JPS6129663B2 - - Google Patents

Info

Publication number
JPS6129663B2
JPS6129663B2 JP17634280A JP17634280A JPS6129663B2 JP S6129663 B2 JPS6129663 B2 JP S6129663B2 JP 17634280 A JP17634280 A JP 17634280A JP 17634280 A JP17634280 A JP 17634280A JP S6129663 B2 JPS6129663 B2 JP S6129663B2
Authority
JP
Japan
Prior art keywords
gas
sensitivity
additives
mol
combustible gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17634280A
Other languages
Japanese (ja)
Other versions
JPS5798852A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Seiichi Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17634280A priority Critical patent/JPS5798852A/en
Publication of JPS5798852A publication Critical patent/JPS5798852A/en
Publication of JPS6129663B2 publication Critical patent/JPS6129663B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は可燃性ガス検知素子に関するもので、
スピネル型の結晶構造を有し、それ自身では可燃
性ガスに対する検知能力が十分でないカドミウム
フエライト(CdFe2O4)に種々の添加物を加える
ことによつて感度を増大ならしめ、且つ応答復帰
特性を大きく改善した可燃性ガス検知素子を提供
するものである。 近年、可燃性ガス検知素子材料について種々の
研究開発がなされている。その代表的なものとし
ては酸化第二錫(SnO2)や酸化亜鉛(ZnO)など
を中心としたn型の金属酸化物を用いたものがあ
る。しかし、それを実用素子として用いるために
は、これらの材料の他に増感剤として白金(Pt)
やパラジウム(Pd)などの貴金属触媒を添加し
なければならず、種々のガスによる触媒被毒が重
要な課題となつている。 最近になつて、酸化第二鉄のうち、スピネル型
の結晶構造を有するガンマ型酸化第二鉄(γ―
Fe2O3)が優れたガス感応特性を示すことが見出
され、これを感応体としたガス検知素子の開発が
進められている。 また、これと並行して一連の各種スピネル系材
料のガス感応特性の研究が進められており、その
結果、一般式がCd1-xFe2+xO4(0.20≦x≦0.85)
で表わされる立方晶系のスピネル相を持つ鉄過カ
ドミウムフエライトを主成分とするものが大きな
ガス感応特性を示すことも知られている。しかし
ながら、化学量論組成のカドミウムフエライト
(CdFe2O4)においては、ガス感度が小さく実用素
子として供し得るには満足出来るものではなかつ
た。具体的に述べると、通常の空気中における感
応体の抵抗値とイソブタンガス0.2%の雰囲気中
における抵抗値との比(ガス感度)はせいぜい2
程度のものであり、この値は実用上から見て必ず
しも十分なガス感度とは云えなかつた。 本発明は、この点を改善した可燃性ガス検知素
子を提供するものであり、CdFe2O4に添加物とし
て、Zn,Sn,Ti及びWのうち少なくとも1つを
それぞれZnO,SnO2,TiO2,WO3に換算して添
加物の総量で0.5〜50モル%含んだものを感応体
として用いることにより、実用上十分な感度を有
し、かつガス検知素子の一つの極めて重要な特性
要因である応答復帰特性を著しく改善した素子を
提供し得るものである。 以下、本発明の可燃性ガス検知素子を実施例に
基いて具体的に説明する。 〔実施例 1〕 酸化カドミウム(CdO)を13g、酸化第二鉄
(Fe2O3)を22g及び酸化亜鉛(ZnO)を5g、そ
れぞれ秤取し、これに水を加えてステンレススチ
ール製のポツト内でステンレススチールボールを
用いて5時間混合した。次にこの混合物200℃の
温度で12時間乾燥させてから、有機バインダーを
用いて100〜200μの大きさの粒子に整粒した。こ
のようにして得られた粉体を直方体形状に加圧成
形し、空気中で1100℃の温度で2時間焼成した。
この焼結体の表面にAuを蒸着して一対の櫛形電
極を形成し、その裏面には白金発熱体を無機接着
剤で貼りつけてヒータとし、検知素子を作製し
た。この発熱体に電流を通じ、その電流値を調節
して素子の動作温度を制御した。素体温度を350
℃に保持して、そのガス感応特性を測定した。 空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)はこの容器の中に純度99%
以上のイソブタンガスを容量比率にして
10ppm/秒の割合で流入させ、その濃度が0.05容
量%および0.5容量%に達したときに、それぞれ
測定した。測定するガス濃度を0.05容量%と0.5
容量%に選んだのは、イソブタンガスの爆発下限
界(LEL)約2%の数10分の1から数分の1の
範囲の濃度を検知するのが可燃性ガス検知素子と
して実用上必要であるからである。 このようにして得られた作製直後の素子につい
て、ヒータに通電して素子温度を350℃に保持し
てそのガス感応特性を測定した。その結果Raは
320KΩ・Rg(0.05%)は88KΩ、Rg(0.5%)は
18KΩであつた。すなわち、0.05容量%と0.5容量
%のガス濃度領域の抵抗変化比は4.89である。こ
の値は従来の半導体式のガス検知素子では見られ
なかつた大きい値である。またガス感度(Raと
Rgとの比)もそれぞれ3.6,17.8と大きく実用上
十分なものを有している。 一方、一般のガス検知素子において、上述の検
知濃度範囲における抵抗変化比やガス感度と並ん
で重要な特性要因に応答復帰特性がある。これは
ガスをできるだけ早く検知するという点とメータ
等に応用した場合、その測定間隔をできるだけ短
くしたいという観点から、できるだけ早い応答復
帰特性が望まれるからである。ここでは便宜上応
答時間T1、復帰時間T2を次のように定義して評
価した。すなわち、0.1容量%のイソブタンガス
の雰囲気にある測定容器の中に検知素子をすばや
く挿入した場合、0.05容量%のイソブタンガス中
における抵抗値Rg(0.05)(本実施例では88K
Ω)に至るまでの時間を応答時間T1とし、また
この状態から通常の空気中に戻した場合、Ra
(本実施例では320KΩ)の90%に至るまでの時間
を復帰時間T2とした。このような定義に基づい
て測定した結果、本実施例においてはT1=2.4
秒、T2=11.7秒であつた。これはZnOを添加せず
に同じような実験した結果のT1=9.2秒、T2
39.6秒に比べてはるかに良好な応答復帰特性であ
ることがわかる。これは応用面で極めて有効なも
のである。 このように、CdFe2O4にZnOを加えることによ
つて抵抗変化比(Rg(0.05%)/Rg(0.5%))
および感度を増大ならしめ、且つ応答復帰特性を
大幅に改善できることがわかる。 次に、第2の実施例で、添加物の組み合わせ及
び添加量について、その効果を具体的に示す。 〔実施例 2〕 CdOを26g、Fe2O3を44g秤取し、さらに
ZnO、酸化第二錫SnO2、酸化チタンTiO2および
酸化タングステンWO3をその組み合せ、添加量
を種々変えて秤取し、それぞれを上述のCdO,
Fe2O3に加え、これらにそれぞれ水を加えてステ
ンレススチール製ポツト内でステンレススチール
ボールを用いて5時間混合した。これらの混合物
を200℃の温度で12時間乾燥させた後、1100℃の
温度で2時間焼成した。さらに、この粉体を粉砕
した後、50〜100μに整粒し、トリエタノールア
ミンを加えてペースト化した。一方、ガス検知素
子の基板として縦、横それぞれ5mm厚み0.5mmの
アルミナ基板を用意し、この表面に0.5mmの間隔
に櫛形に金ペーストを印刷し、焼付けして一対の
櫛形電極を形成した。そして、アルミナ基板の裏
面には金属極の間に市販の酸化ルテニウムのグレ
ーズ抵抗体を印刷し、焼き付けして、ヒータとし
た。次に上述のベーストを基板の表面に約70μの
厚みに印刷し、室温で自然乾燥させた後、600℃
の温度で1時間通常空気中において焼き付けた。
この焼き付け工程の間でペーストが蒸発し、実用
上十分な機械的強度を有する焼結膜となつた。こ
のガス感応体の厚みは約50μであつた。 上述のようにして得られた各検知素子につい
て、実施例1と同じ方法でガス検知特性を測定し
た。実施例1では検知ガスとしてイソブタンガス
を用いたが、この実施例では市販のプロパンガス
(純度98%以上)を用いた。その特性を次表に示
す。ただし、測定時の素子温度を350℃とした。
The present invention relates to a combustible gas detection element,
By adding various additives to cadmium ferrite (CdFe 2 O 4 ), which has a spinel-type crystal structure and does not have sufficient detection ability for combustible gases on its own, the sensitivity is increased and the response recovery characteristics are improved. The object of the present invention is to provide a combustible gas detection element with greatly improved characteristics. In recent years, various research and developments have been conducted on combustible gas sensing element materials. Typical examples include those using n-type metal oxides such as stannic oxide (SnO 2 ) and zinc oxide (ZnO). However, in order to use it as a practical device, platinum (Pt) must be used as a sensitizer in addition to these materials.
It is necessary to add noble metal catalysts such as or palladium (Pd), and catalyst poisoning by various gases has become an important issue. Recently, among ferric oxides, gamma-type ferric oxide (γ-
It has been discovered that Fe 2 O 3 ) exhibits excellent gas sensitivity characteristics, and development of gas sensing elements using this as a sensitive material is progressing. In addition, in parallel with this, research on the gas sensitivity characteristics of a series of various spinel materials is progressing, and as a result, the general formula is Cd 1-x Fe 2+x O 4 (0.20≦x≦0.85)
It is also known that ferrite whose main component is iron percadmium ferrite with a cubic spinel phase represented by , exhibits great gas sensitivity characteristics. However, cadmium ferrite (CdFe 2 O 4 ) having a stoichiometric composition has low gas sensitivity and is not satisfactory for use as a practical device. To be more specific, the ratio of the resistance value of the sensitive material in normal air to the resistance value in an atmosphere containing 0.2% isobutane gas (gas sensitivity) is at most 2.
This value could not necessarily be said to be sufficient gas sensitivity from a practical point of view. The present invention provides a combustible gas detection element that improves this point, and in which at least one of Zn, Sn, Ti, and W is added to CdFe 2 O 4 as an additive. 2.By using a sensitizer containing 0.5 to 50 mol% of additives in terms of WO 3 in total, it has sufficient sensitivity for practical use and is one of the extremely important characteristic factors of gas detection elements. This makes it possible to provide an element with significantly improved response recovery characteristics. Hereinafter, the combustible gas detection element of the present invention will be specifically explained based on Examples. [Example 1] Weigh out 13 g of cadmium oxide (CdO), 22 g of ferric oxide (Fe 2 O 3 ), and 5 g of zinc oxide (ZnO), add water to them, and place them in a stainless steel pot. Mixed in a stainless steel bowl for 5 hours. Next, this mixture was dried at a temperature of 200° C. for 12 hours, and then sized into particles with a size of 100 to 200 μ using an organic binder. The powder thus obtained was pressure-molded into a rectangular parallelepiped shape and fired in air at a temperature of 1100° C. for 2 hours.
Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater, thereby creating a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. Change the body temperature to 350
The gas sensitivity characteristics were measured while maintaining the temperature at ℃. The resistance value (Ra) in air was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value (Rg) in gas was determined by 99% purity inside
The above isobutane gas as a volume ratio
It was flowed in at a rate of 10 ppm/sec, and measurements were taken when the concentrations reached 0.05% by volume and 0.5% by volume, respectively. The gas concentration to be measured is 0.05% by volume and 0.5
The reason for choosing the volume percentage is that it is practically necessary for a combustible gas detection element to detect concentrations in the range of several tenths to several tenths of the lower explosive limit (LEL) of isobutane gas, approximately 2%. Because there is. Regarding the device thus obtained immediately after fabrication, the heater was energized to maintain the device temperature at 350° C., and its gas sensitivity characteristics were measured. As a result, Ra is
320KΩ・Rg (0.05%) is 88KΩ, Rg (0.5%) is
It was 18KΩ. That is, the resistance change ratio in the gas concentration region of 0.05% by volume and 0.5% by volume is 4.89. This value is a large value that has not been seen in conventional semiconductor gas sensing elements. Also, gas sensitivity (Ra and
Rg) are 3.6 and 17.8, respectively, which are sufficient for practical use. On the other hand, in a general gas sensing element, the response return characteristic is an important characteristic factor along with the resistance change ratio and gas sensitivity in the above-mentioned detection concentration range. This is because response recovery characteristics as quick as possible are desired from the viewpoint of detecting gas as quickly as possible and, when applied to a meter, etc., from the viewpoint of wanting to shorten the measurement interval as much as possible. Here, for convenience, response time T 1 and recovery time T 2 were defined and evaluated as follows. In other words, when the sensing element is quickly inserted into a measurement container in an atmosphere of 0.1% by volume isobutane gas, the resistance value Rg (0.05) in 0.05% by volume isobutane gas (88K in this example)
Ω) is defined as the response time T 1 , and when returning to normal air from this state, Ra
The time taken to reach 90% of the resistance (320KΩ in this example) was defined as the recovery time T2 . As a result of measurement based on this definition, in this example T 1 = 2.4
seconds, T 2 =11.7 seconds. This is the result of a similar experiment without adding ZnO, with T 1 = 9.2 seconds and T 2 =
It can be seen that the response return characteristic is much better than that of 39.6 seconds. This is extremely effective from an applied perspective. In this way, by adding ZnO to CdFe 2 O 4 , the resistance change ratio (Rg (0.05%) / Rg (0.5%))
It can be seen that the sensitivity can be increased and the response return characteristic can be significantly improved. Next, in a second example, the effects of combinations and amounts of additives will be specifically shown. [Example 2] 26g of CdO and 44g of Fe 2 O 3 were weighed out, and
ZnO, stannic oxide SnO 2 , titanium oxide TiO 2 and tungsten oxide WO 3 were weighed in various combinations and added in different amounts, and each of the above-mentioned CdO,
In addition to Fe 2 O 3 , water was added to each of these and mixed for 5 hours using a stainless steel bowl in a stainless steel pot. These mixtures were dried at a temperature of 200°C for 12 hours and then fired at a temperature of 1100°C for 2 hours. Furthermore, after pulverizing this powder, it was sized to a size of 50 to 100 microns, and triethanolamine was added to form a paste. On the other hand, an alumina substrate with a thickness of 5 mm and a thickness of 0.5 mm was prepared as a substrate for the gas detection element, and a pair of comb-shaped electrodes were formed by printing gold paste on the surface in a comb shape at 0.5 mm intervals and baking it. A commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the metal electrodes and baked to form a heater. Next, print the base plate described above to a thickness of about 70μ on the surface of the substrate, air dry it at room temperature, and then heat it to 600℃.
Baked in normal air at a temperature of 1 hour.
During this baking process, the paste evaporated, resulting in a sintered film with sufficient mechanical strength for practical use. The thickness of this gas sensitive body was approximately 50μ. The gas detection characteristics of each of the detection elements obtained as described above were measured in the same manner as in Example 1. In Example 1, isobutane gas was used as the detection gas, but in this example, commercially available propane gas (purity of 98% or more) was used. Its characteristics are shown in the table below. However, the element temperature during measurement was 350°C.

【表】 表において欄外に※印を付けたものは、添加物
総量が特許請求の範囲に記載された量に満たない
もの(No.1,2)、あるいは超えるもの(No.12〜
16)であり、本発明の効果を明確にするための比
較例である。すなわち、表においてNo.1,2のも
のは添加物総量が0.5モル%未満のものであり、
感度も小さく、また応答復帰特性も悪い。ところ
が添加物総量が0.5モル%以上になると、添加物
が単一あるいは複数に拘らず添加効果が顕著に現
われ、感度が増大し、応答復帰特性も極めて良好
になる(No.3〜11)。一方、添加物総量が50モル
%を超えると逆に感度が低下し、また応答復帰特
性も悪化する(No.12〜16)。 上記したように、カドミウムフエライト
(CdFe2O4)に添加物としてZn,Sn,TiおよびW
のうち少なくとも1つが酸化物ZnO,SnO2
TiO2およびWO3に換算して添加物の総量で0.5〜
50モル%含むものをガス感応体として用いた本発
明の可燃性ガス検知素子は、実用上十分なガス感
度を有し、且つ応答復帰特性に極めて優れた特性
を発揮するものである。 なお、本発明において、添加物の総量を0.5モ
ル%から50モル%に限定したのは、表に見られる
様に0.5モル%未満ではその添加効果がなく、ま
た50モル%を越えると感度が低下し応答し応答復
帰特性も改善されないためである。 実施例1においては感応体が焼結体のもの、ま
た実施例2においては感応体が焼結膜のものにつ
いてそれぞれ述べたが、両実施例の内容からわか
るように、感応体が焼結体、焼結膜のいずれの場
合においても本発明による効果は有効である。 また、実施例では、出発原料としていずれの場
合も酸化物を用いたが、最終的にカドミウムフエ
ライトとZn,Sn,TiおよびWが含有されている
ものであればよく、特に出発原料を限定するもの
ではない。また、検知ガスとしてイソブタンガ
ス・プロパンガスを用いたが、エタンやブタン、
水素などの一般の可燃性ガスに対しても本発明が
有効であることはいうまでもない。さらに、この
素子の特性をさらに向上させるために、あるいは
目的に応じたより適した特性を得るために他の成
分を添加含有させることももちろん可能である。 以上の説明から明らかなように、本発明はカド
ミウムフエライト(CdFe2O4)に添加物として、
Zn,Sn,TiおよびWも加えたものを感応体に用
いることにより、ガス感度や応答復帰特性の極め
て優れた可燃性ガス検知素子を提供し得るもので
ある。
[Table] Items marked with * in the margin of the table are those in which the total amount of additives is less than the amount stated in the claims (No. 1, 2) or exceeds (No. 12 to
16), which is a comparative example for clarifying the effects of the present invention. In other words, No. 1 and 2 in the table have a total additive content of less than 0.5 mol%,
Sensitivity is low, and response recovery characteristics are also poor. However, when the total amount of additives is 0.5 mol % or more, the effect of addition becomes noticeable regardless of whether one or more additives are used, sensitivity increases, and response return characteristics become extremely good (Nos. 3 to 11). On the other hand, when the total amount of additives exceeds 50 mol%, the sensitivity decreases and the response return characteristics also deteriorate (Nos. 12 to 16). As mentioned above, Zn, Sn, Ti and W are added to cadmium ferrite (CdFe 2 O 4 ) as additives.
At least one of them is an oxide ZnO, SnO 2 ,
From 0.5 to the total amount of additives in terms of TiO 2 and WO 3
The combustible gas detection element of the present invention using a gas sensitive material containing 50 mol% has practically sufficient gas sensitivity and exhibits extremely excellent response recovery characteristics. In addition, in the present invention, the total amount of additives is limited from 0.5 mol% to 50 mol%, as shown in the table, there is no effect of addition below 0.5 mol%, and when it exceeds 50 mol%, sensitivity decreases. This is because the response is degraded and the response return characteristic is not improved. In Example 1, the sensitive body is a sintered body, and in Example 2, the sensitive body is a sintered film, but as can be seen from the contents of both Examples, the sensitive body is a sintered body, The effects of the present invention are effective in any case of sintered films. In addition, in the examples, oxides were used as starting materials in all cases, but any material that ultimately contains cadmium ferrite and Zn, Sn, Ti, and W may be used, and the starting materials are particularly limited. It's not a thing. In addition, isobutane gas and propane gas were used as detection gases, but ethane, butane,
It goes without saying that the present invention is also effective for general combustible gases such as hydrogen. Furthermore, it is of course possible to add and contain other components in order to further improve the characteristics of this element or to obtain more suitable characteristics depending on the purpose. As is clear from the above description, the present invention uses cadmium ferrite (CdFe 2 O 4 ) as an additive.
By using a sensor containing Zn, Sn, Ti, and W, it is possible to provide a combustible gas detection element with extremely excellent gas sensitivity and response recovery characteristics.

Claims (1)

【特許請求の範囲】 1 感応体がカドミウムフエライト(CdFe2O4
と、添加物としてZn,Sn,Ti及びWのうち少な
くとも1つがそれぞれ、ZnO,SnO2,TiO2
WO3に換算して添加物の総量で0.5〜50モル%含
むことを特徴とする可燃性ガス検知素子。 2 特許請求の範囲第1項の記載において、感応
体が焼結膜または焼結体であり、これに1対の電
極が付与されており、この電極間の抵抗値の変化
で可燃性ガスを検知することを特徴とする可燃性
ガス検知素子。
[Claims] 1. The sensitizer is cadmium ferrite (CdFe 2 O 4 )
and at least one of Zn, Sn, Ti and W as additives, respectively ZnO, SnO 2 , TiO 2 ,
A combustible gas detection element characterized by containing 0.5 to 50 mol% of additives in total in terms of WO3 . 2. In the statement of claim 1, the sensitive body is a sintered film or a sintered body, and a pair of electrodes are attached to the sensitive body, and combustible gas is detected by a change in resistance value between the electrodes. A combustible gas detection element characterized by:
JP17634280A 1980-12-12 1980-12-12 Detecting element for inflammable gas Granted JPS5798852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17634280A JPS5798852A (en) 1980-12-12 1980-12-12 Detecting element for inflammable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17634280A JPS5798852A (en) 1980-12-12 1980-12-12 Detecting element for inflammable gas

Publications (2)

Publication Number Publication Date
JPS5798852A JPS5798852A (en) 1982-06-19
JPS6129663B2 true JPS6129663B2 (en) 1986-07-08

Family

ID=16011903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17634280A Granted JPS5798852A (en) 1980-12-12 1980-12-12 Detecting element for inflammable gas

Country Status (1)

Country Link
JP (1) JPS5798852A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4884906A (en) * 1987-02-27 1989-12-05 Max, Co., Ltd. Serial printer with a single type wheel

Also Published As

Publication number Publication date
JPS5798852A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
JPS5853862B2 (en) Flammable gas detection element
GB1565554A (en) Humidity sensors
US4045764A (en) Gas-sensing material
EP0022369B1 (en) Combustible gas detecting elements
US5051718A (en) Thermistor element and gas sensor using the same
JPS6129663B2 (en)
JPS6129661B2 (en)
EP0023216B1 (en) An oxygen-sensitive element and a method of detecting oxygen concentration
JPS6153658B2 (en)
JPS59155102A (en) Moisture sensitive element
EP0115953A2 (en) Gas sensor
JPS6222417B2 (en)
JPS6222414B2 (en)
JPS6245495B2 (en)
JPS6223252B2 (en)
JPS6160386B2 (en)
JPS623375B2 (en)
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6147548A (en) Gas detection element
JPS6160383B2 (en)
JPS6222420B2 (en)
JPS6155068B2 (en)
JPH027025B2 (en)
JPS6160384B2 (en)
JPS6222419B2 (en)