JPS59107250A - Gas detecting element - Google Patents

Gas detecting element

Info

Publication number
JPS59107250A
JPS59107250A JP21721582A JP21721582A JPS59107250A JP S59107250 A JPS59107250 A JP S59107250A JP 21721582 A JP21721582 A JP 21721582A JP 21721582 A JP21721582 A JP 21721582A JP S59107250 A JPS59107250 A JP S59107250A
Authority
JP
Japan
Prior art keywords
gas
sulfate ions
sensitivity
sensitive
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21721582A
Other languages
Japanese (ja)
Other versions
JPS6222418B2 (en
Inventor
Yoshihiko Nakatani
吉彦 中谷
Masayuki Sakai
界 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21721582A priority Critical patent/JPS59107250A/en
Publication of JPS59107250A publication Critical patent/JPS59107250A/en
Publication of JPS6222418B2 publication Critical patent/JPS6222418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve a gas sensitivity characteristic and reliability thereof by adding Ge or Th to LiFe5O8 contg. sulfate ion which is a base material of a gas sensitive body. CONSTITUTION:Lithium ferrite (LiFe5O8) is used as a gas sensitive material in a gas detecting element using a composite metallic oxide semiconductor used for detecting combustible gas. Ge or Th is added to the base material. The total amt. of the additive is regulated to 0.1-60mol% respectively expressed in terms of GeO2 and ThO2. Said amt. is most effective in improving the gas sensitive characteristic and the reliability thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属酸化物半
導体を用いたガス検知素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas detection element using a composite metal oxide semiconductor for use in detecting combustible gases.

従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々の研究開
発が活発化してきている。これは、一般家庭を中心に各
種工場などで可燃性ガスによる爆発事故や有毒ガスによ
る中毒事故が多発し、大きな社会問題となっていること
に強く起因している。
Conventional Structures and Their Problems In recent years, various research and developments have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and these have become major social problems.

特にプロパンガスは、爆発下限界(LEL)が低く、か
つ比重が空気よりも大きく、部屋に停滞しやすいために
事故があとを断たず、毎年多数の死傷者を出している。
Propane gas, in particular, has a low explosive limit (LEL) and a higher specific gravity than air, so it tends to stagnate in rooms, resulting in numerous accidents and injuries every year.

近年になって、酸化第二錫(Sn02)やガンマ型酸化
第二鉄(γ−Fe2O3)などの金属酸化物を用いたガ
ス検知素子が実用化され、ガス漏れ警報器などに応用さ
れている。そして、ガス漏れなどの事態が発生してもL
ELに至るまでの間に、プロパンガスの存在をいち早く
検知し、爆発を未然に防げるようになっている。
In recent years, gas detection elements using metal oxides such as stannic oxide (Sn02) and gamma-type ferric oxide (γ-Fe2O3) have been put into practical use and are being applied to gas leak alarms, etc. . And even if a situation such as a gas leak occurs, L
Before reaching the EL, the presence of propane gas can be quickly detected and an explosion can be prevented.

ところで、日本でもメタンガスを主成分とする液化天然
ガス(LNG)が一般家庭用として用いられるようにな
り、徐々に普及して来ている。したがって、このLNG
の主成分であるメタンガスを感度よく検出するガス検知
素子の要請も非常に大きくなってきている。
Incidentally, in Japan, liquefied natural gas (LNG) whose main component is methane gas has come to be used for general household use and is gradually becoming popular. Therefore, this LNG
The demand for gas detection elements that can detect methane gas, the main component of which is highly sensitive, is also increasing.

勿論、すでにメタンガ、スに感応するガス検知素子は開
発されてはいるが、その多くは感応体材料に増感剤とし
て貴金属触媒を用いているため、種々のガスによる触媒
被毒の問題、メタンガスに対する感度が小さい点、ある
いは特性の経時変化が大きい点などの課題を抱えている
。したがって、実用に際しては未だ不十分な特性である
のが現状である。
Of course, gas detection elements sensitive to methane gas and gas have already been developed, but many of them use noble metal catalysts as sensitizers in the sensitive material, so there are problems with catalyst poisoning by various gases and methane gas. However, there are some issues with this technology, such as low sensitivity to the effects of oxidation, and large changes in characteristics over time. Therefore, the current situation is that the properties are still insufficient for practical use.

発明の目的 本発明はこのような状況に鑑みてなされたもので、メタ
ンガスに対しても実用上十分大きな感度を持ったガス検
知素子を提供するものである。メタンガスはそれ自身非
常に安定なガスであるだけに、これに十分な感度を有す
る検知素子は非常に高活性である必要がある。したがっ
て、メタンガスに対して大きな感度を実現するためには
、従来は、貴金属触媒を感応材料に添加して用いるか、
あるいは感応体を例えば450C以上のかなシ高い温度
で動作させるなどの工夫がなされてきた。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a gas detection element having a sensitivity sufficiently high for practical use even to methane gas. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventionally, noble metal catalysts have been added to the sensitive material, or
Alternatively, efforts have been made to operate the sensitive body at a temperature much higher than, for example, 450C.

これに対し、本発明は貴金属触媒を一切添加することな
く、また400pと比較的低い動作濁度でも対メタン感
度の大きい素子を実現するものである。
In contrast, the present invention realizes an element with high sensitivity to methane without adding any noble metal catalyst and even with a relatively low operating turbidity of 400p.

発明の構成 本発明はリチウムフェライト(L I F e 60s
 )をガス感応体として用いたガス検知素子において、
これに含まれる種々の陰イオンのガス感応特性に及ぼす
、影響ならびに添加物の効果について検討している中で
見出されたものである。すなわち、ガス感応体の母材料
である硫酸イオンを含有するL iE e s Osに
GeあるいはTh′f:添加することによりガス感応特
性とその信頼性が飛躍的に向上ししかも先述のメタンガ
スに対しても実用上十分大きな感度を実現し得ることを
見出したことによってなされたものである。
Structure of the invention The present invention uses lithium ferrite (L I Fe 60s
) in a gas sensing element using as a gas sensitive body,
This was discovered while studying the effects of various anions contained in this on the gas sensitivity characteristics as well as the effects of additives. In other words, by adding Ge or Th'f to LiEsOs containing sulfate ions, which is the base material of the gas sensitive material, the gas sensitive characteristics and its reliability are dramatically improved. This was achieved by discovering that it was possible to achieve a sufficiently high sensitivity for practical use.

実施例の説明 以下に本発明の詳細を実施例を用いて説明する。Description of examples The details of the present invention will be explained below using Examples.

まず実施例1においては、LiFe6o8に含有される
硫酸イオンの量を一定にし、添加物であるG。
First, in Example 1, the amount of sulfate ions contained in LiFe6o8 was kept constant, and the amount of G as an additive was kept constant.

あるいはThの添加量ならびにそれらの組み合わせを変
えた場合について述べることにする。
Alternatively, a case will be described in which the amount of Th added and the combination thereof are changed.

〔実施例1〕 酸化リチウム(L 120 )の市販試導を3y酸化第
二鉄(Fe203)の市販試導をsopそれぞれに採取
し、これをステンレススチール製のポットで6時間湿式
混合した。仁の混合物を乾燥、粉砕し然る後に1300
Cの温度で2時間熱処理した。
[Example 1] A commercially available sample of lithium oxide (L 120 ) and a commercially available sample of 3y ferric oxide (Fe203) were collected in sop, and wet-mixed in a stainless steel pot for 6 hours. After drying and crushing the kernel mixture,
Heat treatment was performed at a temperature of C for 2 hours.

これを再度粉砕し、これに硫酸イオンを含有させるため
添加物として硫酸第二鉄(Fe2(SO2)3−XH2
0)試薬を30y添加し、らいかい機で2時間混合した
。これらの混合物をいくつかに等分割し、これにそれぞ
れ市販の酸化ゲルマニ、pム(G e 02 )および
酸化トリウム(Th02)試薬を単独あるいは複数の組
み合わせで添加した。そしてそれぞれの粉体をさらにら
いかい機で3時間転式混合した。そしてこれらにそれぞ
れ有機バインダーを加えて100〜200μの大きさの
粒子に整粒した。次にこれらの粉体を直方体形状に加圧
成型し、空気中で600Cの温度で1時間焼成した。次
にこの焼結体の表面にAuを蒸着して一対の櫛形電極を
形成し、その裏面には白金発熱体を無機接着剤で貼シつ
けてヒータとし検知素子を作製した。この発熱体に電流
を通じ、その電流値を調節して素子の動作温度を制御し
た。素体温度を400Cに保持して、そのガス感応特性
を測定した。
This is ground again, and in order to contain sulfate ions, ferric sulfate (Fe2(SO2)3-XH2) is added as an additive.
0) The reagent was added for 30y and mixed for 2 hours using a sieve machine. These mixtures were equally divided into several parts, and commercially available germanium oxide, PM (G e 02 ), and thorium oxide (Th02) reagents were added to each of them individually or in combination. Each of the powders was further rotary mixed in a mill for 3 hours. Then, an organic binder was added to each of these, and the particles were sized into particles having a size of 100 to 200 μm. Next, these powders were pressure-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600C for 1 hour. Next, Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and produce a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The temperature of the element body was maintained at 400C and its gas sensitivity characteristics were measured.

空気中における抵抗値(Ra )については、乾燥した
空気が乱流のできない程度にゆつくシ攪拌されている容
積6oQの測定容器中で測定し、ガス中での抵抗値(R
cr)はこの容器の中に純度99%以上のメタン(CH
4)及び水素(H2)の各ガスを容量比率にして10 
ppm 7秒の割合で流入させ、その濃度が0.2容量
係に達した時にそれぞれ測定した。測定するガス濃度を
0.2%に選んだのは、ガス検知素子として実用上要望
される検知濃度がそのガスの爆発下限界濃度(LEL)
の数10分の1から数分の1の範囲であシ、上記のガス
のそれぞれのLELが約2容量チから6容量チであるか
らである。
The resistance value (Ra) in air was measured in a measurement container with a volume of 6oQ in which dry air was stirred slowly to the extent that no turbulence occurred.
cr) contains methane (CH) with a purity of 99% or more in this container.
4) and hydrogen (H2) gas at a volume ratio of 10
ppm was flowed in at a rate of 7 seconds, and measurements were taken when the concentration reached 0.2 volume. The gas concentration to be measured was chosen to be 0.2% because the detection concentration practically required for a gas detection element is the lower explosive limit concentration (LEL) of the gas.
This is because the LEL of each of the above gases is approximately 2 to 6 volumes.

またガス感応体に含まれる硫酸イオン(SO4−)の存
在は赤外線吸収スペ・クトルで確認し、含有されている
量はTG−DTA曲線及び螢光X線分析から同定した。
Further, the presence of sulfate ions (SO4-) contained in the gas sensitive material was confirmed by infrared absorption spectrum, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis.

その結果、これらの焼結感応体に含まれている硫酸イオ
ンの量は0.14〜0.17重量%であった。
As a result, the amount of sulfate ions contained in these sintered sensitive bodies was 0.14 to 0.17% by weight.

第1図および第2図に添加物をそれぞれ単独で添加した
場合のガス感応特性の添加量依存性を示す。感応特性は
、(i)ガス感度(Ra/Rq)、(11ン抵抗経時変
化率ΔR(感応体を4oocの温度で2000時間保持
した場合の抵抗値の初期値に対する変化率)で評価した
。また第1表には、添加物を組み合せて用いた場合のや
はシガス感度(Ra/Rcy)と、抵抗経時変化率(Δ
R)を示す。なおΔRは表中のに)内に記載した。
FIG. 1 and FIG. 2 show the dependence of the gas sensitivity characteristics on the amount added when each additive is added individually. The sensitivity characteristics were evaluated by (i) gas sensitivity (Ra/Rq), and (11n resistance change rate over time ΔR (change rate of resistance value with respect to the initial value when the sensitive body is held at a temperature of 400°C for 2000 hours). Table 1 also shows the gas sensitivity (Ra/Rcy) and resistance change rate over time (Δ
R) is shown. Note that ΔR is written in parentheses ( ) in the table.

第1図S−第2図および第1表から明らかなようにGe
あるいはThf::単独ないしは組み合dせて添加する
ことによシ、ガス感応特性(ガス感度:Ra 7 Rq
 )が大きく向上している。また注目すべきは抵抗値の
経時変化であり、これらの添加物を加えることによシそ
の変化率が大巾に減少している。このようにGeあるい
はTha添加によシガス感応特性と信頼性の飛躍的な向
上が実現できることがわかる。
As is clear from Figure 1 S-Figure 2 and Table 1, Ge
Alternatively, by adding Thf alone or in combination, gas sensitivity characteristics (gas sensitivity: Ra 7 Rq
) has improved significantly. Also noteworthy is the change in resistance value over time, and the rate of change is greatly reduced by adding these additives. It can thus be seen that the addition of Ge or Tha can dramatically improve the gas sensitivity characteristics and reliability.

本発明において添加物総量を0.1〜56e−%ルチに
限定したのは、0.1モルチ未満では、第1図〜第2図
および第1表に見られるように、ガス感応特性ならびに
信頼性を向上せしめる効果が見られず、逆に60モルチ
を超えると抵抗値自身が高くなり、また特性の安定性に
欠けるからである。表中で■印を付したものがこれらに
該当するものであシ第1表の中では比較例として記載し
ておいた。
In the present invention, the total amount of additives is limited to 0.1 to 56e-% molti, because if it is less than 0.1 molti, as shown in Figures 1 to 2 and Table 1, the gas sensitivity characteristics and reliability will be improved. This is because no effect of improving properties is observed, and on the contrary, if it exceeds 60 molts, the resistance value itself becomes high and the stability of the properties is lacking. Those marked with ■ in the table correspond to these and are listed as comparative examples in Table 1.

(以    下    余    白)第1表 冬比較例 ところで、一般的に感応体はある程度非晶質の状態の金
属酸化物の方が結晶化されているものより可燃性ガスに
対する吸着現象などの物理化学現象が活性になり易いと
云われている。しかし、はぼ完全に近く結晶化されてい
る本実施例で使用した市販試薬を用いて作成されたL 
iF e 608でも、硫酸イオンを含有せしめ、さら
にGeあるいはThを添加することによシ極めて高い1
.!、、イa一度(U 7J・し、しかもこれが経時的
に安定なため結果的に非常に大きなガス感度と高い信頼
性を実現し得ることがわかる。
(Margins below) Table 1 Winter Comparative Example By the way, generally speaking, metal oxides in a somewhat amorphous state are more sensitive to physical and chemical properties such as adsorption phenomena for flammable gases than crystallized ones. It is said that the phenomenon is likely to become active. However, L produced using the commercially available reagent used in this example, which was almost completely crystallized,
Even in iF e 608, by containing sulfate ions and further adding Ge or Th, the
.. ! ,,A Once (U 7J・) Moreover, since this is stable over time, it can be seen that extremely high gas sensitivity and high reliability can be realized as a result.

この実施例1では、感応体が焼結体の場合であシ、含有
される硫酸イオン量が一定で、そして添加物の量組み合
わせが異る場合について述べた。
In Example 1, the sensitive body is a sintered body, the amount of sulfate ions contained is constant, and the combination of amounts of additives is different.

次に示す実施例2では感応体が焼結膜の場合で、実施例
1とは逆に添加物の種類と量を一定にして含有される硫
酸イオンの量を変えた場合について述べる。すなわち実
施例2では本発明が感応体を焼結膜とした場合でも有効
であることを確認し、また含有される硫酸イオン量がガ
ス感応特性に対してどのような対果を持つかについて述
べる。
In Example 2 shown below, the sensitive body is a sintered film, and contrary to Example 1, the type and amount of additives are kept constant and the amount of sulfate ions contained is varied. That is, in Example 2, it is confirmed that the present invention is effective even when the sensitive body is a sintered film, and the effect of the amount of sulfate ions contained on the gas sensitivity characteristics will be described.

〔実施例2〕 実施例1と同じ方法で作成し7j L i F e 6
08100yにやはり市販の酸花ゲルマニウム(G e
 02 ) オよび酸化トリウム(Tho2)試薬を第
2表に示す様な割合になる様に採取し、それぞれをらい
かい機にて2時間混合した。・次にそれぞれの混合粉体
を8等分割し、これに予め種々の濃度に調製された硫酸
第二鉄(Fe2(S04)3−XH20)溶液を加え、
しかる後にそれぞれの粉体をやはシらいかい機で1時間
混合した。このようにして代表例としての酸化物組成の
種類が3種類(試料A−C)、硫酸イオン量の異るもの
がそれぞれの酸化物組成に対して8種類、計24種類の
試料が得られた。
[Example 2] Created by the same method as Example 1, 7j L i Fe 6
08100y is also a commercially available acid flower germanium (G e
02) Tho and thorium oxide (Tho2) reagents were collected in the proportions shown in Table 2, and each was mixed in a strainer for 2 hours.・Next, each mixed powder was divided into 8 equal parts, and ferric sulfate (Fe2(S04)3-XH20) solutions prepared in advance at various concentrations were added thereto.
Thereafter, each powder was mixed for 1 hour in a clay mixer. In this way, a total of 24 types of samples were obtained, including 3 types of representative oxide compositions (samples A-C) and 8 types of samples with different amounts of sulfate ions for each oxide composition. Ta.

このようにして得られたいくつかの混合粉体を空気中で
4oOCの温度で2時間熱処理した。さらにこの粉体を
50〜100μに整粒し、トリエタノールアミンを加え
てペースト化した。一方、ガス検知素子の基板として縦
、横それぞれ5謳、厚み0.5mmのアルミナ基板を用
意し、この表面に0.6能の間隔に櫛形に金ペーストヲ
印刷し、焼きつけて一対の櫛形電極を形成した。そして
、アルミナ基板の裏面には金電極の間に市販の酸化ルテ
ニウムのグレーズ抵抗体を印刷し、焼きつけてヒータと
した。
Some of the mixed powders thus obtained were heat treated in air at a temperature of 4oC for 2 hours. Further, this powder was sized to a size of 50 to 100 microns, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, an alumina substrate of 0.5 mm in thickness and 5 lines each in length and width was prepared. Gold paste was printed on the surface in a comb shape at intervals of 0.6 mm, and a pair of comb-shaped electrodes were formed by baking. Formed. A commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater.

次に、上述のペーストを基板の表面に約66μの厚みに
印刷し、室温で自然乾燥させた後、4o。
Next, the above paste was printed on the surface of the substrate to a thickness of about 66μ, and after air drying at room temperature, 4o.

Cの温度になるまで徐々に加熱し、この温度で1時間保
持した。この段階でペーストが蒸発し硫酸イオンを含有
するそれぞれの複合酸化物組成の焼結膜になった。この
ガス感応体の厚みは約66μであった。このようにして
ガス検知素子を得た。
The mixture was gradually heated to a temperature of C and held at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of each composite oxide composition containing sulfate ions. The thickness of this gas sensitive member was approximately 66μ. A gas sensing element was thus obtained.

またガス感応膜に含まれる硫酸イオン量の同定は、上記
の各ペーストの一部を、アルミナ基板に印刷するのでは
なく、ペーストのまま上述と同じ様に4oOCの温度で
徐加熱し、これをTCI−DTAならびに螢光X線分析
にかけて行なった。捷た硫酸イオンの存在の確認は実施
例1と同じく赤外線吸収スペクトルを分析することによ
り行なった。
In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated at a temperature of 4oC in the same manner as described above. It was subjected to TCI-DTA and fluorescent X-ray analysis. The presence of the separated sulfate ions was confirmed by analyzing the infrared absorption spectrum as in Example 1.

それぞれの検知素子のガス感応特性を実施例1の場合と
同様の方法で測定した。第3図〜第6図に酸化物組成の
異る試料A−COガス感度(Ra/Rq)と含有される
硫酸イオンとの関係をそれぞれ示す。また第3表には経
時特性の代表例として試料A−Cにおいて硫酸イオンが
2〜6重量%含有されているものについて実施例1χ同
じ方法で評価した時の抵抗値の経時変化率を示す。なお
実施例2においては、被検ガスとしてはメタンとプロパ
ンを用いた。
The gas sensitivity characteristics of each sensing element were measured in the same manner as in Example 1. FIGS. 3 to 6 show the relationship between sample A-CO gas sensitivity (Ra/Rq) and contained sulfate ions with different oxide compositions, respectively. Further, Table 3 shows, as a representative example of the characteristics over time, the rate of change in resistance over time when samples A to C containing 2 to 6% by weight of sulfate ions were evaluated in the same manner as Example 1χ. In Example 2, methane and propane were used as the test gases.

第3図〜第5図から明らかなように感応体が焼結膜であ
っても、実施例1で得られたのとほぼ同じ特性が得られ
ている。また第3表からも明らかなように抵抗値の経時
変化率も実施例1と同様非常に小さい。
As is clear from FIGS. 3 to 5, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film. Further, as is clear from Table 3, the rate of change in resistance value over time is also very small, as in Example 1.

また第3図〜第6図を見ればわかるように、硫酸イオン
の量が0.005重量%未満ではGeあるいはThの添
加効果がなく本発明の効果が期待できない。また逆に1
0.0重量係を起えると特性の安定性あるいは機械的強
度の面で実用性に欠けるようになる。本発明のガス検知
素子に含有される硫酸イオンの量を0.005〜10.
C腫量係に限定したのは上述した点に依る。
Further, as can be seen from FIGS. 3 to 6, if the amount of sulfate ions is less than 0.005% by weight, there is no effect of adding Ge or Th, and the effects of the present invention cannot be expected. On the other hand, 1
If the weight coefficient exceeds 0.0, it becomes impractical in terms of stability of properties or mechanical strength. The amount of sulfate ions contained in the gas sensing element of the present invention is 0.005 to 10.
The reason why it was limited to C tumor volume was based on the above-mentioned point.

第3表 ところで、実施例1および2では出発原料として市販の
酸化物試薬を用い几ものについて述べたが、本発明は最
終的に感応体の組成が前述した範囲内のものであればよ
く、何ら出発原料や↓造工法を限定するものではない。
Table 3 By the way, in Examples 1 and 2, a commercially available oxide reagent was used as the starting material, but in the present invention, the final composition of the reactor may be within the above-mentioned range. This does not limit the starting materials or manufacturing methods in any way.

また実施例においては被検ガスとしてメタンと、水素あ
るいはプロパンを用いたが本発明の効果がこれ′らのガ
スに決して限定されるものでなく、エタン、インブタン
、アルコールといった可燃性ガスに対しても有効である
ことは勿論である。
In addition, although methane, hydrogen, or propane were used as the test gases in the examples, the effects of the present invention are by no means limited to these gases; Of course, it is also effective.

発明の詳細 な説明したように、本発明のガス検知素子は硫酸イオン
を含有するL I F e s Osに添加物としてG
oあるいはThを添加した焼結体あるいは焼結膜を感応
体として用いたものであり、これによシ特にメタンガス
感度が飛躍的に向上し、これまで貴金属触媒を用いずに
は微量検知が難かしいとされてきたメタンガスに対して
400℃という比較的低い温度でも非常に大きい感度を
実現し得るものである。これは都市ガスの天然ガス(主
成分:メタンガス)化に伴って要求が大嚢<なりつつあ
る社会ニーズに的確に対応するものであシ、その効果は
極めて大なるものがある。また本発明のいまひとつの効
果は寿命特性、特に通電による抵抗値の経時変化の大幅
な軽減である。これは換言すれば、あらゆる検知素子の
最も重要な要素である素子の信頼性の向上に極めて大き
な寄与をもたらすものである。
As described in detail, the gas sensing element of the present invention contains G as an additive to L I Fe s Os containing sulfate ions.
A sintered body or sintered film doped with O or Th is used as a sensitive body, and this dramatically improves the sensitivity of methane gas, which was previously difficult to detect in trace amounts without using a precious metal catalyst. Even at a relatively low temperature of 400° C., extremely high sensitivity can be achieved for methane gas, which has been considered to be the most sensitive gas. This accurately responds to the social needs that are becoming more demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely significant. Another effect of the present invention is a significant reduction in the life characteristics, especially the change in resistance value over time due to energization. In other words, this makes an extremely large contribution to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施クリにおける添加
物量と、メタンおよび水素に対する感度(Ra / R
q )ならびに抵抗経時変イヒ率(ΔR)との関係を示
した特性図、第3図〜第5−は本発明の他の実施例にお
ける硫酸イオン含有量と、メタンおよびプロノくンに対
する感度(Ra / Rq )との関係を、3つの代表
的な酸化物組成について示した特性図である。
Figures 1 and 2 show the amount of additives and sensitivity to methane and hydrogen (Ra/R
q) and resistance time-varying rate (ΔR). Figures 3 to 5-5 show the relationship between the sulfate ion content and the sensitivity to methane and pronochloride ( FIG. 3 is a characteristic diagram showing the relationship with Ra/Rq) for three typical oxide compositions.

Claims (2)

【特許請求の範囲】[Claims] (1)硫酸イオンが0.005〜10重量%含有された
リチウムフェライト(LtFe608)に、添加物とし
てゲルマニウム(G e )およびトリウム(Th)の
うち少なくともひとつが、それぞれGeO2、およびT
ho2に換算して添加物総量で0.1〜50モル係含む
ものをガス感応体として用いることを特徴とするガス検
知素子。
(1) Lithium ferrite (LtFe608) containing 0.005 to 10% by weight of sulfate ions is added with at least one of germanium (G e ) and thorium (Th) as additives, GeO2 and T
A gas sensing element characterized in that the gas sensing element contains a total amount of additives of 0.1 to 50 mol in terms of ho2.
(2)  ガス感応体が加圧成型し、焼成して得られる
焼結体、またはペーストを印刷して焼成して得られる焼
結膜であることを特徴とする特許請求の範囲第(1)項
記載のガス検知素子。
(2) Claim (1) characterized in that the gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. The gas detection element described.
JP21721582A 1982-12-10 1982-12-10 Gas detecting element Granted JPS59107250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21721582A JPS59107250A (en) 1982-12-10 1982-12-10 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21721582A JPS59107250A (en) 1982-12-10 1982-12-10 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS59107250A true JPS59107250A (en) 1984-06-21
JPS6222418B2 JPS6222418B2 (en) 1987-05-18

Family

ID=16700662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21721582A Granted JPS59107250A (en) 1982-12-10 1982-12-10 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS59107250A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Also Published As

Publication number Publication date
JPS6222418B2 (en) 1987-05-18

Similar Documents

Publication Publication Date Title
JPS59107250A (en) Gas detecting element
JPS6223252B2 (en)
JPS6222414B2 (en)
JPS6160381B2 (en)
JPS6222417B2 (en)
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6222420B2 (en)
JPS623375B2 (en)
JPS6160380B2 (en)
JPS6160386B2 (en)
JPS6222419B2 (en)
JPS6155068B2 (en)
JPS6160383B2 (en)
JPS6160382B2 (en)
JPH027025B2 (en)
JPS6160385B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)
JPS6160379B2 (en)
JPH0159542B2 (en)
JPS5992339A (en) Gas detecting element
JPH0230459B2 (en) GASUKENCHISOSHI
JPS6160378B2 (en)
JPS6160384B2 (en)
JPS6160377B2 (en)