JPS6222417B2 - - Google Patents

Info

Publication number
JPS6222417B2
JPS6222417B2 JP57170128A JP17012882A JPS6222417B2 JP S6222417 B2 JPS6222417 B2 JP S6222417B2 JP 57170128 A JP57170128 A JP 57170128A JP 17012882 A JP17012882 A JP 17012882A JP S6222417 B2 JPS6222417 B2 JP S6222417B2
Authority
JP
Japan
Prior art keywords
gas
sulfate ions
sensing element
sensitivity
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57170128A
Other languages
Japanese (ja)
Other versions
JPS5958352A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17012882A priority Critical patent/JPS5958352A/en
Publication of JPS5958352A publication Critical patent/JPS5958352A/en
Publication of JPS6222417B2 publication Critical patent/JPS6222417B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は可燃性ガスの検知に使用する複合金属
酸化物半導体を用いたガス検知素子に関するもの
である。 従来例の構成とその問題点 近年、可燃性ガスの検知素子材料について種々
の研究開発が活発化してきている。これは、一般
家庭を中心に各種工場などで可燃性ガスによる爆
発事故や有毒ガスによる中毒事故が多発し、大き
な社会問題となつていることに強く起因してい
る。特にプロパンガスは爆発下限界(LEL)が
低く、かつ比重が空気よりも大きく、部屋に停滞
しやすいために事故があとを断たず、毎年多数の
死傷者を出している。 近年になつて、酸化第二錫(SnO2)やガンマ型
酸化第二鉄(γ−Fe2O3)などの金属酸化物を用
いたガス検知素子が実用化され、ガス漏れ警報器
などに応用されている。そして、ガス漏れなどの
事態が発生してもLELに至るまでの間に、プロ
パンガスの存在をいち早く検知し、爆発を未然に
防げるようになつている。 ところで、日本でもメタンガスを主成分とする
液化天然ガス(LNG)が一般家庭用として用い
られるようになり、徐々に普及して来ている。し
たがつて、このLNGの主成分であるメタンガス
を感度よく検出するガス検知素子の要請も非常に
大きくなつてきている。 勿論、すでにメタンガスに感応するガス検知素
子は開発されてはいるが、その多くは感応体材料
に増感剤として貴金属触媒を用いているため、
種々のガスによる触媒被毒の問題、メタンガスに
対する感度が小さい点、あるいは特性の経時変化
が大きい点などの課題を抱えている。 例えば、メタンガスはそれ自身非常に安定なガ
スであるだけに、これに十分な感度を有する検知
素子は非常に高活性である必要があるが、従来は
メタンガスに対して大きな感度を実現するため
に、貴金属触媒を感応体材料に添加して用いる
か、あるいは感応体を例えば450℃以上のかなり
高い温度で動作させるなどの工夫がなされてき
た。しかしながら、実用に際して未だ不十分な特
性であるのが現状である。 発明の目的 本発明はこのような状況に鑑みてなされたもの
で、貴金属触媒を一切添加することなく、また
400℃と比較的低い動作温度でも対メタン感度の
大きいガス検出素子を実現するものである。 発明の構成 本発明は亜鉛フエライト(ZnFe2O4)をガス感
応体として用いたガス検知素子において、これに
含まれる種々の陰イオンのガス感応特性に及ぼす
影響ならびに添加物の効果について検討している
中で見い出されたものである。 すなわち本発明のガス検知素子は硫酸イオンが
0.005〜10重量%含有されたZnFe2O4に、添加物
としてSn、ZrおよびTiのうち少なくともひとつ
が、それぞれSnO2、ZrO2およびTiO2に換算して
添加物総量で0.1〜50モル%含むものをガス感応
体として用いたものであり、これはガス感応体の
母材料である硫酸イオンを含有するZnFe2O4
Zn、ZrあるいはTiを添加することにより、ガス
感応特性とその信頼性が飛躍的に向上し、しかも
先述のメタンガスに対しても実用上十分大きな感
度を実現し得ることを見い出したことによつてな
されたものである。 実施例の説明 以下に本発明の実施例を説明する。まず実施例
1においては、ZnFe2O4に含有される硫酸イオン
の量を一定にし、添加物であるSn、Zrあるいは
Tiの添加量ならびにそれらの組み合わせを変え
た場合について述べることにする。 実施例 1 酸化亜鉛(ZnO)の市販試薬を41g、酸化第二
鉄(Fe2O3)の市販試薬を80gそれぞれ秤取し、
これをステンレススチール製のポツトで5時間湿
式混合した。この混合物を乾燥、粉砕し、然る後
に1300℃の温度で2時間熱処理した。これを再度
粉砕し、これに硫酸イオンを含有させるため添加
物として、硫酸第二鉄(Fe2(SO43−xH2O)試
薬を35g添加し、らいかい機で2時間混合した。
これらの混合物をいくつかに等分割し、これにそ
れぞれ市販の酸化第二錫(SnO2)、酸化ジルコニ
ウム(ZrO2)および酸化チタン(TiO2)試薬を、
単独あるいは複数の組み合わせで添加した。そし
てそれぞれの粉体をさらにらいかい機で3時間乾
式混合した。そしてこれらにそれぞれ有機バイン
ダーを加えて100〜200μの大きさの粒子に整粒し
た。次にこれらの粉体を直方体形状に加圧成型
し、空気中で600℃の温度で1時間焼成した。次
にこの焼結体の表面にAuを蒸着して一対の櫛形
電極を形成し、その裏面には白金発熱体を無機接
着剤で貼りつけてヒータとし検知素子を作製し
た。この発熱体に電流を通じ、その電流値を調節
して素子の動作温度を制御した。素体温度を400
℃に保持して、そのガス感応特性を測定した。 空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)はこの容器の中に純度99%
以上のメタン(CH4)および水素(H2)の各ガスを
容量比率にして10ppm/秒の割合で流入させ、
その濃度が0.2容量%に達した時にそれぞれ測定
した。測定するガス濃度を0.2%に選んだのは、
ガス検知素子として実用上要望される検知濃度が
そのガスの爆発下限界濃度(LEL)の数10分の
1から数分の1の範囲であり、上記のガスのそれ
ぞれのLELが約2容量%から5容量%であるか
らである。 またガス感応体に含まれる硫酸イオン(SO4
の存在は赤外線吸収スペクトルで確認し、含有さ
れている量はTG−DTA曲線および螢光X線分析
から同定した。その結果、これらの焼結感応体に
含まれている硫酸イオンの量は0.16〜0.20重量%
であつた。 第1図〜第3図に添加物をそれぞれ単独で添加
した場合のガス感応特性の添加量依存性を示す。
感応特性は、(i)ガス感度(Rg/Rg)、(ii)抵抗経
時変化率ΔR(感応体を400℃の温度で2000時間
保持した場合の抵抗値の初期値に対する変化率)
で評価した。また第1表には、添加物を組み合わ
せて用いた場合のやはりガス感度(Ra/Rg)
と、抵抗経時変化率(ΔR)を示す。なおΔRは
表中の( )内に記載した。 第1図〜第3図および第1表から明らかなよう
に、Sn、ZrあるいはTiを単独ないしは組み合わ
せて添加することにより、ガス感応特性(ガス感
度:Ra/Rg)が大きく向上している。また注目
すべきは抵抗値の経時変化であり、これらの添加
物を加えることによりその変化率が大幅に減少し
ている。このようにSn、ZrあるいはTiの添加に
よりガス感応特性と信頼性の飛躍的な向上が実現
できることがわかる。 本発明において添加物総量を0.1〜50モル%に
限定したのは、0.1モル%未満では第1図〜第3
図および第1表に見られるように、ガス感応特性
ならびに信頼性を向上せしめる効果が見られず、
逆に50モル%を超えると抵抗値自身が高くなり、
また特性の安定性に欠けるからである。表中で*
印を付したものがこれらに該当するものであり、
第1表の中では比較例として記載しておいた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a gas detection element using a composite metal oxide semiconductor used to detect combustible gas. Conventional configuration and its problems In recent years, various research and development activities have become active regarding materials for sensing elements for flammable gases. This is strongly attributable to the fact that explosion accidents caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and have become a major social problem. Propane gas, in particular, has a low explosive limit (LEL) and a higher specific gravity than air, so it tends to stagnate in rooms, resulting in numerous accidents and injuries every year. In recent years, gas detection elements using metal oxides such as stannic oxide (SnO 2 ) and gamma-type ferric oxide (γ-Fe 2 O 3 ) have been put into practical use, and are used in gas leak alarms, etc. It is applied. Even in the event of a gas leak, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion. Incidentally, in Japan, liquefied natural gas (LNG), whose main component is methane gas, has come to be used for general household use and is gradually becoming popular. Therefore, the demand for gas detection elements that can sensitively detect methane gas, which is the main component of LNG, is increasing. Of course, gas detection elements sensitive to methane gas have already been developed, but most of them use noble metal catalysts as sensitizers in the sensitive material.
Problems include catalyst poisoning by various gases, low sensitivity to methane gas, and large changes in characteristics over time. For example, since methane gas itself is a very stable gas, a sensing element with sufficient sensitivity must be extremely active. Efforts have been made to use a noble metal catalyst added to the susceptor material, or to operate the susceptor at a considerably high temperature, for example, 450° C. or higher. However, the current situation is that the properties are still insufficient for practical use. Purpose of the Invention The present invention was made in view of the above situation, and it is possible to produce a catalyst without adding any precious metal catalyst.
The goal is to realize a gas detection element with high sensitivity to methane even at a relatively low operating temperature of 400°C. Structure of the Invention The present invention is a gas sensing element using zinc ferrite (ZnFe 2 O 4 ) as a gas sensitive material, and the effects of various anions contained therein on the gas sensitivity characteristics and the effects of additives were investigated. It was discovered in the middle of the day. In other words, the gas detection element of the present invention has sulfate ions.
In ZnFe 2 O 4 containing 0.005 to 10% by weight, at least one of Sn, Zr and Ti is added as an additive to 0.1 to 50 mol% of the total amount of additives in terms of SnO 2 , ZrO 2 and TiO 2 respectively. ZnFe 2 O 4 containing sulfate ions, which is the base material of the gas sensitive material, is used as a gas sensitive material.
By adding Zn, Zr, or Ti, we found that the gas sensitivity characteristics and their reliability were dramatically improved, and that it was possible to achieve a sensitivity that was sufficiently high for practical use even to the aforementioned methane gas. It has been done. Description of Examples Examples of the present invention will be described below. First, in Example 1, the amount of sulfate ions contained in ZnFe 2 O 4 was kept constant, and the additives Sn, Zr or
We will discuss cases where the amount of Ti added and the combination thereof are changed. Example 1 Weighed out 41g of a commercially available reagent of zinc oxide (ZnO) and 80g of a commercially available reagent of ferric oxide (Fe 2 O 3 ),
This was wet mixed in a stainless steel pot for 5 hours. This mixture was dried, ground and then heat treated at a temperature of 1300°C for 2 hours. This was ground again, and 35 g of ferric sulfate (Fe 2 (SO 4 ) 3 -xH 2 O) reagent was added as an additive to contain sulfate ions, and mixed for 2 hours using a sieve machine.
These mixtures were equally divided into several parts, and commercially available tin oxide (SnO 2 ), zirconium oxide (ZrO 2 ), and titanium oxide (TiO 2 ) reagents were added to each of these, respectively.
They were added singly or in combination. Then, each powder was further dry-mixed for 3 hours using a miller. Then, an organic binder was added to each of these to form particles with a size of 100 to 200μ. Next, these powders were pressure-molded into a rectangular parallelepiped shape and fired in air at a temperature of 600°C for 1 hour. Next, Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater and a sensing element was fabricated. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. Change the body temperature to 400
The gas sensitivity characteristics were measured while maintaining the temperature at ℃. The resistance value (Ra) in air was measured in a measuring container with a volume of 50 mm in which dry air was slowly stirred to the extent that no turbulence occurred, and the resistance value (Rg) in gas was determined by 99% purity inside
The above methane (CH 4 ) and hydrogen (H 2 ) gases are made to flow at a volume ratio of 10 ppm/sec,
Each was measured when its concentration reached 0.2% by volume. The gas concentration to be measured was chosen to be 0.2% because
The detection concentration practically required for a gas detection element is in the range of several tenths to several tenths of the lower explosive limit concentration (LEL) of the gas, and the LEL of each of the above gases is approximately 2% by volume. This is because it is 5% by volume. Also, sulfate ions (SO 4 ) contained in the gas sensitive material
The presence of the compound was confirmed by infrared absorption spectrum, and the amount contained was identified from the TG-DTA curve and fluorescent X-ray analysis. As a result, the amount of sulfate ions contained in these sintered sensitizers is 0.16-0.20% by weight.
It was hot. Figures 1 to 3 show the dependence of the gas sensitivity characteristics on the amount added when each additive is added individually.
The sensitivity characteristics are (i) gas sensitivity (Rg/Rg), (ii) rate of change in resistance over time ΔR (rate of change in resistance value from the initial value when the sensitive body is held at a temperature of 400°C for 2000 hours)
It was evaluated by Table 1 also shows the gas sensitivity (Ra/Rg) when additives are used in combination.
and the resistance change rate over time (ΔR). Note that ΔR is written in parentheses in the table. As is clear from FIGS. 1 to 3 and Table 1, the gas sensitivity characteristics (gas sensitivity: Ra/Rg) are greatly improved by adding Sn, Zr, or Ti singly or in combination. Also noteworthy is the change in resistance value over time, and the rate of change is significantly reduced by adding these additives. Thus, it can be seen that the addition of Sn, Zr, or Ti can dramatically improve gas sensitivity characteristics and reliability. In the present invention, the total amount of additives is limited to 0.1 to 50 mol%.
As seen in the figure and Table 1, no effect on improving gas sensitivity characteristics and reliability was observed.
On the other hand, if it exceeds 50 mol%, the resistance value itself becomes high,
This is also because the stability of the characteristics is lacking. In the table *
The marked items correspond to these,
In Table 1, it is listed as a comparative example.

【表】 * 比較例
ところで、一般的に感応体はある程度非晶質の
状態の金属酸化物の方が、結晶化されているもの
より可燃性ガスに対する吸着現象などの物理化学
現象が活性になり易いと云われている。しかし、
ほぼ完全に近く結晶化されている市販試薬を用い
て作成されたZnFe2O4でも、硫酸イオンを含有せ
しめ、さらにSn、ZrあるいはTiを添加すること
により極めて高い活性度を示し、しかもこれが経
時的に安定なため、結果的に非常に大きなガス感
度と高い信頼性を実現し得ることがわかる。 この実施例1では、感応体が焼結体の場合であ
り、含有される硫酸イオン量が一定で、そして添
加物の量、組み合わせが異る場合について述べ
た。次に示す実施例2では感応体が焼結膜の場合
で、実施例1とは逆に添加物の種類と量を一定に
して含有される硫酸イオンの量を変えた場合につ
いて述べる。すなわち実施例2では、本発明が感
応体を焼結膜とした場合でも有効であることを確
認し、また含有される硫酸イオン量がガス感応特
性に対してどのような効果を持つかについて述べ
ることにする。 実施例 2 実施例1と同様の方法で作成された
ZnFe2O4100gに、やはり市販の酸化第二錫
(SnO2)、酸化ジルコニウム(ZrO2)および酸化チ
タン(TiO2)試薬を第2表に示すような割合にな
るように秤取し、それぞれをらいかい機にて2時
間混合した。次にそれぞれの混合粉体を8等分割
し、これに予め種々の濃度に調製された硫酸第二
鉄(Fe2(SO4)−xH2O)溶液を加え、しかる後
にそれぞれの粉体をやはりらいかい機で1時間混
合した。このようにして代表例としての酸化物組
成の種類が3種類(試料A〜C)、硫酸イオン量
の異るものがそれぞれの酸化物組成に対して8種
類、計24種類の試料が得られた。
[Table] * Comparative example By the way, in general, metal oxides that are amorphous to some extent are more active in physicochemical phenomena such as adsorption to combustible gases than those that are crystallized. It is said to be easy. but,
Even ZnFe 2 O 4 prepared using a commercially available reagent that is almost completely crystallized shows extremely high activity by containing sulfate ions and further adding Sn, Zr, or Ti. As a result, it can be seen that extremely high gas sensitivity and high reliability can be achieved. In Example 1, the sensitive body is a sintered body, the amount of sulfate ions contained is constant, and the amounts and combinations of additives are varied. In Example 2 shown below, the sensitive body is a sintered film, and contrary to Example 1, the type and amount of additives are kept constant and the amount of sulfate ions contained is varied. That is, in Example 2, it was confirmed that the present invention is effective even when the sensitive body is a sintered film, and the effect of the amount of sulfate ions contained on the gas sensitivity characteristics is described. Make it. Example 2 Created in the same manner as Example 1
To 100 g of ZnFe 2 O 4 , commercially available tin oxide (SnO 2 ), zirconium oxide (ZrO 2 ), and titanium oxide (TiO 2 ) reagents were weighed out in the proportions shown in Table 2. Each was mixed for 2 hours using a sieve machine. Next, each mixed powder was divided into 8 equal parts, ferric sulfate (Fe 2 (SO 4 ) - xH 2 O) solutions prepared in advance at various concentrations were added to this, and then each powder was divided into 8 equal parts. Again, the mixture was mixed for 1 hour using a rice paddle machine. In this way, a total of 24 types of samples were obtained, including 3 types of representative oxide compositions (samples A to C) and 8 types of samples with different amounts of sulfate ions for each oxide composition. Ta.

【表】 このようにして得られたいくつかの混合粉体を
空気中で400℃の温度で2時間熱処理した。さら
にこの粉体を50〜100μに整粒し、トリエタノー
ルアミンを加えてペースト化した。一方、ガス検
知素子の基板として縦、横それぞれ5mm、厚み
0.5mmのアルミナ基板を用意し、この表面に0.5mm
の間隔に櫛形に金ペーストを印刷し、焼きつけて
一対の櫛形電極を形成した。そして、アルミナ基
板の裏面には金電極の間に市販の酸化ルテニウム
のグレーズ抵抗体を印刷し、焼きつけてヒータと
した。 次に、上述のペーストを基板の表面に約65μの
厚みに印刷し、室温で自然乾燥させた後、400℃
の温度になるまで徐々に加熱し、この温度で1時
間保持した。この段階でペーストが蒸発し硫酸イ
オンを含有するそれぞれの酸化物組成の焼結膜に
なつた。このガス感応体の厚みは約60μであつ
た。このようにしてガス検知素子を得た。 またガス感応膜に含まれる硫酸イオン量の同定
は、上記の各ペーストの一部を、アルミナ基板に
印刷するのではなく、ペーストのまま上述と同じ
ように400℃の温度で徐加熱し、これをTG−
DTAならびに螢光X線分析にかけて行なつた。
また硫酸イオンの存在の確認は実施例1と同じく
赤外線吸収スペクトルを分析することにより行な
つた。 それぞれの検知素子のガス感応特性を実施例1
の場合と同様の方法で測定した。第4図〜第6図
に酸化物組成の異る試料A〜Cのガス感度
(Ra/Rg)と含有される硫酸イオンとの関係をそ
れぞれ示す。また第3表には、経時特性の代表例
として、試料A〜Cにおいて硫酸イオンが2〜5
重量%含有されているものについて実施例1と同
じ方法で評価した時の抵抗値の経時変化率を示
す。なお実施例2においては、被検ガスとしては
メタンプロパンを用いた。 第4図〜第6図から明らかなように、感応体が
焼結膜であつても、実施例1で得られたのとほぼ
同じ特性が得られている。また第3表からも明ら
かなように、抵抗値の経時変化率も実施例1と同
様非常に小さい。 また第4図〜第6図を見ればわかるように、硫
酸イオンの量が0.005重量%未満ではSn、Zrある
いはTiの添加効果がなく本発明の効果が期待で
きない。また逆に10.0重量%を超えると特性の安
定性あるいは機械的強度の面で実用性に欠けるよ
うになる。本発明のガス検知素子で含有される硫
酸イオンの量を0.005〜10.0重量%に限定したの
は上述した理由による。
[Table] Several mixed powders thus obtained were heat treated in air at a temperature of 400°C for 2 hours. Further, this powder was sized to a size of 50 to 100μ, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, the length and width are each 5 mm, and the thickness is
Prepare a 0.5mm alumina substrate, and place 0.5mm on this surface.
A pair of comb-shaped electrodes was formed by printing gold paste in a comb shape at intervals of . A commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater. Next, the above paste was printed on the surface of the substrate to a thickness of about 65μ, and after air drying at room temperature, it was heated to 400℃.
The mixture was gradually heated until the temperature reached , and maintained at this temperature for 1 hour. At this stage, the paste evaporated and became a sintered film of the respective oxide composition containing sulfate ions. The thickness of this gas sensitive material was approximately 60μ. A gas sensing element was thus obtained. In addition, to identify the amount of sulfate ions contained in the gas-sensitive membrane, rather than printing a portion of each of the above pastes on an alumina substrate, the paste itself was slowly heated to 400°C in the same manner as described above. TG−
DTA and fluorescent X-ray analysis were performed.
Further, the presence of sulfate ions was confirmed by analyzing the infrared absorption spectrum as in Example 1. Example 1 shows the gas sensitivity characteristics of each sensing element.
It was measured in the same way as in the case of . FIGS. 4 to 6 show the relationship between the gas sensitivity (Ra/Rg) and the sulfate ions contained in samples A to C having different oxide compositions, respectively. Table 3 also shows that samples A to C contain 2 to 5 sulfate ions as representative examples of aging characteristics.
The rate of change in resistance value over time when evaluated using the same method as in Example 1 for those containing % by weight is shown. In Example 2, methane propane was used as the test gas. As is clear from FIGS. 4 to 6, almost the same characteristics as those obtained in Example 1 are obtained even when the sensitive body is a sintered film. Furthermore, as is clear from Table 3, the rate of change in resistance value over time is also very small, as in Example 1. Further, as can be seen from FIGS. 4 to 6, if the amount of sulfate ions is less than 0.005% by weight, there is no effect of adding Sn, Zr or Ti, and the effects of the present invention cannot be expected. On the other hand, if it exceeds 10.0% by weight, it becomes impractical in terms of stability of properties or mechanical strength. The reason why the amount of sulfate ions contained in the gas sensing element of the present invention is limited to 0.005 to 10.0% by weight is for the reason mentioned above.

【表】 ところで、実施例1および2では出発原料とし
て市販の酸化物試薬を用いたものについて述べた
が、本発明は最終的に感応体の組成が前述した範
囲内のものであればよく、何ら出発原料や製造工
法を限定するものではない。 また実施例においては被検ガスとしてメタン
と、水素あるいはプロパンを用いたが、本発明の
効果がこれらのガスに決して限定されるものでな
く、エタン、イソブタン、アルコールといつた可
燃性ガスに対しても有効であることは勿論であ
る。 発明の効果 以上説明したように、本発明のガス検知素子は
硫酸イオンを含有するZnFe2O4に添加物として
Sn、ZrあるいはTiを添加した焼結体あるいは焼
結膜を感応体として用いたものであり、これによ
りガス感度が飛躍的に向上し、これまで貴金属触
媒を用いずには微量検知が難かしいとされてきた
メタンガスに対して、400℃という比較的低い温
度でも非常に大きい感度を実現し得るものであ
る。これは都市ガスの天然ガス(主成分:メタン
ガス)化に伴つて要求が大きくなりつつある社会
ニーズに的確に対応するものであり、その効果は
極めて大なるものがある。また、本発明のいまひ
とつの効果は寿命特性、特に通電による抵抗値の
経時変化の大幅な軽減である。これは換言すれ
ば、あらゆる検知素子の最も重要な要素である素
子の信頼性の向上に極めて大きな寄与をもたらす
ものである。
[Table] By the way, in Examples 1 and 2, commercially available oxide reagents were used as starting materials, but in the present invention, the final composition of the reactor may be within the above-mentioned range. There are no limitations on starting materials or manufacturing methods. In addition, although methane, hydrogen, or propane were used as the test gases in the examples, the effects of the present invention are by no means limited to these gases, and can be applied to flammable gases such as ethane, isobutane, and alcohol. Of course, it is also effective. Effects of the Invention As explained above, the gas sensing element of the present invention uses ZnFe 2 O 4 containing sulfate ions as an additive.
A sintered body or sintered film doped with Sn, Zr, or Ti is used as a sensitive body, and this dramatically improves gas sensitivity, making it difficult to detect trace amounts without using a precious metal catalyst. Even at a relatively low temperature of 400 degrees Celsius, it is possible to achieve extremely high sensitivity for methane gas, which has been used for many years. This precisely responds to social needs, which are becoming increasingly demanding as city gas is replaced with natural gas (main component: methane gas), and its effects are extremely significant. Another effect of the present invention is a significant reduction in the life characteristics, especially the change in resistance value over time due to energization. In other words, this makes an extremely large contribution to improving the reliability of the element, which is the most important element of any sensing element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例における添
加物量と、メタンおよび水素に対する感度
(Ra/Rg)ならびに抵抗経時変化率(ΔR)との
関係を示した特性図、第4図〜第6図は本発明の
他の実施例における硫酸イオン含有量と、メタン
およびプロパンに対する感度(Ra/Rg)との関
係を、3つの代表的な酸化物組成について示した
特性図である。
Figures 1 to 3 are characteristic diagrams showing the relationship between the amount of additives, sensitivity to methane and hydrogen (Ra/Rg), and rate of change in resistance over time (ΔR) in one embodiment of the present invention, and Figures 4 to 3 FIG. 6 is a characteristic diagram showing the relationship between the sulfate ion content and the sensitivity to methane and propane (Ra/Rg) for three representative oxide compositions in another example of the present invention.

Claims (1)

【特許請求の範囲】 1 硫酸イオンが0.005〜10重量%含有された亜
鉛フエライト(ZnFe2O4)に、添加物として錫
(Sn)、ジルコニウム(Zr)およびチタン(Ti)
のうち少なくともひとつが、それぞれSnO2
ZrO2およびTiO2に換算して添加物総量で0.1〜50
モル%含むものをガス感応体として用いることを
特徴とするガス検知素子。 2 ガス感応体が加圧成型し、焼成して得られる
焼結体またはペーストを印刷して焼成して得られ
る焼結膜であることを特徴とする特許請求の範囲
第1項記載のガス検知素子。
[Claims] 1. Tin (Sn), zirconium (Zr) and titanium (Ti) as additives to zinc ferrite (ZnFe 2 O 4 ) containing 0.005 to 10% by weight of sulfate ions.
At least one of them is SnO 2 ,
Total amount of additives converted to ZrO 2 and TiO 2 from 0.1 to 50
1. A gas sensing element characterized in that a gas sensing element containing mol% of the gas is used as a gas sensitive material. 2. The gas sensing element according to claim 1, wherein the gas sensitive body is a sintered body obtained by pressure molding and firing, or a sintered film obtained by printing and firing a paste. .
JP17012882A 1982-09-28 1982-09-28 Gas detecting element Granted JPS5958352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17012882A JPS5958352A (en) 1982-09-28 1982-09-28 Gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17012882A JPS5958352A (en) 1982-09-28 1982-09-28 Gas detecting element

Publications (2)

Publication Number Publication Date
JPS5958352A JPS5958352A (en) 1984-04-04
JPS6222417B2 true JPS6222417B2 (en) 1987-05-18

Family

ID=15899163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17012882A Granted JPS5958352A (en) 1982-09-28 1982-09-28 Gas detecting element

Country Status (1)

Country Link
JP (1) JPS5958352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194401A1 (en) * 2019-03-22 2020-10-01 三菱電機株式会社 Velocity estimation device of ac motor, driving device of ac motor, refrigerant compressor, and refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851222A1 (en) * 1996-12-31 1998-07-01 Corning Incorporated Metal oxide semiconductor catalyst hydrocarbon sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352200A (en) * 1976-10-22 1978-05-12 Hitachi Ltd Manufacture of gas sensor material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194401A1 (en) * 2019-03-22 2020-10-01 三菱電機株式会社 Velocity estimation device of ac motor, driving device of ac motor, refrigerant compressor, and refrigeration cycle device
CN113574793A (en) * 2019-03-22 2021-10-29 三菱电机株式会社 Speed estimation device for AC motor, drive device for AC motor, refrigerant compressor, and refrigeration cycle device
GB2596246B (en) * 2019-03-22 2023-03-08 Mitsubishi Electric Corp Speed estimating device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle apparatus
US11632067B2 (en) 2019-03-22 2023-04-18 Mitsubishi Electric Corporation Speed estimating device for AC motor, driving device for AC motor, refrigerant compressor, and refrigeration cycle apparatus
CN113574793B (en) * 2019-03-22 2023-09-19 三菱电机株式会社 Speed estimation device for alternating-current motor, driving device for alternating-current motor, refrigerant compressor, and refrigeration cycle device

Also Published As

Publication number Publication date
JPS5958352A (en) 1984-04-04

Similar Documents

Publication Publication Date Title
JPS6222417B2 (en)
JPS6222414B2 (en)
JPS6160386B2 (en)
JPS623375B2 (en)
JPS6160383B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6223252B2 (en)
JPS6160384B2 (en)
JPS6222419B2 (en)
JPS6222420B2 (en)
JPS6160385B2 (en)
JPH0230459B2 (en) GASUKENCHISOSHI
JPS6160381B2 (en)
JPS6222418B2 (en)
JPS6155068B2 (en)
JPS6160380B2 (en)
JPS6156789B2 (en)
JPH027025B2 (en)
JPS6160382B2 (en)
JPS6160377B2 (en)
JPS6160379B2 (en)
JPH0159542B2 (en)
JPS6153658B2 (en)