【発明の詳細な説明】[Detailed description of the invention]
本発明は可燃性ガス検知素子、特にスピネル型
の結晶構造を有し、それ自身で可燃性(還元性)
ガスに対する検知能力を有する、リチウムフエラ
イト(LiFe5O8)を感応体材料とした可燃性ガス
検知素子に関するものである。
近年、可燃性ガス検知素子材料について種々の
研究開発がなされている。その代表的なものとし
ては酸化第二錫(SnO2)や酸化亜鉛(ZnO)など
を中心としたn型の金属酸化物を用いたものがあ
る。しかし、それを実用素子として用いるために
は、これらの材料の他に増感剤として白金(Pt)
やパラジウム(Pd)などの貴金属触媒を添加し
なければならず、種々のガスによる触媒被毒が重
要な課題となつている。
最近になつて、酸化第二鉄のうち、スピネル型
の結晶構造を有するガンマ型酸化第二鉄(γ−
Fe2O3)が優れたガス感応特性を示すことが見出
され、これを感応体としたガス検知素子の開発が
進められている。
本発明はこれと並行して行なわれてきた各種ス
ピネル材料の研究から見出されたもので、
LiFe5O8と、極めて抵抗値の低い四三酸化鉄(マ
グネタイト:Fe3O4)との間に、完全連続固溶体
が形成され、このため両者間に可逆的な酸化還元
反応が存在し、結果的にLiFe5O8が可燃性ガス検
知素子材料として非常に適した物性を有している
ことに着目してなされたものである。しかも、貴
金属触媒を併用することなく、可燃性ガスに対し
実用上十分なガス感度を有するものである。
以下、実施例にもとづいて具体的について述べ
る。
実施例 1
酸化リチウム(Li2O)を10g、酸化第二鉄
(Fe2O3)を50gそれぞれ秤取し、これに水を加え
てステンレススチール製のポツト内でステンレス
スチールボールを用いて5時間混合した。この混
合物を200℃の温度で12時間乾燥させてから、有
機バインダーを用いて100〜200μの大きさの粒子
に整粒した。このようにして得られた粉体を直方
体形状に加圧成形し、空気中で1300℃の温度で2
時間焼成した。得られた焼結体はX線回折分析の
結果スピネル型の結晶構造を有するLiFe5O8であ
ることが確認された。この焼結体の表面にAuを
蒸着して一対の櫛形電極を形成し、その裏面には
白金発熱体を無機接着剤で貼りつけてヒータと
し、検知素子を作製した。この発熱体に電流を通
じ、その電流値を調節して素子の動作温度を制御
した。素体温度を350℃に保持して、そのガス感
応特性を測定した。
空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)はこの容器の中に純度99%
以上のイソブタンガスを容量比率にして
10ppm/秒の割合で流入させ、その濃度が0.05容
量%および0.5容量%に達したときに、それぞれ
測定した。測定するガス濃度を0.05容量%と0.5
容量%に選んだのは、イソブタンガスの爆発下限
界(LEL)約2%の数10分の1から数分の1の
範囲の濃度を検知するのが可燃性ガス検知素子と
して実用上必要であるからである。上述のように
して得られた作製直後の素子について、ヒータに
通電して素子温度を350℃に保持してそのガス感
応特性を測定した。その結果Raは340KΩ、Rg
(0.05%)は125KΩ、Rg(0.5%)は23KΩであつ
た。すなわち、0.05容量%と0.5容量%のガス濃
度領域の抵抗変化比は5.43である。この値は従来
の半導体式のガス検知素子では見られなかつた大
きい値である。
次に、この素子のヒータに通電して素子温度を
350℃に保持し、さらに素子側電極間に10Vの直
流電圧を印加して20時間放置した。その後先述と
同じ方法でガス感応特性を測定した結果、Raが
332KΩ、Rg(0.05%)が121KΩ、Rg(0.5%)
が22KΩ、抵抗変化比が5.50であつた。さらにこ
の素子を同様の方法で2000時間放置した後、ガス
感応特性を測定した結果、Raが350KΩ、(Rg
(0.05)が119KΩ、Rg(0.5%)が20KΩ、抵抗変
化比が5.95であつた。
以上の実験結果からわかるように、本発明によ
る素子は、実用検知濃度範囲における抵抗変化比
が大きく、したがつてガス濃度検知の定量性が非
常に良好である。また、製造直後から長期間にわ
たつてそのガス感応特性も安定している。
実施例 2
実施例1と同じように、Li2Oを10g、Fe2O3を
50gそれぞれ秤取し、これに水を加えてステンレ
ススチール製ポツト内でステンレススチールボー
ルを用いて5時間混合した。この混合物を200℃
の温度で12時間乾燥させた後、1300℃の温度で1
時間焼成した。得られた粉体はX線回折分析の結
果、スピネル型の結晶構造を有するLiFe5O8であ
ることが確認された。さらに、この粉体を粉砕し
た後、50〜100μに整粒し、トリエタノールアミ
ンを加えてペースト化した。一方、ガス検知素子
の基板として縦、横それぞれ5mm、厚み0.5mmの
アルミナ基板を用意し、この表面に0.5mm間隔に
櫛形に金ペーストを印刷し、焼付けして一対の櫛
形電極を形成した。そして、アルミナ基板の裏面
には金電極の間に市販の酸化ルテニウムのグレー
ズ抵抗体を印刷し、焼き付けして、ヒータとし
た。次に上述のペーストを基板の表面に約70μの
厚みに印刷し、室温で自然乾燥させた後、600℃
の温度で1時間通常空気中において焼き付けた。
この焼き付け工程の間でペーストが蒸発し、実用
上十分な機械的強度を有する焼結膜となつた。こ
のガス感応体の厚みは約50μであつた。
上述のようにして得られた検知素子について、
実施例1と同じ方法でガス検知特性を測定した。
実施例1では検知ガスとしてイソブタンガスを用
いたが、この実施例では市販のプロパンガス(純
度98%以上)を用いた。その特性を下表に示す。
ただし、測定時の素子温度を350℃とした。
The present invention is a combustible gas detection element, in particular, has a spinel-type crystal structure and is itself flammable (reducible).
The present invention relates to a combustible gas detection element using lithium ferrite (LiFe 5 O 8 ) as a sensitive material and having the ability to detect gas. In recent years, various research and developments have been conducted on combustible gas sensing element materials. Typical examples include those using n-type metal oxides such as stannic oxide (SnO 2 ) and zinc oxide (ZnO). However, in order to use it as a practical device, platinum (Pt) must be used as a sensitizer in addition to these materials.
It is necessary to add noble metal catalysts such as or palladium (Pd), and catalyst poisoning by various gases has become an important issue. Recently, among ferric oxides, gamma-type ferric oxide (γ-
It has been discovered that Fe 2 O 3 ) exhibits excellent gas sensitivity characteristics, and development of gas sensing elements using this as a sensitive material is progressing. The present invention was discovered through research on various spinel materials conducted in parallel with this.
A completely continuous solid solution is formed between LiFe 5 O 8 and triiron tetroxide (magnetite: Fe 3 O 4 ), which has an extremely low resistance value, and therefore a reversible redox reaction exists between the two. As a result, this study was made based on the fact that LiFe 5 O 8 has physical properties that are very suitable as a material for combustible gas sensing elements. Furthermore, it has practically sufficient gas sensitivity to combustible gas without using a noble metal catalyst. Specific details will be described below based on examples. Example 1 Weighed 10 g of lithium oxide (Li 2 O) and 50 g of ferric oxide (Fe 2 O 3 ), added water to them, and mixed them in a stainless steel pot using a stainless steel ball. Mixed for an hour. This mixture was dried at a temperature of 200° C. for 12 hours and then sized into particles with a size of 100 to 200 μ using an organic binder. The powder obtained in this way was pressure-molded into a rectangular parallelepiped shape, and was heated to 1300℃ in air.
Baked for an hour. As a result of X-ray diffraction analysis, the obtained sintered body was confirmed to be LiFe 5 O 8 having a spinel type crystal structure. Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater, thereby creating a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The element temperature was maintained at 350°C and its gas sensitivity characteristics were measured. The resistance value (Ra) in air was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value (Rg) in gas was determined by 99% purity inside
The above isobutane gas as a volume ratio
It was flowed in at a rate of 10 ppm/sec, and measurements were taken when the concentrations reached 0.05% by volume and 0.5% by volume, respectively. The gas concentration to be measured is 0.05% by volume and 0.5
The reason for choosing the volume percentage is that it is practically necessary for a combustible gas detection element to detect concentrations in the range of several tenths to several tenths of the lower explosive limit (LEL) of isobutane gas, approximately 2%. Because there is. Regarding the device immediately after fabrication obtained as described above, the heater was energized to maintain the device temperature at 350° C., and its gas sensitivity characteristics were measured. As a result, Ra is 340KΩ, Rg
(0.05%) was 125KΩ, and Rg (0.5%) was 23KΩ. That is, the resistance change ratio in the gas concentration region of 0.05% by volume and 0.5% by volume is 5.43. This value is a large value that has not been seen in conventional semiconductor gas sensing elements. Next, the heater of this element is energized to raise the element temperature.
The temperature was maintained at 350° C., and a DC voltage of 10 V was applied between the electrodes on the element side for 20 hours. After that, we measured the gas sensitivity characteristics using the same method as described above, and found that Ra was
332KΩ, Rg (0.05%) 121KΩ, Rg (0.5%)
was 22KΩ, and the resistance change ratio was 5.50. Furthermore, after leaving this element in the same manner for 2000 hours, we measured the gas sensitivity characteristics and found that Ra was 350KΩ, (Rg
(0.05) was 119KΩ, Rg (0.5%) was 20KΩ, and the resistance change ratio was 5.95. As can be seen from the above experimental results, the element according to the present invention has a large resistance change ratio in the practical detection concentration range, and therefore has very good quantitative performance in gas concentration detection. In addition, its gas sensitivity characteristics are stable over a long period of time immediately after production. Example 2 As in Example 1, 10g of Li 2 O and Fe 2 O 3 were added.
50 g of each was weighed out, water was added thereto, and the mixture was mixed for 5 hours using a stainless steel ball in a stainless steel pot. Heat this mixture to 200℃
After drying at a temperature of 12 hours, drying at a temperature of 1300℃ for 1
Baked for an hour. As a result of X-ray diffraction analysis, the obtained powder was confirmed to be LiFe 5 O 8 having a spinel crystal structure. Furthermore, after pulverizing this powder, it was sized to a size of 50 to 100 microns, and triethanolamine was added to form a paste. On the other hand, an alumina substrate with a length and width of 5 mm each and a thickness of 0.5 mm was prepared as a substrate for the gas detection element, and a pair of comb-shaped electrodes were formed by printing gold paste on the surface in a comb shape at 0.5 mm intervals and baking it. Then, a commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater. Next, print the above paste on the surface of the board to a thickness of about 70μ, dry it naturally at room temperature, and then heat it to 600℃.
Baked in normal air at a temperature of 1 hour.
During this baking process, the paste evaporated, resulting in a sintered film with sufficient mechanical strength for practical use. The thickness of this gas sensitive material was approximately 50μ. Regarding the sensing element obtained as described above,
Gas detection characteristics were measured in the same manner as in Example 1.
In Example 1, isobutane gas was used as the detection gas, but in this example, commercially available propane gas (purity of 98% or more) was used. Its characteristics are shown in the table below.
However, the element temperature during measurement was 350°C.
【表】
以上述べたように、リチウムフエライト
(LiFe5O8)を感応体とするガス検知素子は、貴金
属触媒を併用しなくても実用上十分なガス感度を
有し、しかも抵抗変化比が大きいため、すなわち
単位濃度当たりの抵抗変化量が大きいために、ガ
ス濃度検知の定量性が非常に大きいという特徴も
兼ね備えている。また、あわせて安定した寿命特
性を示すものである。
実施例では出発原料としていずれの場合も酸化
物を用いたが、最終的にリチウムフエライトにな
るものであればよく、特に出発原料を限定するも
のではない。また、検知ガスとしてイソブタンガ
ス、プロパンガスを用いたが、エタンやブタン、
水素などの一般の可燃性ガスに対しても本発明が
有効であることはいうまでもない。さらに、この
素子の特性を向上させるために、あるいは目的に
応じたより適した特性を得るために他の成分を添
加含有させることももちろん可能である。
以上、本発明による素子は感応体にリチウムフ
エライト(LiFe5O8)を用いることにより、ガス
感度ならびに抵抗変化比が大きく、かつ長期安定
性の優れたガス検知素子を提供し得るものであ
る。[Table] As mentioned above, a gas detection element using lithium ferrite (LiFe 5 O 8 ) as a sensitizer has sufficient gas sensitivity for practical use even without the use of a noble metal catalyst, and also has a low resistance change ratio. Since it is large, that is, the amount of change in resistance per unit concentration is large, it also has the characteristic of being extremely quantitative in gas concentration detection. Additionally, it exhibits stable life characteristics. In the examples, oxides were used as starting materials in all cases, but the starting materials are not particularly limited, as long as they can eventually become lithium ferrite. In addition, isobutane gas and propane gas were used as detection gases, but ethane, butane,
It goes without saying that the present invention is also effective for general combustible gases such as hydrogen. Furthermore, it is of course possible to add and contain other components in order to improve the characteristics of this element or to obtain more suitable characteristics depending on the purpose. As described above, by using lithium ferrite (LiFe 5 O 8 ) as a sensitive material, the element according to the present invention can provide a gas sensing element with high gas sensitivity and resistance change ratio, and excellent long-term stability.