JPS6129661B2 - - Google Patents

Info

Publication number
JPS6129661B2
JPS6129661B2 JP15184280A JP15184280A JPS6129661B2 JP S6129661 B2 JPS6129661 B2 JP S6129661B2 JP 15184280 A JP15184280 A JP 15184280A JP 15184280 A JP15184280 A JP 15184280A JP S6129661 B2 JPS6129661 B2 JP S6129661B2
Authority
JP
Japan
Prior art keywords
gas
additives
combustible gas
volume
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15184280A
Other languages
Japanese (ja)
Other versions
JPS5774647A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Seiichi Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15184280A priority Critical patent/JPS5774647A/en
Publication of JPS5774647A publication Critical patent/JPS5774647A/en
Publication of JPS6129661B2 publication Critical patent/JPS6129661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は可燃性ガス検知素子、特にスピネル型
の結晶構造を有し、それ自身で可燃性(還元性)
ガスに対する検知能力を有する、リチウムフエラ
イト(LiFe5O8)に添加物を加えることによつ
て、感度を増大ならしめ、且つ応答復帰特性を大
きく改善した可燃性ガス検知素子に関するもので
ある。 近年、可燃性ガス検知素子について種々の研究
開発がなされている。その代表的なものとしては
酸化第二錫(SnO2)や酸化亜鉛(ZnO)などを中
心としたn型の金属酸化物を用いたものがある。
しかし、それを実用素子として用いるためには、
これらの材料の他の増感剤として白金(Pt)やパ
ラジウム(Pd)などの貴金属触媒を添加しなけ
ればならず、種々のガスによる触媒被毒が重要な
課題となつている。 最近になつて、酸化第二鉄のうち、スピネル型
の結晶構造をするガンマ型酸化第二鉄(γ―
Fe2O3)が優れたガス感応特性を示すことが見出
され、これを感応体としたガス検知素子の開発が
進められている。 本発明はこれと並行して行なわれてきた各種ス
ピネル材料及び諸特性を改善する種々の添加物の
研究から見出されたもので、貴金属触媒を併用す
ることなく、可燃性ガスに対し実用上十分なガス
感度ならびに応答復帰特性を有するものである。 以下、実施例にもとづいて具体的について述べ
る。 〔実施例 1〕 酸化リチウム(Li2O)を3g、酸化第二鉄
(Fe2O3)を108g及び酸化亜鉛(ZnO)を7gそ
れぞれ秤取し、これに水を加えてステンレススチ
ール製のポツト内でステンレススチールを用いて
5時間混合した。この混合物を200℃の温度で12
時間乾燥させてから、有機バインダーを用いて
100〜200μの大きさの粒子に整粒した。このよう
にして得られた粉体を直方体形状に加圧成形し、
空気中で1100℃の温度で2時間焼成した。この焼
結体の表面にAuを蒸着して一対の櫛形電極を形
成し、その裏面には白金発熱体を無機接着剤で貼
りつけてヒータとし、検知素子を作製した。この
発熱体に電流を通じ、その電流値を調節して素子
の動作温度を制御した。素体温度を350℃に保持
して、そのガス感応特性を測定した。空気中にお
ける抵抗値(Ra)については、乾燥した空気が
乱流のできない程度にゆつくり撹拌されている容
積50の測定容器中で測定し、ガス中での抵抗値
(Rg)はこの容器の中に純度99%以上のイソブタ
ンガスを容量比率にして10ppm/秒の割合で流
入させ、その濃度が0.05容量%および0.5容量%
に達したときに、それぞれ測定した。測定するガ
ス濃度を0.05容量%と0.5容量%に選んだのは、
イソブタンガスの爆発下限界(LEL)約2%の
数10分の1から数分の1の範囲の濃度を検知する
のが可燃性ガス検知素子として実用上必要である
からである。上述のようにして得られた作製直後
の素子について、ヒータに通電して素子温度を
350℃に保持してそのガス感応特性を測定した。
その結果Raは420KΩ,Rg(0.05%)はは98K
Ω,Rg(0.5%)は18KΩであつた。すなわち、
0.05容量%と0.5容量%のガス濃度領域の抵抗変
化比は5.44である。この値は従来の半導体式のガ
ス検知素子では見られなかつた大きい値である。
またガス感度(RaとRgとの比)もそれぞれ4.3,
23と大きく実用上十分なものを有していた。 一方、一般のガス検知素子において、上述の検
知濃度範囲における抵抗変化比やガス感度と並ん
で重要な特性要因に応答復帰特性がある。これは
ガスをできるだけ早く検知するという点とメータ
等に応用した場合、その測定間隔をできるだけ短
くしたいという観点から、できるだけ早い応答復
帰特性が望まれるからである。ここでは便宜上応
答時間T1、復帰時間T2を次のように定義して評
価した。すなわち、0.1容量%のイソプタンガス
の雰囲気にある測定容器の中に、検知素子をすば
やく挿入した場合、0.05容量%のイソブタンガス
中における抵抗値Rg(0.05)(本実施例では98K
Ω)に至るまでの時間を応答時間T1とし、また
この状態から通常の空気中に戻した場合、Ra
(本実施例では420KΩ)の90%に至るまでの時間
を復帰時間T2とした。このような定義に基づい
て測定した結果、本実施例においてはT1=2.6
秒、T2=12.4秒であつた。これはZnOを添加せず
に同じような実験をした結果のT1=8.7秒、T2
37.3秒に比べてはるかに良好な応答復帰特性であ
ることがわかる。これは応用面で極めて有効なも
のである。 このようにLiFe5O3にZnOを加えることによつ
て、抵抗変化比(Rg(0.05%)/Rg(0.5%)を
何ら損うことなく、感度を増大ならしめ、且つ応
答復帰特性を大幅に改善することができることが
わかる。次にこれらの添加物の組み合わせ、及び
添加量について、その効果を具体的に次の実施例
で示す。 〔実施例 2〕 LiO2を8g、Fe2O3を108gを秤取し、さらに
ZnO、酸化第二錫SnO2、酸化チタンTiO2および
酸化タングステンWO3をその組み合せ、添加量
を種々変えて秤取し、とれぞれを上述のLi2O,
Fe2O3に加え、これらにそれぞれ水を加えてステ
ンレススチール製ポツト内でステンレススチール
ボールを用いて5時間混合した。これらの混合物
を200℃の温度で12時間乾燥させた後、1100℃の
温度で2時間焼成した。さらに、この粉体を粉砕
した後、50〜100μに整流し、トリエタノールア
ミンを加えてペースト化した。一方、ガス検知素
子の基板として縦、横それぞれ5mm、厚み0.5mm
のアルミナ基板を用意し、この表面に0.5mmの間
隔に櫛形に金ペーストを印刷し、焼付けして一対
の櫛形電極を形成した。そして、アルミナ基板の
裏面には金電極の間に市販の酸化ルテニウムのグ
レーズ抵抗体を印刷し、焼き付けして、ヒータと
した。次に上述のペーストを基板の表面に約70μ
の厚みに印刷し、室温で自然乾燥させた後、600
℃の温度で1時間通常空気中において焼き付け
た。この焼き付け工程の間でペーストが蒸発し、
実用上十分な機械的強度を有する焼結膜となつ
た。このガス感応体の厚みは約50μであつた。 上述のようにして得られた各検知素子につい
て、実施例1と同じ方法でガス検知特性を測定し
た。実施例1では検知ガスとしてイソブタンガス
を用いたが、この実施列では市販のプロパンガス
(純度98%以上)を用いた。その特性を第1表に
示す。ただし、測定時の素子温度を350℃とし
た。
The present invention is a flammable gas detection element, in particular, which has a spinel-type crystal structure and is itself flammable (reducible).
This invention relates to a combustible gas detection element that has increased sensitivity and greatly improved response return characteristics by adding additives to lithium ferrite (LiFe 5 O 8 ), which has the ability to detect gas. In recent years, various research and developments have been made on combustible gas detection elements. Typical examples include those using n-type metal oxides such as stannic oxide (SnO 2 ) and zinc oxide (ZnO).
However, in order to use it as a practical device,
Noble metal catalysts such as platinum (Pt) and palladium (Pd) must be added as other sensitizers to these materials, and catalyst poisoning by various gases has become an important issue. Recently, among ferric oxides, gamma-type ferric oxide (γ-
It has been discovered that Fe 2 O 3 ) exhibits excellent gas sensitivity characteristics, and development of gas sensing elements using this as a sensitive material is progressing. The present invention was discovered through research conducted in parallel with various spinel materials and various additives that improve their properties. It has sufficient gas sensitivity and response recovery characteristics. Specific details will be described below based on examples. [Example 1] 3 g of lithium oxide (Li 2 O), 108 g of ferric oxide (Fe 2 O 3 ), and 7 g of zinc oxide (ZnO) were weighed out, water was added to them, and a stainless steel plate was prepared. Mixed in a stainless steel pot for 5 hours. This mixture was heated at a temperature of 200 °C for 12
Let it dry for an hour and then use an organic binder.
The particles were sized to a size of 100 to 200μ. The powder obtained in this way is pressure-molded into a rectangular parallelepiped shape,
It was fired in air at a temperature of 1100°C for 2 hours. Au was vapor-deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater, thereby creating a sensing element. A current was passed through this heating element, and the current value was adjusted to control the operating temperature of the element. The element temperature was maintained at 350°C and its gas sensitivity characteristics were measured. The resistance value (Ra) in air was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value (Rg) in gas was determined by Isobutane gas with a purity of 99% or more is flowed into the tank at a volume ratio of 10 ppm/sec, and its concentration is 0.05% by volume and 0.5% by volume.
Measurements were taken when each was reached. The gas concentrations to be measured were chosen to be 0.05% by volume and 0.5% by volume.
This is because it is practically necessary for a combustible gas detection element to detect concentrations in the range of several tenths to several tenths of the lower explosive limit (LEL) of isobutane gas, about 2%. For the device immediately after fabrication obtained as described above, the temperature of the device is increased by energizing the heater.
The gas sensitivity characteristics were measured while maintaining the temperature at 350°C.
As a result, Ra is 420KΩ, Rg (0.05%) is 98K
Ω, Rg (0.5%) was 18KΩ. That is,
The resistance change ratio in the gas concentration region of 0.05% by volume and 0.5% by volume is 5.44. This value is a large value that has not been seen in conventional semiconductor gas sensing elements.
Also, the gas sensitivity (ratio of Ra and Rg) is 4.3 and 4.3, respectively.
23, which was large enough for practical use. On the other hand, in a general gas sensing element, the response return characteristic is an important characteristic factor along with the resistance change ratio and gas sensitivity in the above-mentioned detection concentration range. This is because response recovery characteristics as quick as possible are desired from the viewpoint of detecting gas as quickly as possible and, when applied to a meter, etc., from the viewpoint of wanting to shorten the measurement interval as much as possible. Here, for convenience, response time T 1 and recovery time T 2 were defined and evaluated as follows. In other words, when the sensing element is quickly inserted into a measurement container in an atmosphere of 0.1% by volume isobutane gas, the resistance value Rg (0.05) in 0.05% by volume isobutane gas (98K in this example)
Ω) is defined as the response time T 1 , and when returning to normal air from this state, Ra
The time taken to reach 90% of the resistance (420KΩ in this example) was defined as the recovery time T2 . As a result of measurement based on this definition, in this example T 1 = 2.6
seconds, T 2 =12.4 seconds. This is the result of a similar experiment without adding ZnO, with T 1 = 8.7 seconds and T 2 =
It can be seen that the response return characteristic is much better than that of 37.3 seconds. This is extremely effective from an applied standpoint. By adding ZnO to LiFe 5 O 3 in this way, the sensitivity can be increased without any loss in the resistance change ratio (Rg (0.05%)/Rg (0.5%)), and the response recovery characteristics can be greatly improved. It can be seen that the results can be improved.Next, the effects of combinations and amounts of these additives will be specifically shown in the following example. [Example 2] 8 g of LiO 2 and Fe 2 O 3 Weigh out 108g of
ZnO, stannic oxide SnO 2 , titanium oxide TiO 2 and tungsten oxide WO 3 were weighed in various combinations and added in various amounts, and each was added to the above-mentioned Li 2 O,
In addition to Fe 2 O 3 , water was added to each of these and mixed for 5 hours using a stainless steel bowl in a stainless steel pot. These mixtures were dried at a temperature of 200°C for 12 hours and then calcined at a temperature of 1100°C for 2 hours. Furthermore, after pulverizing this powder, it was rectified to a size of 50 to 100μ, and triethanolamine was added to form a paste. On the other hand, as a substrate for the gas detection element, the length and width are 5 mm each, and the thickness is 0.5 mm.
An alumina substrate was prepared, and a pair of comb-shaped electrodes were formed by printing comb-shaped gold paste on the surface at 0.5 mm intervals and baking it. Then, a commercially available ruthenium oxide glaze resistor was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater. Next, apply the above paste to the surface of the board by approximately 70 μm.
After printing to a thickness of 600 mm and air drying at room temperature,
Baking was carried out in normal air at a temperature of .degree. C. for 1 hour. During this baking process the paste evaporates and
The resulting sintered film has sufficient mechanical strength for practical use. The thickness of this gas sensitive material was approximately 50μ. The gas detection characteristics of each of the detection elements obtained as described above were measured in the same manner as in Example 1. In Example 1, isobutane gas was used as the detection gas, but in this example, commercially available propane gas (purity of 98% or more) was used. Its characteristics are shown in Table 1. However, the element temperature during measurement was 350°C.

【表】 以上述べたように、リチウムフエライト
(LiFe5O8)に添加物としてZn,Sn,TiおよびW
のうち少なくとも1つがそれぞれ酸化物に換算し
てZnO,SuO2,TiO2およびWO3に換算して添加
物総量で0.5〜50モル%含むものをガス感応体と
して用いた可燃性ガス検知素子は、実用上十分な
ガス感度を有し、また単位濃度当たりの抵抗変化
量が大きく、且つ応答復帰特性に極めて優れた特
性を発揮するものである。本発明において、添加
物総量を0.5モル%から50モル%に限定したの
は、第1表に見られる様に0.5%未満ではその添
加効果がなく、また50モル%を越えると感度、単
位濃度当たりの抵抗変化量が減少し、また応答復
帰特性も改善されないからである。 また実施例では出発原料としていずれの場合も
酸化物を用いたが、最終的にリチウムフエライト
とZn,Sn,TiおよびWのいずれか所定量が含有
されているものであればよく、特に出発原料を限
定するものではない。また、検知ガスとしてイソ
ブタンガス、プロパンガスを用いたが、エタンや
ブタン、水素などの一般の可燃性ガスに対しても
本発明が有効であることはいうまでもない。さら
に、この素子の特性をさらに向上させるために、
あるいは目的に応じたより適した特性を得るため
に他の成分を添加含有させることはもちろん可能
である。 以上、本発明は感応体にリチウムフエライト
(LiFe5O8)と、添加物としてZn,Sn,Tiおよび
Wの少くともいずれか含むものを用いることによ
り、ガス感度、単位濃度当たりの抵抗変化量さら
に応答復帰特性の極めて優れた素子を提供し得る
ものである。
[Table] As mentioned above, Zn, Sn, Ti, and W are added to lithium ferrite (LiFe 5 O 8 ) as additives.
A combustible gas detection element using as a gas sensitive material at least one of which contains 0.5 to 50 mol% of the total amount of additives in terms of ZnO, SuO 2 , TiO 2 and WO 3 in terms of oxides, respectively. It has a practically sufficient gas sensitivity, a large amount of change in resistance per unit concentration, and exhibits extremely excellent response recovery characteristics. In the present invention, the total amount of additives is limited from 0.5 mol% to 50 mol% because, as shown in Table 1, if it is less than 0.5%, it has no effect, and if it exceeds 50 mol%, the sensitivity and unit concentration This is because the amount of resistance change per hit decreases, and the response recovery characteristics are not improved. In addition, in the examples, oxides were used as starting materials in all cases, but any material containing lithium ferrite and a predetermined amount of any one of Zn, Sn, Ti, and W may be used, especially starting materials. It is not limited to. Further, although isobutane gas and propane gas were used as the detection gas, it goes without saying that the present invention is also effective for general flammable gases such as ethane, butane, and hydrogen. Furthermore, in order to further improve the characteristics of this element,
Alternatively, it is of course possible to add and contain other components in order to obtain more suitable characteristics depending on the purpose. As described above, the present invention improves gas sensitivity and resistance change per unit concentration by using lithium ferrite (LiFe 5 O 8 ) as a sensitive material and containing at least one of Zn, Sn, Ti, and W as an additive. Furthermore, it is possible to provide an element with extremely excellent response recovery characteristics.

Claims (1)

【特許請求の範囲】 1 感応体が、リチウムフエライト(LiFe5O8
と、添加物としてZn,Sn,Ti及びWのうち少な
くとも1つがそれぞれZnO,SnO2,TiO2,WO3
に換算して、添加物総量で0.5〜50モル%含むこ
とを特徴とする可燃性ガス検知素子。 2 感応体が焼結膜または焼結体であり、これに
一対の電極が付与されており、この電極間の抵抗
値の変化で可燃性ガスを検知することを特徴とす
る特許請求の範囲第1項記載の可燃性ガス検知素
子。
[Claims] 1. The receptor is lithium ferrite (LiFe 5 O 8 )
and at least one of Zn, Sn, Ti and W as additives, respectively ZnO, SnO 2 , TiO 2 , WO 3
A combustible gas detection element characterized in that it contains 0.5 to 50 mol% of additives in terms of total amount. 2. Claim 1, characterized in that the sensitive body is a sintered film or a sintered body, a pair of electrodes are attached to the sensitive body, and combustible gas is detected by a change in resistance value between the electrodes. The combustible gas detection element described in .
JP15184280A 1980-10-28 1980-10-28 Detecting element for inflammable gas Granted JPS5774647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15184280A JPS5774647A (en) 1980-10-28 1980-10-28 Detecting element for inflammable gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15184280A JPS5774647A (en) 1980-10-28 1980-10-28 Detecting element for inflammable gas

Publications (2)

Publication Number Publication Date
JPS5774647A JPS5774647A (en) 1982-05-10
JPS6129661B2 true JPS6129661B2 (en) 1986-07-08

Family

ID=15527472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15184280A Granted JPS5774647A (en) 1980-10-28 1980-10-28 Detecting element for inflammable gas

Country Status (1)

Country Link
JP (1) JPS5774647A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322481A1 (en) * 1983-06-22 1985-01-03 Siemens AG, 1000 Berlin und 8000 München THICK-LAYER GAS SENSOR FOR DETECTING AND MEASURING GASEOUS CARBON HYDROGEN IMPURITIES WITH DOUBLE AND TRIPLE BINDINGS, ESPECIALLY ACETYLENE, IN AIR AND A METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
JPS5774647A (en) 1982-05-10

Similar Documents

Publication Publication Date Title
JPS5853862B2 (en) Flammable gas detection element
GB1565554A (en) Humidity sensors
EP0022369B1 (en) Combustible gas detecting elements
JPS6129661B2 (en)
JPS6129663B2 (en)
JPS6153658B2 (en)
JPS6222417B2 (en)
JPS6222414B2 (en)
JPS6223252B2 (en)
JPS6160381B2 (en)
JPS6160386B2 (en)
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6160380B2 (en)
JPS6155068B2 (en)
JPS623375B2 (en)
JPH027025B2 (en)
JPS6160383B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)
JPS6222419B2 (en)
JPS6222418B2 (en)
JPS6160385B2 (en)
JPS6222420B2 (en)
JPS6160382B2 (en)
JPS6160384B2 (en)