JPS6160379B2 - - Google Patents

Info

Publication number
JPS6160379B2
JPS6160379B2 JP8344382A JP8344382A JPS6160379B2 JP S6160379 B2 JPS6160379 B2 JP S6160379B2 JP 8344382 A JP8344382 A JP 8344382A JP 8344382 A JP8344382 A JP 8344382A JP S6160379 B2 JPS6160379 B2 JP S6160379B2
Authority
JP
Japan
Prior art keywords
gas
sensitivity
methane
sensitive material
ferric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8344382A
Other languages
Japanese (ja)
Other versions
JPS58200151A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8344382A priority Critical patent/JPS58200151A/en
Priority to US06/496,492 priority patent/US4732738A/en
Priority to EP83302807A priority patent/EP0095313B1/en
Priority to DE8383302807T priority patent/DE3379481D1/en
Publication of JPS58200151A publication Critical patent/JPS58200151A/en
Publication of JPS6160379B2 publication Critical patent/JPS6160379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は可燃性ガスを検知するガス検知素子に
関するものである。 近年、可燃性ガスの検知素子材料について種々
の研究開発が活発化してきている。これは、一般
家庭を中心に各種工場などで可燃性ガスによる爆
発事故や有毒ガスによる中毒事故が多発し、大き
な社会問題となつていることに強く起因してい
る。特にプロパンガスは、爆発下限界(LEL)
が低く、かつ比重が空気よりも大きく、部屋に停
滞しやすいために事故があとを断たず、毎年多数
の死傷者を出している。 近年になつて、酸化第二錫(SnO2)やガンマ型
酸化第二鉄(γ―Fe2O3)などの金属酸化物を用
いたガス検知素子が実用化され、ガス漏れ警報器
などに応用されている。そして、ガス漏れなどの
事態が発生してもLELに至るまでの間に、プロ
パンガスの存在をいち早く検知し、爆発を未然に
防げるようになつている。 ところで、日本でもメタンガスを主成分とする
液化天然ガス(LNG)が一般家庭用として用い
られるようになり、徐々に普及して来ている。し
たがつて、このLNGの主成分であるメタンガス
を選択性よく検出するガス検知素子の要請も非常
に大きくなつてきている。 勿論、すでにメタンガスに感応するガス検知素
子は開発されてはいるが、その多くは感応体材料
に増感剤として貴金属触媒を用いているため、
種々のガスによる触媒被毒の問題、メタンガスに
対する選択度が小さい点、あるいは周囲湿度に対
する依存性が大きい点などの課題を抱えている。
したがつて、実用に際しては未だ不十分な特性で
あるのが現状である。 本発明はこれらの状況に鑑みてなされたもの
で、メタンガスに対しても実用上十分大きな感度
を持つたガス検知素子を提供するものである。メ
タンガスはそれ自身非常に安定なガスであるだけ
に、これに十分な感度を有する検知素子は非常に
高活性である必要がある。したがつて、メタンガ
スに対して大きな感度を実現するためには、従来
は、貴金属触媒を感応体材料に添加して用いる
か、あるいは感応体をかなり高い温度で動作させ
るなどの工夫がなされてきた。これに対し、本発
明は貴金属触媒を一切添加することなく、また比
較的低い動作温度でも対メタン感度の大きい素子
を実現するものである。 本発明は酸化第二鉄(Fe2O3)をガス感応体と
して用いたガス検知素子において、これに含まれ
る種々の陰イオンのガス感応特性に及ぼす影響に
ついて検討している中で見出されたものである。
すなわち、アルフア型酸化第二鉄(α―
Fe2O3)、ガンマ型酸化第二鉄(γ―Fe2O3)ある
いはこれらの混合物が硫酸イオン(SO4 --)を含
有することによりガス感応特性が飛躍的に向上
し、しかも先述のメタンガスに対しても実用上十
分大きな感度を実現し得ることを見出したことに
よつてなされたものである。 以下、本発明を具体的な実施例に基づいて説明
する。 (実施例 1) 市販のアルフア型酸化第二鉄(α―Fe2O3)試
薬に、硫酸イオンを含有させるための添加物とし
て種々の量の硫酸第一鉄(FeSO4―7H2O)粉末
を添加混合し、さらにこれに有機バインダーを加
えて100〜200μの大きさの粒子に整粒したいくつ
かの粉体を作製した。このようにして得られた、
硫酸第一鉄の含まれる量の異るそれぞれの粉体を
直方体形状に加圧成形し、空気中で600℃の温度
で1時間焼成した。この焼結体の表面にAuを蒸
着して一対の櫛形電極を形成し、その裏面には白
金熱体を無機接着剤で貼りつけてヒータとし検知
素子を作製した。この発熱体に電流を通じ、その
電流値を調節して素子の動作温度を制御した。素
体温度を350℃に保持して、そのガス感応特性を
測定した。 空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)はこの容器の中に純度99%
以上のメタン(CH4)、プロパン(C3H8)、イソ
ブタン(i―C4H10)及び水素(H2)の各ガスを容
量比率にして10ppm/秒の割合で流入させ、そ
の濃度が0.1容量%に達した時にそれぞれ測定し
た。測定するガス濃度を0.1容量%に選んだの
は、ガス検知素子として実用上要望される検知濃
度がそのガスの爆発下限界濃度(LEL)の数10
分の1から数分の1の範囲であり、上記のガスの
それぞれのLELが約2容量%から5容量%であ
るからである。 また、ガス感応体に含まれる硫酸イオン
(SO4 --)の存在は赤外線吸収スペクトルで確認
し、含有されている量はTG―DTA曲線及び螢光
X線分析から同定した。第1表に硫酸イオン量を
含むガス感応体の感応特性をRa,Rgと用いて示
す。また第1図はこれを感度(Ra/Rg)で表わ
したものである。なお、第1図中イソブタンに関
しては水素とほぼ同様の特性を示すため省略し
た。
The present invention relates to a gas detection element for detecting combustible gas. In recent years, various research and development activities regarding materials for sensing elements for flammable gases have become active. This is strongly attributable to the fact that explosion accidents caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and have become a major social problem. In particular, propane gas has a lower explosive limit (LEL).
Because it has a lower specific gravity and a higher specific gravity than air, it tends to stagnate in rooms, causing many accidents and causing many casualties every year. In recent years, gas detection elements using metal oxides such as stannic oxide (SnO 2 ) and gamma-type ferric oxide (γ-Fe 2 O 3 ) have been put into practical use, and are used in gas leak alarms, etc. It is applied. Even in the event of a gas leak, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion. Incidentally, in Japan, liquefied natural gas (LNG), whose main component is methane gas, has come to be used for general household use and is gradually becoming popular. Therefore, the demand for gas detection elements that can detect methane gas, which is the main component of LNG, with high selectivity is increasing. Of course, gas detection elements sensitive to methane gas have already been developed, but most of them use noble metal catalysts as sensitizers in the sensitive material.
Problems include catalyst poisoning by various gases, low selectivity to methane gas, and high dependence on ambient humidity.
Therefore, the current situation is that the properties are still insufficient for practical use. The present invention has been made in view of these circumstances, and it is an object of the present invention to provide a gas detection element that has a sensitivity that is sufficiently high for practical use even to methane gas. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventional methods have been used such as adding a noble metal catalyst to the sensitive material or operating the sensitive material at a considerably high temperature. . In contrast, the present invention realizes an element with high sensitivity to methane even at a relatively low operating temperature without adding any noble metal catalyst. The present invention was discovered while studying the effects of various anions contained in ferric oxide (Fe 2 O 3 ) on gas sensitivity characteristics in gas detection elements using ferric oxide (Fe 2 O 3 ) as a gas sensitive material. It is something that
That is, alpha-type ferric oxide (α-
Fe 2 O 3 ), gamma-type ferric oxide (γ-Fe 2 O 3 ), or a mixture thereof containing sulfate ions (SO 4 -- ) dramatically improves gas sensitivity characteristics, and also has the aforementioned properties. This discovery was made based on the discovery that a sufficiently high sensitivity for practical use can be achieved even for methane gas. The present invention will be described below based on specific examples. (Example 1) Various amounts of ferrous sulfate (FeSO 4 -7H 2 O) were added as an additive to a commercially available alpha-type ferric oxide (α-Fe 2 O 3 ) reagent to contain sulfate ions. Powders were added and mixed, and an organic binder was further added thereto to produce several powders that were sized into particles with a size of 100 to 200μ. Obtained in this way,
Powders containing different amounts of ferrous sulfate were press-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600°C for 1 hour. Au was deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back side with an inorganic adhesive to serve as a heater and a sensing element was fabricated. A current was passed through this heating element, and the operating temperature of the element was controlled by adjusting the current value. The element temperature was maintained at 350°C and its gas sensitivity characteristics were measured. The resistance value (Ra) in air was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value (Rg) in gas was determined by 99% purity inside
The above gases of methane (CH 4 ), propane (C 3 H 8 ), isobutane (i-C 4 H 10 ), and hydrogen (H 2 ) are introduced at a volume ratio of 10 ppm/sec, and the concentration Measurements were taken when the amount reached 0.1% by volume. The gas concentration to be measured was chosen to be 0.1% by volume because the detection concentration practically required for a gas detection element is a number 10 below the lower explosive limit concentration (LEL) of the gas.
This is because the LEL of each of the above gases is approximately 2% to 5% by volume. Further, the presence of sulfate ions (SO 4 -- ) contained in the gas sensitive material was confirmed by infrared absorption spectrum, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis. Table 1 shows the sensitivity characteristics of a gas sensitive material containing the amount of sulfate ions using Ra and Rg. Moreover, FIG. 1 shows this in terms of sensitivity (Ra/Rg). Note that isobutane in FIG. 1 is omitted because it exhibits almost the same characteristics as hydrogen.

〔実施例 2〕[Example 2]

市販の四三酸化鉄(Fe3O4)の試薬と、硫酸イ
オンを含有させる添加物としての種々の濃度に調
製した硫酸第一鉄(FeSO4―7H2O)水溶液を準
備した。次に、上記Fe3O4の試薬を10gづつ秤取
し、これらに上記の硫酸第一鉄水溶液をそれぞれ
滴下し混合した。このようにして得られたいくつ
かの混合粉体を空気中で400℃の温度で熱処理し
た。さらにこの粉体を50〜100μに整粒し、トリ
エタノールアミンを加えてペースト化した。一
方、ガス検知素子の基板として縦、横それぞれ5
mm、厚み0.5mmのアルミナ基板を用意し、この表
面に0.5mmの間隔に櫛形に金ペーストを印刷し、
焼きつけて一対の櫛形電極を形成した。そして、
アルミナ基板の裏面には金電極の間に市販の酸化
ルテニウムのグレーズ抵抗体を印刷し、焼きつけ
てヒータとした。 次に、上述のペーストを基板の表面に約70μの
厚みに印刷し、室温で自然乾燥させた後、400℃
の温度になるまで徐々に加熱し、この温度で1時
間保持した。この段階でペーストが蒸発し、また
Fe3O4が酸化されてγ―Fe2O3の焼結膜になつ
た。このガス感応体の厚みは約55μであつた。こ
のようにしてガス検知素子を得た。 またガス感応膜に含まれる硫酸イオン量の同定
は、上記の各ペーストの一部を、アルミナ基板に
印刷するのではなく、ペーストのまま上述と同じ
様に400℃の温度で徐加熱し、これをTG―DTA
ならびに螢光X線分析にかけて行なつた。また硫
酸イオンの存在は実施例1と同じく赤外線吸収ス
ペクトルを分析することにより行なつた。 このようにして得られたガス検知素子につい
て、実施例1と同じ方法でガス感応特性を測定し
た。この結果を第2表に示す。表中〓印の付した
ものは第1表と同じく参考のための比較例であ
る。また第2図は第1図と同様、これを感度
(Ra/Rg)で表わしたものであり、第1図と同様
イソブタンに関しては水素とほぼ同様の特性を示
すため省略した。
A commercially available triiron tetroxide (Fe 3 O 4 ) reagent and ferrous sulfate (FeSO 4 -7H 2 O) aqueous solutions prepared at various concentrations as an additive containing sulfate ions were prepared. Next, 10 g of the above Fe 3 O 4 reagent was weighed out, and the above ferrous sulfate aqueous solution was added dropwise to each of them and mixed. Some of the mixed powders thus obtained were heat treated in air at a temperature of 400°C. Further, this powder was sized to a size of 50 to 100μ, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, 5
Prepare an alumina substrate with a thickness of 0.5 mm and print gold paste in a comb shape at intervals of 0.5 mm on this surface.
A pair of comb-shaped electrodes were formed by baking. and,
A commercially available ruthenium oxide glaze resistor was printed on the back of the alumina substrate between the gold electrodes and baked to form a heater. Next, the above paste was printed on the surface of the board to a thickness of about 70μ, and after air drying at room temperature, it was heated to 400℃.
The mixture was gradually heated until the temperature reached , and maintained at this temperature for 1 hour. At this stage the paste evaporates and also
Fe 3 O 4 was oxidized and became a sintered film of γ-Fe 2 O 3 . The thickness of this gas sensitive body was approximately 55μ. A gas sensing element was thus obtained. In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, we slowly heated the paste at a temperature of 400°C in the same way as described above. TG-DTA
It was also subjected to fluorescent X-ray analysis. Further, the presence of sulfate ions was determined by analyzing the infrared absorption spectrum as in Example 1. The gas sensitivity characteristics of the gas detection element thus obtained were measured in the same manner as in Example 1. The results are shown in Table 2. The items marked with 〓 in the table are comparative examples for reference as in Table 1. Also, like FIG. 1, FIG. 2 shows this in terms of sensitivity (Ra/Rg), and like FIG. 1, isobutane is omitted because it shows almost the same characteristics as hydrogen.

【表】【table】

【表】 すでに知られている様に、γ―Fe2O3はそれ自
身で可燃性ガスに対する感度が大きく、これを用
いたガス検知素子も既に実用に供せられている。
ただγ―Fe2O3それ自身では、第2表のNo.1に見
られる様にメタンガスに対する感度が他のガスに
対するのに比べて小さいのが難点である。しかし
本発明のように硫酸イオンを含有することによつ
て、メタンガスに対する感度も大幅に向上するこ
とがわかる。 なお、実施例1においてはα―Fe2O3が、また
実施例2においてはγ―Fe2O3が感応体の母材料
であつたが、α―Fe2O3とγ―Fe2O3の混合物が
母材料の場合においても本発明が有効であること
が同様の実験で確められた。 また、実施例1および2においては出発原料と
してα―Fe2O3,Fe3O4の市販試薬を用いたが、
本発明は何ら出発原料や製造工法に限定されるも
のではない。また特性を向上させるために更に添
加物を加えることも勿論可能である。 以上述べたように、本発明のガス検知素子はα
―Fe2O3,γ―Fe2O3あるいはこれらの混合物が
硫酸イオンを含有することによりガス感応特性が
飛躍的に向上し、これまで貴金属触媒を用いずに
は微量検知が難かしいとされてきたメタンガスに
対しても非常に大きい感度を実現し得るものであ
る。これは都市ガスの天然ガス(主成分:メタン
ガス)化に伴つて要求が大きくなりつつある社会
ニーズに的確に対応するものであり、その効果は
極めて大なるものがある。
[Table] As is already known, γ-Fe 2 O 3 itself has high sensitivity to combustible gases, and gas detection elements using it are already in practical use.
However, the problem with γ-Fe 2 O 3 itself is that its sensitivity to methane gas is lower than to other gases, as seen in No. 1 of Table 2. However, it can be seen that by containing sulfate ions as in the present invention, the sensitivity to methane gas is also significantly improved. Note that in Example 1, α-Fe 2 O 3 was used as the base material of the sensitive material, and in Example 2, γ-Fe 2 O 3 was used as the base material of the sensitive material, but α-Fe 2 O 3 and γ-Fe 2 O Similar experiments confirmed that the present invention is effective even when a mixture of 3 is used as the base material. Furthermore, in Examples 1 and 2, commercially available reagents of α-Fe 2 O 3 and Fe 3 O 4 were used as starting materials;
The present invention is not limited to starting materials or manufacturing methods. It is of course also possible to add further additives to improve the properties. As described above, the gas sensing element of the present invention has α
-Fe 2 O 3 , γ-Fe 2 O 3 , or their mixtures contain sulfate ions, which dramatically improves their gas sensitivity, making it difficult to detect trace amounts without using precious metal catalysts. It is possible to achieve extremely high sensitivity even to methane gas. This precisely responds to social needs, which are becoming increasingly demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の各実施例におけ
る感度(Ra/Rg)と感応体に含有される硫酸イ
オン(SO4 --)量との関係を示す特性図である。
FIGS. 1 and 2 are characteristic diagrams showing the relationship between the sensitivity (Ra/Rg) and the amount of sulfate ion (SO 4 -- ) contained in the receptor in each example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 アルフア型酸化第二鉄(α―Fe2O3)とガン
マ型酸化第二鉄(γ―Fe2O3)の少なくとも一方
を主成分とし、硫酸イオン(SO4 --)が0.005〜
10.0重量%含有されたものをガス感応体として用
いることを特徴とするガス検知素子。
1 The main component is at least one of alpha-type ferric oxide (α-Fe 2 O 3 ) and gamma-type ferric oxide (γ-Fe 2 O 3 ), and sulfate ion (SO 4 -- ) is 0.005~
A gas sensing element characterized in that a gas containing 10.0% by weight is used as a gas sensitive material.
JP8344382A 1982-05-17 1982-05-17 Gas detection element Granted JPS58200151A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8344382A JPS58200151A (en) 1982-05-17 1982-05-17 Gas detection element
US06/496,492 US4732738A (en) 1982-05-17 1983-05-17 Combustible gas detecting element
EP83302807A EP0095313B1 (en) 1982-05-17 1983-05-17 Combustible gas-detecting element and its production
DE8383302807T DE3379481D1 (en) 1982-05-17 1983-05-17 Combustible gas-detecting element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8344382A JPS58200151A (en) 1982-05-17 1982-05-17 Gas detection element

Publications (2)

Publication Number Publication Date
JPS58200151A JPS58200151A (en) 1983-11-21
JPS6160379B2 true JPS6160379B2 (en) 1986-12-20

Family

ID=13802569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8344382A Granted JPS58200151A (en) 1982-05-17 1982-05-17 Gas detection element

Country Status (1)

Country Link
JP (1) JPS58200151A (en)

Also Published As

Publication number Publication date
JPS58200151A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
EP0022369B1 (en) Combustible gas detecting elements
JPS6160381B2 (en)
JPS6160379B2 (en)
JPS6160382B2 (en)
JPS6160380B2 (en)
JPS6223252B2 (en)
JPH0159542B2 (en)
JPH0230460B2 (en) GASUKENCHISOSHI
JPS623375B2 (en)
JPS6160378B2 (en)
JPS6222414B2 (en)
JPS6222420B2 (en)
JPS6160377B2 (en)
JPS6222417B2 (en)
JPS6155068B2 (en)
JPS6156789B2 (en)
JPS6160385B2 (en)
JPS6222419B2 (en)
JPS59107250A (en) Gas detecting element
JPS6160386B2 (en)
JPH027025B2 (en)
JPS6160383B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)
JPH0230459B2 (en) GASUKENCHISOSHI