5%及
び10%の濃度になるよう二酸化炭素を添加したサンプ
ルガスを使用し、二酸化炭素に対するセンサ感度を調べ
た。結果を図3(a)に示す。なお、二酸化炭素濃度が
5%のときの、温度補償素子の担体層の粒径の検知素子
の担体層の粒径に対する粒径比と、センサ出力との関係
を図3(b)に示した。このとき図3(b)及び図2
(a)により粒径比が1.05以上1.4倍以下である
とき、5%二酸化炭素によるセンサ出力への影響が、一
酸化炭素濃度換算値で±200ppmとなる。ここで、
一般に用いられている給湯器における警報点が1000
ppmの一酸化炭素濃度であるため、二酸化炭素の影響
が200ppm内であれば、充分なものと判断される。 【0011】なお、同様に、白金を担持させた検知素
子、及び、白金とパラジウムとを担持させた検知素子に
ついても同様に、粒径比とセンサ出力との関係を調べ
た。結果を図4に示す。図4より、白金を担持させた検
知素子、あるいは白金とパラジウムとを担持させた検知
素子を用いた場合でもパラジウムのみを担持させた検知
素子を用いた場合と同様に粒径比が1.05以上1.4
倍以下であるとき、5%二酸化炭素によるセンサ出力へ
の影響が、一酸化炭素濃度換算値で±200ppmとな
り、二酸化炭素による影響を充分小さくすることができ
ることが判る。 【0012】 【発明の効果】本発明の接触燃焼式一酸化炭素センサ
は、二酸化炭素、あるいは水蒸気などの影響を受けず
に、雰囲気中の一酸化炭素を正確に検出することができ
る優れたものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic combustion type carbon monoxide sensor. 2. Description of the Related Art A carbon monoxide sensor is mounted on a combustion appliance such as a water heater, and its combustion is monitored by the presence or absence of carbon monoxide in exhaust gas. When incomplete combustion is detected, these combustion appliances are detected. Used to shut down or control combustion conditions. Among these carbon monoxide sensors, the catalytic combustion type carbon monoxide sensor is widely used because it has good sensitivity and can be made compact. The detection element of this catalytic combustion type carbon monoxide sensor has a carrier (usually using alumina) carrying a catalyst active against carbon monoxide in the atmosphere around a thin conducting wire made of platinum or the like. Usually, in order to eliminate the influence on the detection value due to the fluctuation of the ambient temperature, a bridge as schematically shown in FIG. 1 together with a temperature compensating element of the same size having a carrier inactive against carbon monoxide is arranged. It is used after forming a circuit. In the figure, reference numeral 1 denotes a temperature compensation element, and reference numeral 2 denotes a detection element. However, in such a catalytic combustion type carbon monoxide sensor, measurement errors occur due to carbon dioxide, water vapor, and the like, which should have no effect in principle.
FIG. 2A shows the relationship between the sensor output and the carbon monoxide of a general catalytic combustion type carbon monoxide sensor. As can be seen from this figure, this sensor has good linearity with respect to changes in the concentration of carbon monoxide. On the other hand, the sensor output of this sensor with respect to carbon dioxide was examined using sample gas in which carbon dioxide was added to a 20% oxygen-80% nitrogen mixed gas at various concentrations. The result is shown in FIG. FIG. 2B shows that the output of this sensor is reduced by carbon dioxide. That is, carbon dioxide is 5
%, The output drops by about -0.6 V.
When converted according to (a), carbon monoxide is detected as low as about 250 ppm. As described above, when the conventional catalytic combustion type carbon monoxide sensor is used, accurate measurement of carbon monoxide cannot be performed in an environment where carbon dioxide coexists. SUMMARY OF THE INVENTION The present invention prevents the above-mentioned disadvantages of the prior art, and accurately detects carbon monoxide in the atmosphere without being affected by carbon dioxide or water vapor. It is an object of the present invention to provide a catalytic combustion type carbon monoxide sensor that can perform the above-described processes. [0005] That is, the catalytic combustion type carbon monoxide sensor of the present invention has a carrier layer which is active against carbon monoxide around the conducting wire as described in claim 1. A catalytic combustion type carbon monoxide sensor having a detection element and a temperature compensating element having a carrier layer inactive against carbon monoxide around the conductor, wherein the size of the carrier layer of the detecting element is a temperature compensating element. the size of the carrier layer and different Do Ri, the temperature
Both the carrier layer of the compensation element and the carrier layer of the sensing element
And the particle size of the carrier layer of the temperature compensation element is detected.
It has a configuration in which the particle size of the carrier layer of the device is 1.05 times or more and 1.4 times or less . [0006] In the present invention, the carrier layer of the temperature compensation element and the carrier layer of the sensing element are both granular,
It is desirable that the particle size of the carrier layer of the temperature compensation element is 1.05 times or more and 1.4 times or less the particle size of the carrier layer of the sensing element.
In the above description, the grain shape refers to a sphere, an egg shape, a rice grain shape, and a substantially cylindrical shape. Further, the shape of the carrier layer of the temperature compensation element and the shape of the carrier layer of the sensing element are preferably similar to each other.
If these shapes are different, it is difficult to obtain the effects of the present invention. In the present invention, alumina is usually used as the carrier layer material, γ-alumina supporting a catalyst is used for the detection element, and α-alumina is used for the heat compensation element. here,
By subjecting boehmite-type aluminum hydroxide to a heat treatment at 800 to 900 ° C., γ-alumina becomes 1000 to 12
By performing a heat treatment at 00 ° C., α-alumina can be obtained. Note that γ-alumina supporting a catalyst used in the detection element is prepared by supporting a catalyst metal such as palladium, rhodium and platinum by a conventional method such as an impregnation method. Next, a little water and, if necessary, a binder and the like are added to these aluminas and kneaded to form a paste. The paste-like material is obtained by forming the paste around the conductive wire into granules, and then heating and baking. The material of the conductive wire to be used is determined in consideration of oxidation resistance, durability, heat resistance, and price, but it is usually preferable to use a platinum wire. In addition,
By using a platinum wire wound up in a coil shape and forming the paste-like material into a granular shape in the coil portion, the sensitivity can be improved. (Preparation of Sensing Element) An aqueous solution of chloroplatinic acid in which the amount of platinum was adjusted to 5% by weight, an aqueous solution of palladium chloride in which the amount of palladium was adjusted to 5% by weight in hydrochloric acid, and the like The aqueous solutions were mixed in equal amounts to prepare three types of aqueous solutions for supporting the catalyst. Γ-alumina (confirmed to be γ-alumina by X-ray diffraction analysis) obtained by heat-treating boehmite-type aluminum hydroxide at 850 ° C. in each of these aqueous solutions for supporting a catalyst is filtered, taken out, and dried. Thereafter, a slight amount of water is added and kneaded, and the paste is wound into a coil shape so as to form a spherical shape having a diameter of 1 to 2 mm so as to cover the coil portion of a platinum wire (coil portion outer diameter: 0.6 mm) (conductor). After being attached and air-dried, it was energized and baked at around 700 ° C. to obtain three types of sensing elements. (Production of Temperature Compensating Element) The same boehmite-type aluminum hydroxide used for producing the sensing element was used.
A small amount of water was added to α-alumina obtained by heat treatment at 0 ° C. (confirmed to be α-alumina by X-ray diffraction analysis) and kneaded to form a paste, which was then used in a sensing element. A platinum wire (conductive wire) was adhered in a spherical shape so as to cover the coil portion and air-dried. In addition, several kinds of samples having different diameters of the spheres were produced. Thereafter, the platinum wires were energized to generate heat, and were baked at around 700 ° C. to obtain temperature compensation elements. In the same manner, several temperature compensating elements having different particle sizes were produced. (Assembly and Evaluation of a Catalytic Combustion Carbon Monoxide Sensor) Of the sensing elements obtained above, a sensing element carrying palladium and several types of temperature compensating elements having different particle sizes were used as shown in FIG. A bridge circuit as shown in Fig. 7 was formed to obtain a catalytic combustion type carbon monoxide sensor. Then, both elements of the catalytic combustion type carbon monoxide sensor were
When the sensor output for a mixed gas of carbon monoxide and hydrogen was examined while keeping the temperature at 50 ° C., the same result as shown in FIG. 2A was obtained. Further, using a sample gas obtained by adding carbon dioxide to a 20% oxygen-80% nitrogen mixed gas to a concentration of 5% and 10% in the catalytic combustion type carbon monoxide sensor, the sensor sensitivity to carbon dioxide was examined. . The results are shown in FIG. FIG. 3B shows the relationship between the sensor output and the ratio of the particle size of the carrier layer of the temperature compensation element to the particle size of the carrier layer of the detection element when the carbon dioxide concentration was 5%. . At this time, FIG.
When the particle size ratio is 1.05 or more and 1.4 or less according to (a), the effect of 5% carbon dioxide on the sensor output is ± 200 ppm in terms of carbon monoxide concentration. here,
The alarm point of a commonly used water heater is 1000
Since the concentration of carbon monoxide is ppm, if the influence of carbon dioxide is within 200 ppm, it is determined to be sufficient. Similarly, the relationship between the particle size ratio and the sensor output was also examined for a sensing element carrying platinum and a sensing element carrying platinum and palladium. FIG. 4 shows the results. FIG. 4 shows that the particle size ratio was 1.05 even when a sensing element carrying platinum or a sensing element carrying platinum and palladium was used, as in the case of using a sensing element carrying only palladium. 1.4 above
When the ratio is not more than twice, the effect of 5% carbon dioxide on the sensor output is ± 200 ppm in terms of the concentration of carbon monoxide, indicating that the effect of carbon dioxide can be sufficiently reduced. The catalytic combustion type carbon monoxide sensor of the present invention is an excellent sensor capable of accurately detecting carbon monoxide in the atmosphere without being affected by carbon dioxide or water vapor. It is.

【図面の簡単な説明】 【図1】検出素子と温度補償素子とからなるブリッジ回
路を示すモデル図である。 【図2】(a)一般的な接触燃焼式一酸化炭素センサの
一酸化炭素に対するセンサ出力の関係を示すグラフであ
る。 (b)(a)のセンサの二酸化炭素に対するセンサ出力
の関係を示すグラフである。 【図3】(a)温度補償素子の担体層の粒径の、検知素
子の担体層の粒径に対する粒径比が異なる接触燃焼式一
酸化炭素センサの二酸化炭素に対するセンサ感度を示す
グラフである(パラジウムが担持された検知素子の場
合)。 (b)温度補償素子の担体層の粒径の、検知素子の担体
層の粒径に対する粒径比と、センサ出力との関係を示す
グラフである(パラジウムが担持された検知素子の場
合)。 【図4】白金を担持させた検知素子、および、白金とパ
ラジウムとを担持させた検知素子を用いたときの、温度
補償素子の担体層の粒径の、検知素子の担体層の粒径に
対する粒径比と、センサ出力との関係を示すグラフであ
る。 【符号の説明】 1 温度補償素子 2 検出素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a model diagram showing a bridge circuit including a detection element and a temperature compensation element. FIG. 2 (a) is a graph showing the relationship between sensor output and carbon monoxide of a general catalytic combustion type carbon monoxide sensor. (B) It is a graph which shows the relationship of the sensor output with respect to carbon dioxide of the sensor of (a). FIG. 3 (a) is a graph showing the sensor sensitivity to carbon dioxide of a catalytic combustion type carbon monoxide sensor having different particle diameter ratios of the carrier layer of the temperature compensation element and the carrier layer of the sensing element. (In the case of a sensing element carrying palladium). (B) A graph showing the relationship between the ratio of the particle size of the carrier layer of the temperature compensation element to the particle size of the carrier layer of the sensing element and the sensor output (in the case of a sensing element carrying palladium). FIG. 4 shows the relationship between the particle size of the carrier layer of the temperature compensating element and the particle size of the carrier layer of the sensing element when using a sensing element carrying platinum and a sensing element carrying platinum and palladium. 5 is a graph showing a relationship between a particle size ratio and a sensor output. [Description of Signs] 1 Temperature compensation element 2 Detection element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−96619(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 27/00 - 27/24 ────────────────────────────────────────────────── (5) References JP-A-9-96619 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 27/00-27/24

Claims (1)

(57)【特許請求の範囲】 【請求項1】 一酸化炭素に対し活性を有する担体層を
導線の周囲に有する検出素子と、一酸化炭素に対し活性
を有しない担体層を導線の周囲に有する温度補償素子と
を有する接触燃焼式一酸化炭素センサであって、検出素
子の担体層の大きさが温度補償素子の担体層の大きさと
異なり、上記温度補償素子の担体層及び検知素子の担体
層の形状が共に粒形であって、かつ、温度補償素子の担
体層の粒径が検知素子の担体層の粒径の1.05倍以上
1.4倍以下であることを特徴とする接触燃焼式一酸化
炭素センサ。
(57) [Claim 1] A detection element having a carrier layer having activity against carbon monoxide around a conducting wire, and a carrier layer having no activity against carbon monoxide around a conducting wire. a catalytic combustion type carbon monoxide sensor including a temperature compensating element having, unlike the size of the carrier layer of the size of the carrier layer of the detecting element is a temperature compensating element <br/>, carrier layer of the temperature-compensating element And carrier for sensing element
The layers are both granular and the temperature compensation element
The particle size of the body layer is at least 1.05 times the particle size of the carrier layer of the sensing element
Catalytic combustion type carbon monoxide sensor according to claim der Rukoto 1.4 times or less.
JP16392097A 1997-06-20 1997-06-20 Contact combustion type carbon monoxide sensor Expired - Fee Related JP3393504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16392097A JP3393504B2 (en) 1997-06-20 1997-06-20 Contact combustion type carbon monoxide sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16392097A JP3393504B2 (en) 1997-06-20 1997-06-20 Contact combustion type carbon monoxide sensor

Publications (2)

Publication Number Publication Date
JPH1114579A JPH1114579A (en) 1999-01-22
JP3393504B2 true JP3393504B2 (en) 2003-04-07

Family

ID=15783344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16392097A Expired - Fee Related JP3393504B2 (en) 1997-06-20 1997-06-20 Contact combustion type carbon monoxide sensor

Country Status (1)

Country Link
JP (1) JP3393504B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575862B2 (en) * 2005-08-22 2010-11-04 エフアイエス株式会社 Gas detector
JP5155546B2 (en) * 2006-10-11 2013-03-06 新コスモス電機株式会社 Contact combustion type gas detection element and manufacturing method thereof
JP4580405B2 (en) 2007-03-30 2010-11-10 エフアイエス株式会社 Hydrogen gas sensor
JP5248206B2 (en) * 2008-05-30 2013-07-31 矢崎エナジーシステム株式会社 Gas sensor deterioration detection device
CN111735859B (en) * 2020-08-21 2021-07-20 深圳第三代半导体研究院 GaN-based gas sensor and preparation method thereof

Also Published As

Publication number Publication date
JPH1114579A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
EP0280540A2 (en) Method and apparatus for simultaneous detection of target gases in ambient air
EP0115182B1 (en) Gas sensor
JPH04208847A (en) Gas detection element
JPH0517650Y2 (en)
US7900501B2 (en) Air quality monitor
EP0114310A2 (en) Carbon monoxide sensing element and process for manufacturing it
JP3393504B2 (en) Contact combustion type carbon monoxide sensor
JP2887784B2 (en) Meat freshness measuring device using gas sensor, measuring method thereof and gas sensor manufacturing method
JPH05505465A (en) gas sensor
JP2001174426A (en) Gas sensor and gas detector
JP2004020377A (en) Catalytic combustion type gas sensor
JPS58221154A (en) Gas sensor element
JP3026523B2 (en) Gas sensor
JP3046387B2 (en) Gas sensor
JP2000111507A (en) Chlorofluorocarbon sensor and its manufacturing method
JP3171734B2 (en) Carbon monoxide gas sensing element
JP2726886B2 (en) Contact combustion type carbon monoxide sensor
JPH09145656A (en) Contact burning type gas sensor
JP3919306B2 (en) Hydrocarbon gas detector
JPH1114578A (en) Method for manufacturing contact combustion type gas sensor and its temperature compensation element
JPH08285803A (en) Detecting element
JPH0252247A (en) Gas sensor
CN118084046A (en) Nanometer material, preparation method and application
JPS63279150A (en) Semiconductor type gas sensor
JPH0949819A (en) Carbon monoxide detector

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

LAPS Cancellation because of no payment of annual fees