JP3919306B2 - Hydrocarbon gas detector - Google Patents

Hydrocarbon gas detector Download PDF

Info

Publication number
JP3919306B2
JP3919306B2 JP29984297A JP29984297A JP3919306B2 JP 3919306 B2 JP3919306 B2 JP 3919306B2 JP 29984297 A JP29984297 A JP 29984297A JP 29984297 A JP29984297 A JP 29984297A JP 3919306 B2 JP3919306 B2 JP 3919306B2
Authority
JP
Japan
Prior art keywords
oxide
gas
gas detection
detection element
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29984297A
Other languages
Japanese (ja)
Other versions
JPH11132980A (en
Inventor
清 福井
幸子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP29984297A priority Critical patent/JP3919306B2/en
Publication of JPH11132980A publication Critical patent/JPH11132980A/en
Application granted granted Critical
Publication of JP3919306B2 publication Critical patent/JP3919306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化インジウムを主材とする感応層を備えた炭化水素ガス検知素子に関し、特に熱線型半導体式ガス検知素子が有効に用いられる。ここにいう熱線型半導体式ガス検知素子とは、白金線コイル等の貴金属線材に金属酸化物半導体を被覆焼成して形成してあるガス検知素子を指す。
【0002】
【従来の技術】
従来、これらの汎用ガス検知素子としては、通常、酸化スズ半導体を主材とする金属酸化物半導体を、白金等の貴金属線材に被覆焼成して構成してある、いわゆる熱線型半導体式ガス検知素子が用いられる(図1参照)。このように形成したガス検知素子は、酸化スズ半導体の持つ性質から低濃度ガス検知に極めて高い特性を有すること、貴金属線材上に単に焼成させただけの単純構造から、小型化が容易でかつ小型小容量に基づき吸放熱応答特性に優れる点から、ガス応答性に優れる、小電力で稼働することが出来る等のために、汎用されているものであり、その検知原理は、以下のように説明される。
図15に示すように、ガス検知素子に電圧をかけたときに、貴金属線材と金属酸化物半導体とが、並列に接続された抵抗として働く形態をとる。一方、前記金属酸化物半導体は、被検知ガスが金属酸化物半導体に接触したときに、その金属酸化物半導体の表面で被検知ガスに起きる化学反応により、電子の授受を行うことで見かけの電気抵抗が変化するという性質を持つ。ガス検知素子は、貴金属線材と金属酸化物半導体とが並列接続された合成抵抗体として働いているから、その合成抵抗値が、前記ガス検知素子の前記金属酸化物半導体に対する被検知ガスの接触による化学反応に応じて変化する事になる。また、前記抵抗値の変化は、化学反応に伴う電子の授受に基づいているから、化学反応量は被検知ガスの濃度に基づいて決定されるため、前記抵抗値の変化も被検知ガスの濃度に基づいて決定されることになる。つまり、ガス検知素子全体としての抵抗値が、前記被検知ガスの濃度に基づいて変化することを利用すれば、そのガス検知素子の抵抗値の変化を測定することによって、そのガス検知素子に接触した被検知ガスの濃度を測定することができるようになるのである。ちなみに、前記貴金属線材と、前記金属酸化物半導体とは、抵抗体同士を並列に接続した関係にあるから、前記貴金属線材と、金属酸化物半導体との抵抗差が小さいほど、前記金属酸化物半導体の抵抗値変化に対する合成抵抗の変化が大きく設定できるという特性を有することになり、熱線型半導体式ガス検知素子における前記金属酸化物半導体としては、抵抗値の小さなものほど有利に用いられる。
【0003】
【発明が解決しようとする課題】
上述した従来の汎用ガス検知素子によれば、上述の炭化水素ガス検知という利用目的で、種々の環境でのガス検知に対する安定性が十分でなく信頼性の面で改良の余地があった。というのは、前記酸化スズ半導体は、表面酸素や表面水酸基の活性が高くて空気中の水蒸気濃度に応じて変化しやすいという特性を有するために、湿度変化により、その被検知ガスに対する検知特性が変化しやすいため、検知対象地区において常設するような場合に、一日あるいは年間を通じての湿度変化に対する安定性が確保しにくいという事情があるためである。
そこで、主材とすべき半導体の種類を替えるなどして、根本的にガス検知特性を変更する必要性が生じている。しかしながら、金属酸化物半導体の特性は、そのガス検知素子の形状、形態によって大きく変化する場合が多く、一概に他のガス検知素子に用いられているものを転用することが出来ない。
【0004】
そこで、本発明者らは、一般にガス検知の際の応答特性に優れた金属酸化物半導体と言われている酸化インジウムを選択し、低濃度ガス検知が可能で、かつ、湿度依存性が低いガス検知素子を提供する目的で鋭意研究をおこなった。
【0005】
【課題を解決するための手段】
その結果、本発明者らは酸化インジウム自体が本来高抵抗な物質であり、かつ湿度の影響を受けにくいという新知見を得た。また、スズによる原子価制御により、酸化インジウムの抵抗値を調整することが可能であり、また、このような酸化インジウムを用いたガス検知素子により、低濃度ガスを高感度に検知できることを見いだした。
本発明は、上記新知見に基づきなされたものであって、前記目的を達成するための本発明の炭化水素ガス検知素子の特徴構成は、
酸化インジウムを主材とする感応層を備え金属酸化物燃焼触媒を含有した被覆層を前記感応層に被覆形成してある炭化水素ガス検知素子であって、
前記被覆層が酸化スズを主材とするものであり、前記金属酸化物燃焼触媒が酸化鉄、酸化コバルト、酸化クロムから選ばれる少なくとも一種を含有するものである点にあり、
熱線型半導体式ガス検知素子で形成することが望ましく、
前記被覆層が、前記金属酸化物触媒を0.3atm%以上0.5atm%以下含有するものである場合に特に有効であり、
前記感応層が酸化スズ、酸化ゲルマニウム等の4価金属酸化物を含有するものであれば好ましく、
前記感応層にスズの添加量が0.1atm%以上であることが好ましい。
【0006】
〔作用効果〕
酸化インジウムが湿度の影響を受けにくいのは、酸化インジウムの表面酸素や表面水酸基は、酸化スズのものに比べて活性が低く、疎水的になっていることによると考えられる。つまり、前記表面酸素や表面水酸基には、雰囲気下の水蒸気が付着反応して、被検知ガスとの反応を阻害したり、必要以上に活性をあげてしまうような現象が起きにくくなっており、結果として湿度の影響を受けにくくなって、所定の活性を維持し易くなり安定に用いられるのである。そのため、前記特徴構成に記載のガス検知素子は湿度に対して影響を受けにくく、高感度で被検知ガスを検知できるのである。
尚、この論理に基づけば、酸化インジウムは水を加えてペーストにするときに、その疎水性によって分散性が低いはずである。はたして、酸化インジウムをペーストにすると、酸化スズをペーストにする場合に比べて、分散性が低く、貴金属線材上に塗布するような場合に取り扱いの良くないものになりやすいことがわかった。
ところが、前記スズを酸化インジウムに添加する際に酸化スズとして添加してあれば、酸化インジウムの疎水的で、湿度の影響を受けにくい性質を維持しながらペーストにする際の分散性を向上させられることもわかり、ガス検知素子の製造工程上も好ましいことがわかった。
【0007】
尚、これらの実験結果は、99.99%以上の純度の原料を用い、実験室レベルで厳密に不純物の混入を遮断した環境下で生成した酸化インジウムについて種々の試験を行って得られたものであり、既報の物性と異なる結果が多数得られていることについては、既報の物性が、原料純度の相違や、製法の相違による種々の不純物が、ドーパントとして働き、再現性に乏しい結果をもたらしたと考えられるのに対し、再現性の高い結果を与えるものと言える条件下で行われた試験によって得られたものである。
【0008】
しかしながら、このようなガス検知素子は、ガス選択性に乏しく、実際には、水素ガスや、アルコールガス、一酸化炭素ガスに対しても高いガス感度を有するために、たとえば、炭化水素ガスのように特定のガスのみを検知するガス検知素子を作成することは、やはり、困難であった。
【0009】
そこで、本発明者らが、鋭意研究した結果、酸化インジウムを主材とした感応層を備えた熱線型半導体式ガス検知素子であっても、金属酸化物燃焼触媒を含有した被覆層を前記感応層に対して被覆形成してあれば、メタンやイソブタンのような炭化水素ガスを選択性高く検出できる(以下フィルタ効果と称する)ことを見いだした。
【0010】
また、このような金属酸化物触媒は、酸化スズを主材とする被覆層に含有させると有効に用いられることが分かり、
さらに、その金属酸化物燃焼触媒としても種々検討したところ、酸化コバルトがもっとも好ましく、次いで酸化鉄、酸化クロムが好適に用いられることがわかり、可燃性ガスのうち、炭化水素ガスのみを有効に検出することに出来るガス検知素子が得られた。
【0011】
尚、前記金属酸化物触媒の含有量についても検討を加えたところ、0.3atm%以上0.5atm%以下であれば、十分にフィルタ効果が得られることを見いだし選択性の高いガス検知素子を提供することが出来るようになった。
また、感応層には、酸化スズ、酸化ゲルマニウム等の4価の金属酸化物を添加しておくことによって、極めて感度特性が向上させられるという知見も得ており、0.1atm%以上、好ましくは、酸化スズの場合に0.1〜50atm%、酸化ゲルマニウムの場合は、0.1〜30atm%、さらに好ましくは、0.1〜5atm%添加しておくことにより、極めて高い感度特性を得られるので好ましい。
【0012】
尚、本発明に言う炭化水素ガス検知素子としては、前述の熱線型半導体式ガス検知素子に限らず、基盤型のものに対して有効に働くものと考えられる。(注:請求項1では、これについての限定をしておりません)
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
〔熱線型半導体式ガス検知素子の製造〕
水酸化インジウムの微粉体に塩化スズの所定濃度水溶液を、前記水酸化インジウム中のインジウムに対してスズが0.5atm%含まれるように含浸させ、80℃で24時間乾燥させた後、電気炉で600℃で4時間焼成した。こうして得られた酸化インジウムをさらに粉砕して、平均粒径1.5μm程度の微粉体を形成した。この微粉体を1,3−ブタンジオールを用いてペーストにして、実効寸法0.40mmの白金線コイル1(線径20μm、巻き径0.30mm、巻き間隔0.02mm)に直径0.45mmの球形で、前記白金線コイルの全体を覆うように塗布する。これをさらに80℃で1時間乾燥させた後、前記白金線コイルに電流を流し、そのジュール熱で600℃で1時間焼成させ、熱線型半導体式ガス検知素子の感応層2を得た。
一方、市販の塩化スズと硝酸コバルトを前記コバルトが溶質成分中に、0.1、0.3、0.5、1.0、2.0atm%含まれるような所定濃度に溶解した混合水溶液を用意し、アンモニア水溶液を滴下し、加水分解により沈殿物を得た。生成した沈殿物は、蒸留水で洗浄して塩素等の雑イオンを除去した後、80℃1時間乾燥させて、スズ酸ゲルを得た。これをさらに細かく粉砕し、電気炉を用いて600℃にて4時間焼成し、最終的に酸化コバルトを0.5atm%含有した酸化スズを得た。この酸化物をさらに粉砕して、平均粒径1.0μm程度の微粉体を形成した。
この微粉体を1,3−ブタンジオールを用いてペーストにして、前記感応層2を被覆するように、50μm厚になるようにコーティングし、被覆層(触媒層)3を形成した。さらに、同様に、乾燥後、600℃にて30分間空気中で焼結させせ、熱線型半導体式ガス検知素子を得た(図1参照)。このように構成してあれば、白金線コイルが前記感応層2の加熱用ヒータと電極とを兼ねる簡単な構成で検知素子の機能を果たすことになる。
【0014】
尚、熱線型半導体式ガス検知素子の形成には以下に示す各試薬を用いた。
水酸化インジウム:(株)高純度化学研究所社製、純度99.99%
塩化スズ:(株)高純度化学研究所社製、純度99.99%
1,3ブタンジオール: 東京化成工業(株)製、純度99%
【0015】
〔回路構成〕
前記熱線型半導体式ガス検知素子は、図2に示すように、ブリッジ回路に組み込んで用いられる。つまり、前記熱線型半導体式ガス検知素子に、固定抵抗R0を直列に接続するとともに、この熱線型半導体式ガス検知素子と固定抵抗R0との合成抵抗に対して固定抵抗R1と固定抵抗R2との合成抵抗を、前記熱線型半導体式ガス検知素子と固定抵抗R1、固定抵抗R0と固定抵抗R2が対向するように並列に接続する。また、前記熱線型半導体式ガス検知素子と固定抵抗の間と、前記固定抵抗R1と固定抵抗R2との間との電位差をセンサ出力として取出す出力部を接続してある。
【0016】
このようなブリッジ回路によれば、供給電圧をE、センサ出力をV、熱線型半導体式ガス検知素子の全体としての抵抗値をRs、各固定抵抗R0,R1,R2の抵抗値をそれぞれR0 、R1 、R2 としたときに、数1の関係を有する。
【0017】
【数1】

Figure 0003919306
【0018】
ここでR1 =R2 とし、ガス感度を、被検知ガス共存雰囲気下でのセンサ出力と清浄空気中でのセンサ出力との差(ΔV)とすると、そのガス感度は、熱線型半導体式ガス検知素子の被検知ガスとの接触による抵抗値変化をΔRsとしたときに、熱線型半導体式ガス検知素子の抵抗値変化に比例することになる。
一方、熱線型半導体式ガス検知素子の抵抗値Rsは、金属酸化物半導体と、白金線コイルとの並列抵抗として挙動するから、金属酸化物半導体の抵抗をrS とし、白金線コイルの抵抗値をrC としたときに、数2(1)式であらわされる。また、被検知ガスとの接触の際の金属酸化物半導体の抵抗値変化をΔrS としたときに、被検知ガスの濃度が低いときには、ΔRsやΔrS は、非常に小さいとすると、その熱線型半導体式ガス検知素子の抵抗変化率は近似的に数2(2)式で与えられる。つまり、熱線型半導体式ガス検知素子の抵抗変化率は、金属酸化物半導体の抵抗変化率に比例することになり、さらに熱線型半導体式ガス検知素子の感度は、数2(3)のように近似されることになる。ここで、βは、増幅率に相当し、rS /rC が小さいほど大きくなり、つまり、一般に金属酸化物半導体の抵抗は貴金属の抵抗よりも大きいものであるから、金属酸化物半導体の抵抗rS が小さいほど、感度の良い熱線型半導体式ガス検知素子が得られることになる。ところで、前記感度はΔrS /rS にも関与しているので、半導体の抵抗値を小さくしすぎても感度の低下を招くことになり、その抵抗値を最適化すべく、酸化スズの添加量を調整するのである。
【0019】
【数2】
Figure 0003919306
【0020】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
〔ガス検知温度依存性〕
1. 酸化コバルト
酸化インジウムを主材とし、スズを0.5atm%含有する感応層を有するとともに、0.3atm%のコバルトを含有する酸化スズからなる被覆層を形成して熱線型半導体式ガス検知素子を製造し、種々のガス種(水素(H2 )、エタノール(C2 5 OH)、一酸化炭素(CO)、イソブタン(i−C4 10)、メタン(CH4 ))に対するに対してガス感度の温度依存性を調べたところ、図3に示すようになった。
同様にコバルトの含有量を0.5atm%に替えた例についても調べたところ図4に示すようになった。
つまり、この熱線型半導体式ガス検知素子は、種々のガスを高感度に検知出来ることがわかる。
2. 酸化鉄
同様に酸化コバルトを酸化鉄に替えた例について調べたところ、図5,6に示すようになった。
3. 酸化クロム
同様に酸化コバルトを酸化鉄に替えた例について調べたところ、図7,8に示すようになった。
いずれの場合も、エタノールや水素に比べ、イソブタンやメタンに対して高い感度を示し、選択性高く炭化水素ガスを検出していることが分かる。
4. 比較例
酸化インジウムを主材とし、スズを0.5atm%含有する感応層のみからなる熱線型半導体式ガス検知素子を製造し、(直径0.5mm)種々のガス種に対してガス感度の温度依存性を調べたところ、図9に示すようになり、エタノールや水素に対しても高い感度を示し、十分な選択性が得られていないことが分かる。
【0021】
〔フィルター性能の評価〕
熱線型半導体式ガス検知素子の各種被覆層のフィルタ効果をガス100ppmに対する感度で評価すると表1のようになる。また、メタンガスに対する各種妨害ガスのメタンガス100ppm相当濃度で評価すると、表2のようになる。つまり、表1から、感度特性の面からは、金属酸化物触媒としては酸化鉄を用いることが好ましく、表2から、妨害ガスからのガス選択性としては、酸化コバルトを用いることが好ましいことが分かる。
これらを考察すると、フィルタ効果は、主に被覆層の酸化活性と、ガスの拡散速度によって支配されると考えられる。一方、このように小型に成型したガス検知素子においては、被覆層の厚さは、実用上小さくなり、拡散速度の要因よりは、酸化活性の要因が大きく働き、被覆層の酸化活性や密度の向上により、フィルタ効果を向上させられるものと考えられる。ところが、酸化活性を高くしすぎると、目的ガスも除去されてしまうため、ガス選択性を低下させる要因となり得る。そのため、被覆層の酸化活性や密度等の最適化を要することになるのであるが、表1,2を総じて見ると、酸化コバルトを用いた例が、両者のバランスの点で優れていると言える。
尚、以下の表中%とあるのは、各金属酸化物中の金属のatm%である
また、熱線型半導体式ガス検知素子は、感応層の直径0.45mm、被覆層の厚さ0.05mm、センサ電圧2.1V(5.6オーム)のものを用いた。
【0022】
【表1】
Figure 0003919306
【0023】
【表2】
Figure 0003919306
【0024】
〔ガス濃度依存性〕
酸化インジウムを主材とし、スズを0.5atm%含有する感応層を有するとともに、0.3atm%のコバルトを含有する酸化スズからなる被覆層を形成して熱線型半導体式ガス検知素子を製造し、各種ガスに対する出力の濃度依存性を調べたところ図10に示すようになった。また、酸化インジウムを主材とし、スズを0.5atm%含有する感応層のみからなる熱線型半導体式ガス検知素子を製造し、同様に調べたところ、図11のようになった。比較すると、ガス選択性が飛躍的に向上していることが分かる。
【0025】
〔酸化コバルトの含有量依存性〕
先のスズを0.5atm%含有する感応層を有するとともに、コバルトを含有する酸化スズからなる被覆層を形成して形成した熱線型半導体式ガス検知素子において、フィルタ機能の酸化コバルト含有量依存性を調べたところ、表3、表4のようになった。つまり、フィルタ効果の被検知ガスへの影響をもって、評価すると、表3に示すようになり、酸化コバルトの含有量は、1atm%以下程度であれば、被検知ガスに対するフィルタ効果を小さく抑えることが出来て好適であることが分かる。また、フィルタ効果による他の妨害ガスとの選択性という点から評価すると、表4に示すようになり、酸化コバルトの含有量は、1atm%以下さらに好ましくは、0.3atm%以上0.5atm%以下であれば、他の妨害ガスからの高い選択性を発揮することができることが分かる。
【0026】
【表3】
Figure 0003919306
ただし、各数値は、酸化コバルトを含有しない被覆層を有する熱線型半導体式ガス検知素子の感度出力を1とした比である
【0027】
【表4】
Figure 0003919306
【0028】
〔センサ出力の湿度依存性〕
前記熱線型半導体式ガス検知素子のガス感度のメタンガス濃度依存性を種々の湿度環境下で求めたところ、図12に示すようになった。また、従来の酸化スズ半導体を主材とする熱線型半導体式ガス検知素子についても同様に調べたところ図13に示すようになった。
つまり、センサ出力の濃度依存性は、従来のものに比べて湿度によってあまり変動していないことがわかる。尚、図中、標準とあるのは、絶対湿度7.1g/m3 、DRYとあるのは0.8g/m3 、WETとあるのは26g/m3 の湿度条件を指し、いずれもセンサ電圧2.5V(450℃相当)の条件下で出力を調べたものである。
その結果、本発明の熱線型半導体式ガス検知素子は湿度によらず安定して炭化水素ガスを検知できることが分かる。
【0029】
〔感応層の種類による感度特性〕
酸化インジウムを主材とし、ゲルマニウムを0.5atm%含有する感応層(直径0.50mm)のみからなるガス検知素子のガス検知特性をそれぞれ調べたところ、図14のようになった。この場合も図9同様高い出力が得られており、炭化水素ガス検知素子として有効に用いられることが読みとれる。
【図面の簡単な説明】
【図1】熱線型半導体式ガス検知素子の縦断斜視図
【図2】熱線型半導体式ガス検知素子を組み込む回路構成図
【図3】感度出力のガス検知温度依存性を示すグラフ(Co:0.3atm%)
【図4】感度出力のガス検知温度依存性を示すグラフ(Co:0.5atm%)
【図5】感度出力のガス検知温度依存性を示すグラフ(Fe:0.3atm%)
【図6】感度出力のガス検知温度依存性を示すグラフ(Fe:0.5atm%)
【図7】感度出力のガス検知温度依存性を示すグラフ(Cr:0.3atm%)
【図8】感度出力のガス検知温度依存性を示すグラフ(Cr:0.5atm%)
【図9】感度出力のガス検知温度依存性を示すグラフ(被覆層ナシ:Sn)
【図10】感度出力の濃度依存性を示すグラフ(Co:0.5atm%)
【図11】感度出力の濃度依存性を示すグラフ(被覆層ナシ)
【図12】メタンガス感度曲線に対する湿度の影響を示すグラフ(Co:0.3atm%)
【図13】メタンガス感度曲線に対する湿度の影響を示すグラフ(被覆層ナシ)
【図14】感度出力のガス検知温度依存性を示すグラフ(被覆層ナシ:Ge)
【図15】熱線型半導体式ガス検知素子の動作概念図
【符号の説明】
1 貴金属線材
2 感応層
3 被覆層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrocarbon gas sensing element having a sensitive layer mainly composed of indium oxide, and in particular, a hot-wire semiconductor gas sensing element is effectively used. The hot wire type semiconductor gas detection element here refers to a gas detection element formed by coating and firing a metal oxide semiconductor on a noble metal wire such as a platinum wire coil.
[0002]
[Prior art]
Conventionally, as these general-purpose gas detection elements, a so-called hot-wire semiconductor gas detection element is usually configured by coating a metal oxide semiconductor mainly composed of a tin oxide semiconductor on a noble metal wire such as platinum. Is used (see FIG. 1). The gas detection element formed in this way has extremely high characteristics for detecting low-concentration gas due to the properties of tin oxide semiconductors, and has a simple structure that is simply fired on a noble metal wire. It is widely used for its excellent gas absorption and heat dissipation characteristics based on small capacity, excellent gas responsiveness, operation with low power, etc. The detection principle is explained as follows. Is done.
As shown in FIG. 15, when a voltage is applied to the gas detection element, the noble metal wire and the metal oxide semiconductor act as a resistor connected in parallel. On the other hand, when the gas to be detected comes into contact with the metal oxide semiconductor, the metal oxide semiconductor transmits and receives electrons by a chemical reaction that occurs in the gas to be detected on the surface of the metal oxide semiconductor. It has the property that resistance changes. Since the gas detection element works as a combined resistor in which a noble metal wire and a metal oxide semiconductor are connected in parallel, the combined resistance value depends on contact of the gas to be detected with the metal oxide semiconductor of the gas detection element. It will change according to the chemical reaction. In addition, since the change in the resistance value is based on the exchange of electrons accompanying a chemical reaction, the amount of chemical reaction is determined based on the concentration of the gas to be detected. It will be decided based on. In other words, by utilizing the fact that the resistance value of the gas detection element as a whole changes based on the concentration of the gas to be detected, it is possible to contact the gas detection element by measuring the change in the resistance value of the gas detection element. The concentration of the detected gas can be measured. Incidentally, since the noble metal wire and the metal oxide semiconductor are in a relationship in which resistors are connected in parallel, the smaller the resistance difference between the noble metal wire and the metal oxide semiconductor, the smaller the metal oxide semiconductor. Therefore, the metal oxide semiconductor in the hot-wire semiconductor gas sensing element is more advantageously used as the metal oxide semiconductor has a smaller resistance value.
[0003]
[Problems to be solved by the invention]
According to the above-described conventional general-purpose gas detection element, there is room for improvement in terms of reliability because the above-described purpose of detecting hydrocarbon gas is not sufficient in stability for gas detection in various environments. This is because the tin oxide semiconductor has the property that the activity of surface oxygen and surface hydroxyl group is high and it is easy to change according to the water vapor concentration in the air. This is because it is easy to change, and when it is permanently installed in the detection target area, it is difficult to ensure stability against changes in humidity throughout the day or year.
Therefore, it is necessary to fundamentally change the gas detection characteristics by changing the type of semiconductor to be used as the main material. However, the characteristics of metal oxide semiconductors often vary greatly depending on the shape and form of the gas detection element, and it is not possible to divert those used for other gas detection elements.
[0004]
Therefore, the present inventors have selected indium oxide, which is generally said to be a metal oxide semiconductor excellent in response characteristics in gas detection, can detect low concentration gas, and has low humidity dependency. We conducted intensive research with the purpose of providing sensing elements.
[0005]
[Means for Solving the Problems]
As a result, the present inventors have obtained a new finding that indium oxide itself is a substance with high resistance and is hardly affected by humidity. In addition, it was found that the resistance value of indium oxide can be adjusted by controlling the valence with tin, and that a low-concentration gas can be detected with high sensitivity by such a gas detection element using indium oxide. .
The present invention has been made on the basis of the above-mentioned new knowledge, and the characteristic configuration of the hydrocarbon gas detection element of the present invention for achieving the above object is as follows:
A hydrocarbon gas detecting element comprising a sensitive layer mainly composed of indium oxide, and a coating layer containing a metal oxide combustion catalyst formed on the sensitive layer ,
The coating layer is based on tin oxide, and the metal oxide combustion catalyst contains at least one selected from iron oxide, cobalt oxide, and chromium oxide ,
It is desirable to form with a hot wire type semiconductor gas detection element,
It is particularly effective when the coating layer contains the metal oxide catalyst in a range of 0.3 atm% to 0.5 atm%,
Preferably, if the sensitive layer contains a tetravalent metal oxide such as tin oxide or germanium oxide,
The amount of tin added to the sensitive layer is preferably 0.1 atm% or more.
[0006]
[Function and effect]
The reason why indium oxide is not easily affected by humidity is considered to be that the surface oxygen and surface hydroxyl groups of indium oxide are less active and more hydrophobic than those of tin oxide. In other words, the surface oxygen and surface hydroxyl groups are less likely to cause a phenomenon in which water vapor in the atmosphere adheres and inhibits the reaction with the gas to be detected or increases the activity more than necessary. As a result, it becomes difficult to be influenced by humidity, and it becomes easy to maintain a predetermined activity and it is used stably. Therefore, the gas detection element described in the feature configuration is not easily affected by humidity and can detect the gas to be detected with high sensitivity.
Based on this logic, indium oxide should have low dispersibility due to its hydrophobicity when water is added to form a paste. Therefore, it has been found that when indium oxide is used as a paste, the dispersibility is lower than that when tin oxide is used as a paste, and when it is applied on a noble metal wire, it is likely to be unhandled.
However, if tin is added to indium oxide as tin oxide, it can improve the dispersibility when making a paste while maintaining the hydrophobic properties of indium oxide and being less susceptible to humidity. It was also understood that this was preferable in the manufacturing process of the gas detection element.
[0007]
These experimental results were obtained by conducting various tests on indium oxide produced in an environment in which impurities with a purity of 99.99% or more were used and the contamination of impurities was strictly blocked at the laboratory level. With regard to the fact that many results different from the reported physical properties have been obtained, the reported physical properties result in poor reproducibility because various impurities due to differences in raw material purity and manufacturing methods act as dopants. In contrast, it was obtained by tests conducted under conditions that could give highly reproducible results.
[0008]
However, such a gas detection element has poor gas selectivity and actually has high gas sensitivity to hydrogen gas, alcohol gas, and carbon monoxide gas. It is still difficult to create a gas detection element that detects only a specific gas.
[0009]
Therefore, as a result of intensive studies by the present inventors, even a hot-wire semiconductor gas detection element having a sensitive layer mainly composed of indium oxide, the coating layer containing a metal oxide combustion catalyst is used as the sensitive layer. It was found that a hydrocarbon gas such as methane or isobutane can be detected with high selectivity if the layer is coated (hereinafter referred to as filter effect).
[0010]
In addition, it can be seen that such a metal oxide catalyst can be effectively used when contained in a coating layer mainly composed of tin oxide.
Furthermore, as a result of various examinations as the metal oxide combustion catalyst, it was found that cobalt oxide was most preferable, and then iron oxide and chromium oxide were used favorably. Of the flammable gases, only hydrocarbon gas was effectively detected. A gas sensing element that can be obtained was obtained.
[0011]
In addition, when the content of the metal oxide catalyst was also examined, it was found that a filter effect was sufficiently obtained if it was 0.3 atm% or more and 0.5 atm% or less, and a highly selective gas detection element was obtained. It became possible to provide.
In addition, it has also been found that the sensitivity characteristics can be greatly improved by adding a tetravalent metal oxide such as tin oxide or germanium oxide to the sensitive layer, and is preferably 0.1 atm% or more, preferably In the case of tin oxide, 0.1 to 50 atm%, and in the case of germanium oxide, 0.1 to 30 atm%, more preferably 0.1 to 5 atm% is added to obtain extremely high sensitivity characteristics. Therefore, it is preferable.
[0012]
The hydrocarbon gas sensing element referred to in the present invention is not limited to the above-described hot-wire semiconductor gas sensing element, but is considered to work effectively for the base type. (Note: Claim 1 does not limit this)
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[Manufacture of hot-wire semiconductor gas detectors]
An indium hydroxide fine powder is impregnated with a predetermined concentration aqueous solution of tin chloride so that 0.5 atm% of tin is contained in the indium hydroxide, and dried at 80 ° C. for 24 hours. And calcined at 600 ° C. for 4 hours. The indium oxide thus obtained was further pulverized to form a fine powder having an average particle size of about 1.5 μm. This fine powder is made into a paste using 1,3-butanediol, and a platinum wire coil 1 (wire diameter 20 μm, winding diameter 0.30 mm, winding interval 0.02 mm) having an effective dimension of 0.40 mm has a diameter of 0.45 mm. It is applied in a spherical shape so as to cover the entire platinum wire coil. This was further dried at 80 ° C. for 1 hour, and then an electric current was passed through the platinum wire coil, followed by firing at 600 ° C. for 1 hour with the Joule heat to obtain a sensitive layer 2 of a hot wire type semiconductor gas detection element.
On the other hand, a mixed aqueous solution prepared by dissolving commercially available tin chloride and cobalt nitrate at a predetermined concentration such that the cobalt is contained in the solute component at 0.1, 0.3, 0.5, 1.0, and 2.0 atm%. It prepared, the ammonia aqueous solution was dripped, and the deposit was obtained by hydrolysis. The produced precipitate was washed with distilled water to remove miscellaneous ions such as chlorine and then dried at 80 ° C. for 1 hour to obtain a stannic acid gel. This was further finely pulverized and fired at 600 ° C. for 4 hours using an electric furnace to finally obtain tin oxide containing 0.5 atm% of cobalt oxide. This oxide was further pulverized to form a fine powder having an average particle size of about 1.0 μm.
This fine powder was made into a paste using 1,3-butanediol, and coated so as to have a thickness of 50 μm so as to cover the sensitive layer 2 to form a coating layer (catalyst layer) 3. Furthermore, similarly, after drying, it was sintered in air at 600 ° C. for 30 minutes to obtain a hot-wire semiconductor gas detection element (see FIG. 1). If constituted in this way, the platinum wire coil fulfills the function of the sensing element with a simple construction that serves both as a heater and an electrode for the sensitive layer 2.
[0014]
In addition, each reagent shown below was used for formation of a hot wire type | mold semiconductor gas detection element.
Indium hydroxide: manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%
Tin chloride: manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%
1,3 butanediol: manufactured by Tokyo Chemical Industry Co., Ltd., purity 99%
[0015]
[Circuit configuration]
As shown in FIG. 2, the hot-wire semiconductor gas detection element is used by being incorporated in a bridge circuit. That is, a fixed resistor R0 is connected in series to the hot-wire semiconductor gas sensing element, and a fixed resistor R1 and a fixed resistor R2 are combined with the combined resistance of the hot-wire semiconductor gas detector element and the fixed resistor R0. The combined resistor is connected in parallel so that the hot-wire semiconductor gas sensing element and the fixed resistor R1, and the fixed resistor R0 and the fixed resistor R2 face each other. In addition, an output section is connected to take out a potential difference between the hot-wire semiconductor gas detection element and the fixed resistor and between the fixed resistor R1 and the fixed resistor R2 as a sensor output.
[0016]
According to such a bridge circuit, the supply voltage E, Rs the overall resistance of the sensor output V, hot wire type semiconductor gas detector element, the resistance value of each R 0 of the fixed resistors R0, R1, R2 , R 1 , R 2 , the relationship of Equation 1 is established.
[0017]
[Expression 1]
Figure 0003919306
[0018]
If R 1 = R 2 and the gas sensitivity is the difference (ΔV) between the sensor output in the coexisting atmosphere of the gas to be detected and the sensor output in clean air, the gas sensitivity is the hot-wire semiconductor gas. When the resistance value change due to the contact of the detection element with the gas to be detected is ΔRs, it is proportional to the resistance value change of the hot-wire semiconductor gas detection element.
On the other hand, the resistance value Rs of the hot-wire semiconductor gas sensing element behaves as a parallel resistance between the metal oxide semiconductor and the platinum wire coil, so that the resistance of the metal oxide semiconductor is r S and the resistance value of the platinum wire coil. the when the r C, represented by the number 2 (1). Further, when the change in the resistance value of the metal oxide semiconductor upon contact with the gas to be detected is Δr S, and ΔRs and Δr S are very small when the concentration of the gas to be detected is low, the heat ray The rate of change in resistance of the type semiconductor gas sensing element is approximately given by equation (2). That is, the resistance change rate of the hot-wire semiconductor gas detection element is proportional to the resistance change rate of the metal oxide semiconductor, and the sensitivity of the hot-wire semiconductor gas detection element is as shown in Equation 2 (3). Will be approximated. Here, β corresponds to an amplification factor, and increases as r S / r C decreases. In other words, since the resistance of a metal oxide semiconductor is generally larger than the resistance of a noble metal, the resistance of the metal oxide semiconductor The smaller the r S is, the more sensitive the hot-wire semiconductor gas sensing element can be obtained. By the way, since the sensitivity is also related to Δr S / r S , even if the resistance value of the semiconductor is made too small, the sensitivity is lowered. In order to optimize the resistance value, the amount of tin oxide added Is adjusted.
[0019]
[Expression 2]
Figure 0003919306
[0020]
【Example】
Embodiments of the present invention are described below with reference to the drawings.
[Gas detection temperature dependency]
1. Cobalt indium oxide is the main material, and has a sensitive layer containing 0.5 atm% of tin and a coating layer made of tin oxide containing 0.3 atm% of cobalt to form a heat ray semiconductor gas detection element prepared, various kinds of gases (hydrogen (H 2), ethanol (C 2 H 5 OH), carbon monoxide (CO), isobutane (i-C 4 H 10) , methane (CH 4)) against against When the temperature dependence of the gas sensitivity was examined, it was as shown in FIG.
Similarly, an example in which the cobalt content was changed to 0.5 atm% was examined, and the result was as shown in FIG.
That is, it can be seen that this hot-wire semiconductor gas detection element can detect various gases with high sensitivity.
2. As in the case of iron oxide, an example in which cobalt oxide was replaced with iron oxide was examined, and the results were as shown in FIGS.
3. As in the case of chromium oxide, an example in which cobalt oxide was replaced with iron oxide was examined, and the results were as shown in FIGS.
In either case, it can be seen that hydrocarbon gas is detected with high selectivity and high selectivity to isobutane and methane compared to ethanol and hydrogen.
4). Comparative Example A hot-wire semiconductor gas sensing element consisting of a sensitive layer containing indium oxide as a main material and containing 0.5 atm% of tin is manufactured (diameter 0.5 mm). Gas sensitivity temperature for various gas types As a result of examining the dependency, it is as shown in FIG. 9, which shows that the sensitivity is high with respect to ethanol and hydrogen, and sufficient selectivity is not obtained.
[0021]
[Evaluation of filter performance]
Table 1 shows the filter effect of various coating layers of the hot-wire semiconductor gas sensing element evaluated by sensitivity to 100 ppm of gas. Table 2 shows the evaluation results of various interference gases with respect to methane gas at a concentration equivalent to 100 ppm of methane gas. That is, from Table 1, it is preferable to use iron oxide as the metal oxide catalyst from the viewpoint of sensitivity characteristics, and from Table 2, it is preferable to use cobalt oxide as the gas selectivity from the interfering gas. I understand.
Considering these, it is considered that the filter effect is mainly governed by the oxidation activity of the coating layer and the gas diffusion rate. On the other hand, in the gas detection element molded in such a small size, the thickness of the coating layer is practically small, and the factor of the oxidation activity works more than the factor of the diffusion rate, and the oxidation activity and density of the coating layer are reduced. It is considered that the filter effect can be improved by the improvement. However, if the oxidation activity is too high, the target gas is also removed, which may cause a reduction in gas selectivity. For this reason, it is necessary to optimize the oxidation activity and density of the coating layer. However, when Tables 1 and 2 are taken as a whole, it can be said that the example using cobalt oxide is excellent in terms of the balance between the two. .
In the table below, “%” means atm% of the metal in each metal oxide. The hot-wire semiconductor gas detection element has a sensitive layer diameter of 0.45 mm and a coating layer thickness of 0. A sensor with a sensor voltage of 2.1 V (5.6 ohm) was used.
[0022]
[Table 1]
Figure 0003919306
[0023]
[Table 2]
Figure 0003919306
[0024]
[Gas concentration dependence]
A heat ray semiconductor gas detection element is manufactured by forming a coating layer made of tin oxide containing indium oxide as a main material and containing tin at 0.5 atm% and tin oxide containing 0.3 atm% cobalt. When the concentration dependency of the output for various gases was examined, it was as shown in FIG. Further, when a hot-wire semiconductor gas detection element comprising only a sensitive layer containing indium oxide as a main material and containing 0.5 atm% of tin was manufactured and examined in the same manner, it was as shown in FIG. By comparison, it can be seen that the gas selectivity is dramatically improved.
[0025]
[Cobalt oxide content dependency]
In the hot-wire semiconductor gas detection element formed by forming a coating layer made of tin oxide containing cobalt and having a sensitive layer containing 0.5 atm% of the above tin, the filter function depends on the cobalt oxide content. As a result, Table 3 and Table 4 were obtained. In other words, when the effect of the filter effect on the detected gas is evaluated, it is as shown in Table 3. If the cobalt oxide content is about 1 atm% or less, the filter effect on the detected gas can be kept small. It turns out that it is possible and suitable. Further, when evaluated from the point of selectivity with other interfering gases due to the filter effect, it is as shown in Table 4, and the content of cobalt oxide is 1 atm% or less, more preferably 0.3 atm% or more and 0.5 atm%. If it is below, it turns out that the high selectivity from other interfering gas can be exhibited.
[0026]
[Table 3]
Figure 0003919306
However, each numerical value is a ratio in which the sensitivity output of a hot-wire semiconductor gas detection element having a coating layer not containing cobalt oxide is 1.
[Table 4]
Figure 0003919306
[0028]
[Humidity dependency of sensor output]
FIG. 12 shows the methane gas concentration dependency of the gas sensitivity of the hot-wire semiconductor gas detection element obtained in various humidity environments. Further, when a conventional hot-wire semiconductor gas detection element mainly composed of a tin oxide semiconductor was examined in the same manner, it was as shown in FIG.
That is, it can be seen that the concentration dependence of the sensor output does not vary much with humidity compared to the conventional one. In the figure, the standard refers to an absolute humidity of 7.1 g / m 3 , DRY refers to a humidity condition of 0.8 g / m 3 , and WET refers to a humidity condition of 26 g / m 3. The output was examined under the condition of a voltage of 2.5 V (equivalent to 450 ° C.).
As a result, it can be seen that the hot-wire semiconductor gas detection element of the present invention can detect hydrocarbon gas stably regardless of humidity.
[0029]
[Sensitivity characteristics depending on the type of sensitive layer]
When the gas detection characteristics of the gas detection element consisting only of a sensitive layer (diameter: 0.50 mm) containing indium oxide as a main material and containing germanium at 0.5 atm% were respectively shown in FIG. In this case as well, a high output is obtained as in FIG.
[Brief description of the drawings]
FIG. 1 is a vertical perspective view of a hot-wire semiconductor gas detection element. FIG. 2 is a circuit configuration diagram incorporating a hot-wire semiconductor gas detection element. FIG. 3 is a graph showing the dependence of sensitivity output on gas detection temperature (Co: 0). .3 atm%)
FIG. 4 is a graph showing the dependence of the sensitivity output on the gas detection temperature (Co: 0.5 atm%).
FIG. 5 is a graph showing the dependence of sensitivity output on gas detection temperature (Fe: 0.3 atm%).
FIG. 6 is a graph showing the dependence of sensitivity output on gas detection temperature (Fe: 0.5 atm%).
FIG. 7 is a graph showing gas detection temperature dependence of sensitivity output (Cr: 0.3 atm%).
FIG. 8 is a graph showing gas detection temperature dependence of sensitivity output (Cr: 0.5 atm%).
FIG. 9 is a graph showing the dependence of the sensitivity output on the gas detection temperature (no coating layer: Sn).
FIG. 10 is a graph showing the concentration dependence of sensitivity output (Co: 0.5 atm%).
FIG. 11 is a graph showing the concentration dependence of sensitivity output (no coating layer).
FIG. 12 is a graph showing the influence of humidity on the methane gas sensitivity curve (Co: 0.3 atm%).
FIG. 13 is a graph showing the influence of humidity on the sensitivity curve of methane gas (no coating layer)
FIG. 14 is a graph showing the dependence of the sensitivity output on the gas detection temperature (no coating layer: Ge).
FIG. 15 is a conceptual diagram of operation of a hot-wire semiconductor gas detection element.
1 Precious metal wire 2 Sensitive layer 3 Covering layer

Claims (6)

酸化インジウムを主材とする感応層を備え金属酸化物燃焼触媒を含有した被覆層を前記感応層に被覆形成してある炭化水素ガス検知素子であって、
前記被覆層が酸化スズを主材とするものであり、
前記金属酸化物燃焼触媒が酸化鉄、酸化コバルト、酸化クロムから選ばれる少なくとも一種を含有するものである炭化水素ガス検知素子。
A hydrocarbon gas detecting element comprising a sensitive layer mainly composed of indium oxide, and a coating layer containing a metal oxide combustion catalyst formed on the sensitive layer ,
The coating layer is mainly composed of tin oxide,
A hydrocarbon gas detection element, wherein the metal oxide combustion catalyst contains at least one selected from iron oxide, cobalt oxide, and chromium oxide .
貴金属線材に酸化インジウムを被覆焼成して感応層を形成してある請求項1に記載の炭化水素ガス検知素子。The hydrocarbon gas detecting element according to claim 1, wherein the noble metal wire is coated with indium oxide and fired to form a sensitive layer. 前記被覆層が、前記金属酸化物触媒を0.3atm%〜0.5atm%含有するものである請求項1または2に記載の炭化水素ガス検知素子。The hydrocarbon gas detection element according to claim 1 or 2 , wherein the coating layer contains the metal oxide catalyst in an amount of 0.3 atm% to 0.5 atm%. 前記感応層が4価金属酸化物を含有するものである請求項1〜3のいずれか1項に記載の炭化水素ガス検知素子。The hydrocarbon gas detecting element according to claim 1 , wherein the sensitive layer contains a tetravalent metal oxide. 前記4価金属酸化物が酸化スズまたは酸化ゲルマニウムである請求項に記載の炭化水素ガス検知素子。The hydrocarbon gas detection element according to claim 4 , wherein the tetravalent metal oxide is tin oxide or germanium oxide. 前記感応層へのスズの添加量が0.1atm%以上である請求項に記載の炭化水素ガス検知素子。The hydrocarbon gas detecting element according to claim 5 , wherein the amount of tin added to the sensitive layer is 0.1 atm% or more.
JP29984297A 1997-10-31 1997-10-31 Hydrocarbon gas detector Expired - Fee Related JP3919306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29984297A JP3919306B2 (en) 1997-10-31 1997-10-31 Hydrocarbon gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29984297A JP3919306B2 (en) 1997-10-31 1997-10-31 Hydrocarbon gas detector

Publications (2)

Publication Number Publication Date
JPH11132980A JPH11132980A (en) 1999-05-21
JP3919306B2 true JP3919306B2 (en) 2007-05-23

Family

ID=17877594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29984297A Expired - Fee Related JP3919306B2 (en) 1997-10-31 1997-10-31 Hydrocarbon gas detector

Country Status (1)

Country Link
JP (1) JP3919306B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807561B2 (en) * 2005-11-22 2011-11-02 国立大学法人九州大学 Method for producing metal oxide semiconductor material for gas sensor
JP4833717B2 (en) * 2006-03-31 2011-12-07 シチズンホールディングス株式会社 Contact combustion type gas sensor and its sensing element and compensating element

Also Published As

Publication number Publication date
JPH11132980A (en) 1999-05-21

Similar Documents

Publication Publication Date Title
EP0115182B1 (en) Gas sensor
EP0114310A2 (en) Carbon monoxide sensing element and process for manufacturing it
EP0022369B1 (en) Combustible gas detecting elements
JPH05505465A (en) gas sensor
JP3919306B2 (en) Hydrocarbon gas detector
JP3919307B2 (en) Hot wire semiconductor gas detector for air pollution detection
JP3171745B2 (en) Substrate type semiconductor gas sensor and gas detector
JP3919305B2 (en) Hot wire semiconductor gas detector for air pollution detection
EP0115953B1 (en) Gas sensor
JP2615138B2 (en) Composite gas sensor
JP3171734B2 (en) Carbon monoxide gas sensing element
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
JP3976883B2 (en) Gas detection element
JP3901594B2 (en) Semiconductor hydrogen gas detector
JPS5957153A (en) Gas detecting element
JP3669807B2 (en) Carbon monoxide detection sensor
JP3171774B2 (en) Gas detection element
JP2021196176A (en) Gas sensing material, method for manufacturing gas sensing material, and gas concentration measuring device
JPH11287781A (en) Hydrogen gas detection element and its manufacture
JPS5957154A (en) Gas detecting element
JPS6222417B2 (en)
JPS5957150A (en) Gas detecting element
JPS6222420B2 (en)
JPS5957149A (en) Gas detecting element
JPH0230661B2 (en) GASUKENCHISOSHI

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees