JPS5957153A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS5957153A
JPS5957153A JP57168768A JP16876882A JPS5957153A JP S5957153 A JPS5957153 A JP S5957153A JP 57168768 A JP57168768 A JP 57168768A JP 16876882 A JP16876882 A JP 16876882A JP S5957153 A JPS5957153 A JP S5957153A
Authority
JP
Japan
Prior art keywords
gas
added
gas sensor
prepare
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57168768A
Other languages
Japanese (ja)
Other versions
JPS623375B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57168768A priority Critical patent/JPS5957153A/en
Priority to US06/496,492 priority patent/US4732738A/en
Priority to EP83302807A priority patent/EP0095313B1/en
Priority to DE8383302807T priority patent/DE3379481D1/en
Publication of JPS5957153A publication Critical patent/JPS5957153A/en
Publication of JPS623375B2 publication Critical patent/JPS623375B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a gas detecting element having gas responsiveness and high sensitivity, especially, for CH4 at a relatively low operation temp., by using a gas sensor obtained by baking a composition prepared by adding one or more of Sn, Zr, Ti to alpha -Fe2O3 containing SO4<--> in a ratio in a specific range in a mole ratio within a specific range. CONSTITUTION:Fe2SO4-7H2O is added to alpha-Fe2O3 (which may be commercial ferric oxide) to prepare a powder mixture containing 0.005-10wt% SO4<-->. One or more of Sn, Zr and Ti and added to are mixed in the powder mixture so as to contain said elements in an amount of 0.5-50mol% as a total addition amount of the basis of SnO2, ZrO2 and TiO2 and an org. binder is added to th obtained composition. The resulting mixture is screened to prepare a granule which is, in turn, molded under heating and the molded one is sintered to prepare a sintered body as a gas sensor or the paste formed from the powder mixture is applied to a substrate by printing and the printed substrate is baked to obtain a sintered film to be used as the gas sensor. A comb shaped electrode is provided to the surface of the gas sensor while a heater to the back surface thereof to obtain a gas detecting element which is operated at about 400 deg.C and has high sensitivity, especially, for CH4 without adding a noble metal to the sensor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する金属酸化物半導体
を用いたガス検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas detection element using a metal oxide semiconductor used to detect combustible gases.

従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有毒ガスによ
る中毒事故が多発し、大きな社会問題となっていること
に強く起因している。
Conventional Structures and Their Problems In recent years, various research and developments have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and these have become major social problems.

特にプロパンガスは、爆発下限界(LEL)が低く、か
つ比重が空気よりも大きく、部屋に停滞しやすいために
事故があとを断たず、毎年多数の死傷者を出している。
Propane gas, in particular, has a low explosive limit (LEL) and a higher specific gravity than air, so it tends to stagnate in rooms, resulting in numerous accidents and injuries every year.

近年になって、酸化第二錫(Sn02)やガンマ型酸化
第二鉄(γ−Fe 203 )などの金属酸化物を用い
たガス検知素子が実用化され、ガス漏れ警報器などに応
用されている。そして、ガス漏れなどの事態が発生して
もLELに至るまでの間に、プロパンガスの存在をいち
早く検知し、爆発を未然に防げるようになりている。
In recent years, gas detection elements using metal oxides such as stannic oxide (Sn02) and gamma-type ferric oxide (γ-Fe203) have been put into practical use, and have been applied to gas leak alarms. There is. Even if a situation such as a gas leak occurs, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion.

ところで、日本でもメタンガスを主成分とする液化天然
ガス(LN(1)が一般家庭用として用いられるように
なり、徐々に普及して来ている。したがって、このLN
Gの主成分であるメタンガスを感度よく検出するガス検
知素子の要請も非常に大きくなってきている。
By the way, liquefied natural gas (LN (1)), whose main component is methane gas, has come to be used for general household use in Japan and is gradually becoming popular.
Demand for gas detection elements that can detect methane gas, the main component of G, with high sensitivity is also increasing.

勿論、すでにメタンガスに感応するガス検知素子は開発
されてはいるが、′その多くは感応体材料に増感剤とし
て貴金属触媒を用いているため、種々のガスによる触媒
被毒の問題、メタンガスに対する選択度が小さい点、あ
るいは特性の経時変化が大きい点などの課題を抱えてい
る。
Of course, gas detection elements sensitive to methane gas have already been developed, but most of them use noble metal catalysts as sensitizers in the sensitive material, so there are problems with catalyst poisoning by various gases and problems with methane gas. They have problems such as low selectivity and large changes in characteristics over time.

例えば、メタンガスはそれ自身非常に安定なガスである
だけに、これに十分な感度を有する検知素子は非常に高
活性である必要があるが、従来はメタンガスに対して大
きな感度を実現するために、貴金属触媒を感応体材料に
添加して用いるか、あるいは感応体を例えば450’C
以上のがなシ高い温度で動作させるなどの工夫がなされ
てきた。しかしながら、実用に際しては未だ不十分な特
性であるのが現状である。
For example, since methane gas itself is a very stable gas, a sensing element with sufficient sensitivity must be extremely active. , a noble metal catalyst is added to the susceptor material, or the susceptor is heated at, for example, 450'C.
Efforts have been made to operate at higher temperatures. However, the current situation is that the properties are still insufficient for practical use.

発明の目的 本発明はこのような状況に鑑みてなされたもので、貴金
属触媒を一切添加することなく、また比較的低い動作温
度でもメタン感度の大きいガス検知素子を実現するもの
である。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to realize a gas detection element with high methane sensitivity even at a relatively low operating temperature without adding any noble metal catalyst.

発明の構成 本発明はアルファ型酸化第二鉄(α−Fe2es)をガ
ス感応体として用いたガス検知素子において、これに含
まれる種々の陰イオンのガス感応特性に及ぼす影響、な
らびに添加物の効果について検討している中で見い出さ
れたものである。
Structure of the Invention The present invention relates to a gas sensing element using alpha-type ferric oxide (α-Fe2es) as a gas sensitive material, and the effects of various anions contained therein on the gas sensitivity characteristics, as well as the effects of additives. This was discovered while considering the following.

すなわち本発明のガス検知素子は、硫酸イオンが0.o
O5〜1o重量襲含有された(z−Fe203に、添加
物としてSn 、 ZrおよびTiのうち少なくともひ
とつが、それぞれ5no2Zr02およびTiO2に換
算して添加物総量で0.1〜6Qモル係含むものをガス
感応体として用いたものであり、これはガス感応体の母
材料である硫酸イオンを含有するα−Fe203にSn
 、 ZrあるいはTiを添加することにより、ガス感
応特性とその信頼性が飛躍的に向上し、しかも先述のメ
タンガスに対しても実用上十分大きな感度を実現し得る
ことを見い出したことによってなされたものである。
That is, in the gas detection element of the present invention, sulfate ions are 0. o
(Z-Fe203 contains at least one of Sn, Zr, and Ti as an additive in a total amount of 0.1 to 6Q moles of additives, calculated as Zr02 and TiO2, respectively) This was used as a gas sensitive material, and this is made of α-Fe203 containing sulfate ions, which is the base material of the gas sensitive material, and Sn
This was achieved by discovering that by adding Zr or Ti, the gas sensitivity characteristics and its reliability were dramatically improved, and that it was possible to achieve a sufficiently high sensitivity for practical use even to the aforementioned methane gas. It is.

実施例の説明 以下に本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

まず実施例1においては、α−Fe203に含有される
硫酸イオンの量を一定にし、添加物であるSn 、 Z
rあるいはTiの添加量ならびにそれらの組み合わせを
変えた場合について述べることにする。
First, in Example 1, the amount of sulfate ions contained in α-Fe203 was kept constant, and the additives Sn and Z
A case will be described in which the amount of r or Ti added and the combination thereof are changed.

〔実施例1〕 市販の酸化第二鉄(Fe203)(これはX線回折から
全てα−Fe203相であることを確認した)試薬20
oy−に、硫酸イオンを含有させるだめの添加剤として
硫酸第一鉄(FeSO4−7H20)試薬を4Qノ添加
し、らいかい機で2時間混合した。これらの混合物をい
くつかに等分割し、これにそれぞれ市販の酸化第二錫(
Sn02)、酸化ジルコニウム(ZrO2)および酸化
チタン(Ti02)試薬を、単独あるいは複数の組み合
わせで添加した。そしてそれぞれの粉体をさらにらいか
い機で3時間乾式混合した。そしてこれらにそれぞれ有
機バインダーを加えて100〜200μの大きさの粒子
に整粒した。次にこれらの粉体を直方体形状に加圧成型
し、空気中で600°Cの温度で1時間焼成した。
[Example 1] Commercially available ferric oxide (Fe203) (all of which was confirmed to be α-Fe203 phase by X-ray diffraction) reagent 20
To the oy-, 4Q of ferrous sulfate (FeSO4-7H20) reagent was added as an additive to contain sulfate ions, and the mixture was mixed for 2 hours using a sieve machine. Divide these mixtures into several equal parts, and add commercially available stannic oxide (
Sn02), zirconium oxide (ZrO2), and titanium oxide (Ti02) reagents were added singly or in combination. Then, each powder was further dry-mixed for 3 hours using a miller. Then, an organic binder was added to each of these, and the particles were sized into particles having a size of 100 to 200 μm. Next, these powders were pressure-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600°C for 1 hour.

次にこの焼結体の表面にAuを蒸着して一対の櫛形電極
を形成し、その裏面には白金発熱体を無機接着剤で貼り
つけてヒータとし検知素子を作製した。この発熱体に電
流を通じ、その電流値を調節して素子の動作温度を制御
した。素体温度を400℃に保持して、そのガス感応特
性を測定した。
Next, Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and produce a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The element temperature was maintained at 400° C. and its gas sensitivity characteristics were measured.

空気中における抵抗値(Ra)については、乾燥した空
気が乱流のできない程度にゆっくり攪拌されている容積
601の測定容器中で測定し、ガス中での抵抗値(Rg
)はこの容器の中に純度99%以上のメタン(C)I4
)及び水素(H2)の各ガスを容量比率にして1o p
pm/秒の割合で流入させ、その濃度が0.2容量係に
達、した時にそれぞれ測定した。測定するガス濃度を0
.2%に選んだのは、ガス検知素子として実用上要望さ
れる検知濃度がそのガスの爆発下限界濃1i(LEL)
の数10分の1から数分の1の範囲であり、上記のガス
のそれぞれのLELが約2容量係から6容量係であるか
らである。
The resistance value (Ra) in air is measured in a measurement container with a volume of 601 in which dry air is slowly stirred to the extent that no turbulence occurs.
) contains methane (C)I4 with a purity of 99% or more in this container.
) and hydrogen (H2) in a volume ratio of 1o p
It was allowed to flow in at a rate of pm/sec, and measurements were taken when the concentration reached 0.2 volume. Set the gas concentration to be measured to 0.
.. 2% was chosen because the detection concentration practically required for a gas detection element is the lower explosive limit concentration 1i (LEL) of the gas.
This is because the LEL of each of the above gases is approximately 2 to 6 volumes.

またガス感応体に含まれる硫酸イオン(304−→の存
在は赤外線吸収スペクトルで確認し、含有されている量
はTG−DTA曲線及び螢光X線分析から同定した。そ
の結果、これらの焼結感応体に含まれている硫酸イオン
の量は0.46〜0.58重量%であった。
In addition, the presence of sulfate ions (304-→) contained in the gas sensitive material was confirmed by infrared absorption spectroscopy, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis. The amount of sulfate ions contained in the receptor was 0.46 to 0.58% by weight.

第1図〜第3図に添加物をそれぞれ、単独で添加した場
合のガス感応特性の添加量依存性を示す。
Figures 1 to 3 show the dependence of the gas sensitivity characteristics on the amount added when each additive is added alone.

感応特性は、(1)ガス感度(ua/Rg)、(11)
抵抗経時変化率ΔR(感応体を400°Cの温度で20
00時間保持した場合の抵抗値の初期値に対する変化率
)で評価した。まだ第1表には、添加物を組み合わせて
用いた場合のやはりガス感度(Ra/Rg)と、抵抗経
時変化率(ΔR)を示す。なおΔRは表中の0内に記載
した。
The sensitivity characteristics are (1) gas sensitivity (ua/Rg), (11)
Resistance change rate over time ΔR (resistance change rate at 400°C
Evaluation was made based on the rate of change in resistance value from the initial value when held for 00 hours. Table 1 also shows the gas sensitivity (Ra/Rg) and the rate of change in resistance over time (ΔR) when additives are used in combination. Note that ΔR is indicated within 0 in the table.

第1図〜第3図、および第1表から明らかなように、S
n 、 ZrあるいはTiを単独ないしは組み合わせて
添加することにより、ガス感応特性(ガス感度:Ra/
Rg)が大きく向上している。まだ注目すべきは抵抗値
の経時変化であり、これらの添加物を加えることにより
その変化率が大幅に減少l〜ている。このようにSn 
、 ZrあるいはTiの添加により、ガス感応特性と信
頼性の飛躍的な向上が実現できることがわかる。
As is clear from Figures 1 to 3 and Table 1, S
By adding n, Zr or Ti singly or in combination, gas sensitivity characteristics (gas sensitivity: Ra/
Rg) has been greatly improved. What is still noteworthy is the change in resistance value over time, and the rate of change is significantly reduced by adding these additives. In this way Sn
, it can be seen that by adding Zr or Ti, dramatic improvements in gas sensitivity characteristics and reliability can be realized.

本発明において添加物総量を0.1〜60モル係に眼窩
したのは、0.1モル係未満では、第1図〜第3図およ
び第1表に見られるように、ガス感応特性ならびに信頼
性を向上せしめる効果が見られず、逆に6oモルチを超
えると抵抗値自身が高くなり、まだ特性の安定性に欠け
るからである。表中でX印を付したものがこれらに該当
するものであり、第1表の中では比較例として記載して
おいた。
In the present invention, the total amount of additives is set at 0.1 to 60 mol.If the total amount of additives is less than 0.1 mol, as shown in FIGS. 1 to 3 and Table 1, gas sensitivity characteristics and reliability are This is because no effect of improving properties is observed, and on the contrary, if it exceeds 60m, the resistance value itself becomes high and stability of properties is still lacking. Those marked with an X in the table correspond to these, and are listed as comparative examples in Table 1.

(以下余 白) 第1表 ところで、一般的に感応体はある程度非晶質の状態の金
属酸化物の方が、結晶化されているものより可燃性ガス
に対する吸着現象などの物理化学現象が活性になり易い
と云われている。しかし、はぼ完全に近く結晶化されて
いる本実施例で使用しだ市販試薬のα−Fe203でも
、硫酸イオンを含有せしめ、さらにSn 、 Zrある
いはTiを添加することにより極めて高い活性度を示し
、しかもこれが経時的に安定なため、結果的に非常に大
きなガス感度と高い信頼性を実現し得ることがわかる。
(Left below) Table 1 By the way, in general, metal oxides in a somewhat amorphous state are more active in physicochemical phenomena such as adsorption phenomena for combustible gases than crystallized ones. It is said that it is easy to become However, even the commercially available reagent α-Fe203 used in this example, which was almost completely crystallized, showed extremely high activity by containing sulfate ions and further adding Sn, Zr, or Ti. Moreover, since this is stable over time, it can be seen that extremely high gas sensitivity and high reliability can be achieved as a result.

この実施例1では、感応体が焼結体の場合であり、含有
される硫酸イオン量が一定で、そして添加物量1組み合
わせが異る場合について述べた。
In Example 1, the sensitive body is a sintered body, the amount of sulfate ions contained is constant, and the combination of additive amounts is different.

次に示す実施例2では感応体が焼結膜の場合で、実施例
1とは逆に添加物の種類と量を一定にして含有される硫
酸イオンの量を変えた場合について述べる。すなわち実
施例2では、本発明が感応体を焼結膜とした場合でも有
効であることを確認し、また含有される硫酸イオン量が
ガス感応特性に対してどのような効果を持つかについて
述べる。
In Example 2 shown below, the sensitive body is a sintered film, and contrary to Example 1, the type and amount of additives are kept constant and the amount of sulfate ions contained is varied. That is, in Example 2, it is confirmed that the present invention is effective even when the sensitive body is a sintered film, and the effect of the amount of sulfate ions contained on the gas sensitivity characteristics will be described.

〔実施例2〕 市販の酸化第二鉄試薬100ノにやはり市販の酸化第二
錫(SnOz)、酸化ジルコニウム(ZrO2)および
酸化チタン(Ti02)試薬を第2表に示す様な割合に
なる様に秤取しそれぞれをらいかい機にて2時間混合し
た。次にそれぞれの混合粉体を8等分割し、これに予め
種々の濃度に調製された硫酸第一鉄(F6SO4−7H
20)溶液を加え、しかる後にそれぞれの粉体をやはり
らいかい機で1時間混合した。このようにして代表例と
しての酸化物組成の種類が3種類(試料A−C)、硫酸
イオン量の異るものがそれぞれの酸化物組成に対して8
種類、計24種類の試料が得られた。
[Example 2] 100 commercially available ferric oxide reagents were mixed with commercially available stannic oxide (SnOz), zirconium oxide (ZrO2), and titanium oxide (Ti02) reagents in proportions as shown in Table 2. The mixture was weighed and mixed for 2 hours using a sieve machine. Next, each mixed powder was divided into eight equal parts, and ferrous sulfate (F6SO4-7H) prepared in advance at various concentrations was added to it.
20) The solutions were added and then each powder was mixed for 1 hour, also in a mill. In this way, there are three types of oxide compositions (samples A-C) as representative examples, and samples with different amounts of sulfate ions are prepared for each oxide composition.
A total of 24 types of samples were obtained.

第2表 このようにして得られたいくつかの混合粉体を空気中で
400℃の温度で2時間熱処理した。さらにこの粉体を
60〜100μに整粒し、トリエタノールアミンを加え
てペースト化した。一方、ガス検知素子の基板として縦
、横それぞれ5 mm 。
Table 2 Several mixed powders thus obtained were heat treated in air at a temperature of 400°C for 2 hours. Further, this powder was sized to a size of 60 to 100 microns, and triethanolamine was added to form a paste. On the other hand, the length and width of the substrate for the gas detection element were 5 mm each.

厚み0.6mmのアルミナ基板を用意し、この表面に0
.6mmの間隔に櫛形に金ペーストを印刷し、焼きつけ
て一対の櫛形電極を形成した。そして、アルミナ基板の
裏面には金電極の間に市販の酸化ルテニウムのグレーズ
抵抗体を印刷し、焼きつけてヒータとしだ。
Prepare an alumina substrate with a thickness of 0.6 mm, and coat the surface with 0.
.. A pair of comb-shaped electrodes was formed by printing gold paste in a comb shape at 6 mm intervals and baking it. Then, on the back of the alumina substrate, a commercially available ruthenium oxide glaze resistor was printed between the gold electrodes and baked to serve as a heater.

次に、上述のペーストを基板の表面に約7oμの厚みに
印刷し、室温で自然乾燥させた後、40Q℃の温度にな
るまで徐々に加熱し、この温度で1時間保持した。この
段階でペーストが蒸発し硫酸イオンを含有するそれぞれ
の酸化物組成の焼結膜になった。このガス感応体の厚み
は約55μであった。このようにしてガス検知素子を得
た。
Next, the above-mentioned paste was printed on the surface of the substrate to a thickness of about 7 μm, air-dried at room temperature, and then gradually heated to a temperature of 40Q° C. and held at this temperature for 1 hour. At this stage, the paste evaporated to form a sintered film of the respective oxide composition containing sulfate ions. The thickness of this gas sensitive member was approximately 55μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
なく、ペーストのまま上述と同じ様に400℃の温度で
徐加熱し、これをTG−DTAならびに螢光X線分析に
かけて行なった。また硫酸イオンの存在の確認は実施例
1と同じく赤外線吸収スペクト)しを分析することによ
り行なった。
In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated to 400°C in the same manner as described above. were subjected to TG-DTA and fluorescent X-ray analysis. Further, the presence of sulfate ions was confirmed by analyzing the infrared absorption spectrum as in Example 1.

それぞれの検知素子のガス感応特性を実施例1の場合と
同様の方法で測定した。第4図〜第6図に酸化物組成の
異る試料A −COガス感度(Ra/Rg)と含有され
る硫酸イオンとの関係をそれぞれ示す。また第3表には
、経時特性の代表例として、試料A −Cにおいて硫酸
イオンが2〜6重量係含有されているものについて実施
例1と同じ方法で評価した時の抵抗値の経時変化率を示
す。なお実施例2においては、被検ガスとしてはメタン
とプロパンを用いた。
The gas sensitivity characteristics of each sensing element were measured in the same manner as in Example 1. FIG. 4 to FIG. 6 show the relationship between the sample A-CO gas sensitivity (Ra/Rg) and the sulfuric acid ion contained in the samples A having different oxide compositions. Table 3 also shows the rate of change in resistance value over time when samples A to C containing 2 to 6 weight percent of sulfate ions were evaluated using the same method as in Example 1. shows. In Example 2, methane and propane were used as the test gases.

第4図〜第6図から明らかなように、感応体が焼結膜で
あっても、実施例1で得られたのとほぼ同じ特性が得ら
れている。また第3表からも明らかなように、抵抗値の
経時変化率も実施例1と同様非常に小さい。
As is clear from FIGS. 4 to 6, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film. Furthermore, as is clear from Table 3, the rate of change in resistance value over time is also very small, as in Example 1.

また第4図〜第6図を見ればわかるように、硫酸イオン
の量が0.006重量重量溝ではSn 、 Zrあるい
はT1の添加効果がなく本発明の効果が期待できない。
Further, as can be seen from FIGS. 4 to 6, when the amount of sulfate ion is 0.006 weight/weight groove, there is no effect of adding Sn, Zr or T1, and the effect of the present invention cannot be expected.

また逆に10.0重量%を超えると特性の安定性、ある
いは機械的強度の面で実用性に欠けるようになる。本発
明のガス検知素子に含有される硫酸イオンの量を0.0
05〜10.0 重量係に限定したのは上述した理由に
依る。
On the other hand, if it exceeds 10.0% by weight, it becomes impractical in terms of stability of properties or mechanical strength. The amount of sulfate ions contained in the gas sensing element of the present invention is 0.0
The reason for limiting the weight to 05 to 10.0 is based on the above-mentioned reason.

第3表 ところで、実施例1および2では出発原料として市販の
酸化物試薬を用いたものについて述べだが、本発明は最
終的に感応体の組成が前述した範囲内のものであればよ
く、何ら出発原料や製造工法を限定するものではない。
Table 3 Incidentally, in Examples 1 and 2, a commercially available oxide reagent was used as the starting material, but in the present invention, the final composition of the reactor may be within the above-mentioned range; It does not limit the starting materials or manufacturing method.

また実施例においては被検ガスとしてメタンど、水素あ
るいはプロパンを用いたが、本発明の効果がこれらのガ
スに決して限定されるものでなく、エタン、イソブタン
、アルコールといった可燃イ/1ガスに対しても有効で
あることは勿論である。
In addition, in the examples, methane, hydrogen, or propane was used as the test gas, but the effects of the present invention are by no means limited to these gases, and the effect of the present invention is not limited to these gases. Of course, it is also effective.

発明の詳細 な説明したように、本発明のガス検知素子は、硫酸イオ
ンを含有するα−Fe203に添加物としてSn 、 
ZrあるいはTiを添加した焼結体あるいは焼結嘆を感
応体として用いたものであり、これによりガス感度が飛
躍的に向上し、これまで貴金属触媒を用いずには微量検
知が難かしいとされてきたメタンガスに対して、4oo
℃という比較的低い温度でも非常に大きい感度を実現し
得るものである。これは都市ガスの天然ガス(主成分:
メタンガス)化に伴って要求が大きくなりつつある社会
ニーズに的確に対応するものであり、その効果は極めて
犬なるものがある。まだ、本発明のいまひとつの効果は
寿命特性、特に通電による抵抗値の経時変化の大幅な軽
減である。これは換言すればあらゆる検知素子の最も重
要な要素である素子の信頼性の向上に極めて大きな寄与
をもたらすものである。
As described in detail, the gas sensing element of the present invention contains α-Fe203 containing sulfate ions with Sn,
This uses a sintered body or a sintered body doped with Zr or Ti as a sensitive body, and this dramatically improves gas sensitivity, making it difficult to detect trace amounts without using a precious metal catalyst. 4oo for the methane gas that came
Extremely high sensitivity can be achieved even at a relatively low temperature of °C. This is city gas natural gas (main component:
It precisely responds to social needs, which are becoming increasingly demanding as a result of the shift to methane gas, and its effects are extremely impressive. Still, another effect of the present invention is a significant reduction in the life characteristics, especially the change in resistance value over time due to energization. In other words, this makes an extremely large contribution to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例における添加物量と
、メタンおよび水素に対する感度(Ra/1g)ならび
に抵抗経時変化率(ΔR)との関係を示しだ特性図、第
4図〜第6図は本発明の他の実施例における硫酸イオン
含有量と、メタンおよびプロパンに対する感度(Ra/
1g )との関係を、3つの代表的な酸化物組成につい
て示した特性図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名コ −+N 瞭                        
法bK〈畔イ ベ
Figures 1 to 3 show the relationship between the amount of additives, the sensitivity to methane and hydrogen (Ra/1g), and the rate of change in resistance over time (ΔR) in one embodiment of the present invention. Figure 6 shows the sulfate ion content and sensitivity to methane and propane (Ra/
1g) for three typical oxide compositions. Name of agent: Patent attorney Toshio Nakao and one other person: +N Ryo
Law bK

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸イオンが0.005〜1o重量係含有された
アルファ型酸化第二鉄(α−Fe 203 )に、添加
物として錫(sn ’)、ジルコニウム(Zr)および
チタン(Ti)のうち少なくともひとつが、それぞれS
nO2,ZrO2オヨびTiO2ニ換算シ”C添加物総
量で0.1〜60モルチ含むものをガス感庭・体として
用いることを特徴とするガス検知素子。
(1) Alpha-type ferric oxide (α-Fe 203 ) containing 0.005 to 10 sulfate ions by weight is added with tin (sn'), zirconium (Zr), and titanium (Ti) as additives. At least one is S
A gas detection element characterized in that it contains 0.1 to 60 mole of carbon additives in terms of nO2, ZrO2, TiO2, and TiO2 as a gas sensing element.
(2)  ガス感庚体が加圧成型し、焼成して得られる
焼結体、またはペーストを印刷して焼成して得られる焼
結膜であることを特徴とする特許請求の範囲第(1)項
記載のガス検知素子。
(2) Claim (1) characterized in that the gas-sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. Gas detection element described in section.
JP57168768A 1982-05-17 1982-09-27 Gas detecting element Granted JPS5957153A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57168768A JPS5957153A (en) 1982-09-27 1982-09-27 Gas detecting element
US06/496,492 US4732738A (en) 1982-05-17 1983-05-17 Combustible gas detecting element
EP83302807A EP0095313B1 (en) 1982-05-17 1983-05-17 Combustible gas-detecting element and its production
DE8383302807T DE3379481D1 (en) 1982-05-17 1983-05-17 Combustible gas-detecting element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168768A JPS5957153A (en) 1982-09-27 1982-09-27 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS5957153A true JPS5957153A (en) 1984-04-02
JPS623375B2 JPS623375B2 (en) 1987-01-24

Family

ID=15874087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168768A Granted JPS5957153A (en) 1982-05-17 1982-09-27 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS5957153A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320659A (en) * 1990-05-17 1991-01-29 Agency Of Ind Science & Technol Gas sensor element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453737U (en) * 1987-09-30 1989-04-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320659A (en) * 1990-05-17 1991-01-29 Agency Of Ind Science & Technol Gas sensor element

Also Published As

Publication number Publication date
JPS623375B2 (en) 1987-01-24

Similar Documents

Publication Publication Date Title
JPS5957153A (en) Gas detecting element
JPS5957154A (en) Gas detecting element
JPS58200153A (en) Gas detection element
JPS6222417B2 (en)
JPS5957149A (en) Gas detecting element
JPS5994050A (en) Gas detection element
JPS6222414B2 (en)
JPS5957150A (en) Gas detecting element
JPS6223252B2 (en)
JPS5957151A (en) Gas detecting element
JP3919306B2 (en) Hydrocarbon gas detector
JPS58200152A (en) Gas detection element
JPS5992338A (en) Gas detecting element
JPS6160385B2 (en)
JPS6222420B2 (en)
JPS5992339A (en) Gas detecting element
JPS6222415B2 (en)
JPS6222416B2 (en)
JPS6222419B2 (en)
JPH027025B2 (en)
JPS6160382B2 (en)
JP3669807B2 (en) Carbon monoxide detection sensor
JPS59107250A (en) Gas detecting element
JPS58200150A (en) Gas detection element
JPS6160377B2 (en)