JPH027025B2 - - Google Patents

Info

Publication number
JPH027025B2
JPH027025B2 JP54086173A JP8617379A JPH027025B2 JP H027025 B2 JPH027025 B2 JP H027025B2 JP 54086173 A JP54086173 A JP 54086173A JP 8617379 A JP8617379 A JP 8617379A JP H027025 B2 JPH027025 B2 JP H027025B2
Authority
JP
Japan
Prior art keywords
gas
detection element
gas detection
sensitivity
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54086173A
Other languages
Japanese (ja)
Other versions
JPS5610245A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Seiichi Nakatani
Michio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8617379A priority Critical patent/JPS5610245A/en
Priority to AU60017/80A priority patent/AU518932B2/en
Priority to US06/165,008 priority patent/US4359709A/en
Priority to CA000355289A priority patent/CA1152415A/en
Priority to DE8080302298T priority patent/DE3068021D1/en
Priority to EP80302298A priority patent/EP0022369B1/en
Publication of JPS5610245A publication Critical patent/JPS5610245A/en
Publication of JPH027025B2 publication Critical patent/JPH027025B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は可燃性ガス検知素子の製造方法に関す
るものである。 近年、可燃性ガス検知素子材料について種々の
研究開発が活発化してきている。これは一般家庭
を中心に、各種工場などで可燃性ガスによる爆発
事故や有毒ガスによる中毒事故が多発し、大きな
社会問題となつていることにも強く起因してい
る。特に爆発下限界(LEL)が低く、かつ比重
が空気よりも大きいため、部屋に停滞しやすいプ
ロパンガスによる事故があとを断たず、毎年多数
の死傷者を出している。 近年になつて、酸化第二錫(SnO2)やガンマ
型酸化第二鉄(γ−Fe2O3)などの金族酸化物を
用いた可燃性ガス検知素子が実用化され、ガス漏
れ警報器などに応用されている。そして、ガス漏
れなどの事態が発生してもLELに至るまでの間
に、プロパンガスの存在をいち早く検知し、爆発
を未然に防げるようになつている。 ところで、日本でもメカンガスを主成分とする
液化天然ガス(LNG)が一般家庭用として用い
られるようになり、徐々に普及して来ている。し
たがつて、このLNGの主成分であるメタンガス
を選択性よく検出するガス検知素子の要請も非常
に大きくなつてきている。 勿論、すでにメタンガスに感応するガス検知素
子は開発されてはいるが、感応体材料に増感剤と
して貴金属触媒を用いているため、種々のガスに
よる触媒被毒の問題、メタンガスに対する選択度
が小さい点、あるいは周囲湿度に対する依存性が
大きい点などの課題を抱えている。したがつて、
実用に際しては未だ不十分な特性であるのが現状
である。 本発明はこれらの諸問題を解決し得る特性を有
しているとともに、メタンガスに対しても実用上
十分大きな感度を持つたガス検知素子を提供する
ものである。メタンガスはそれ自身非常に安定な
ガスであるだけに、これに十分な感度を有する検
知素子は非常に高活性である必要がある。したが
つて、メタンガスに対して大きな感度を実現する
ためには、従来は、貴金属触媒を感応体材料に添
加して用いるか、あるいは感応体をかなり高い温
度で動作させるなどの工夫がなされてきた。しか
し、本発明による素子は貴金属触媒を一切添加す
ることなく、また比較的低い動作温度でも対メタ
ン感度の大きい素子を実現するものである。 以下、本発明の実施例に基づいて具体的に述べ
る。 実施例 1 市販の硫酸第二鉄(FeSO4・7H2O)160gを50
℃に保たれた2の純水に溶解させ、よく撹拌し
た。また、市販の塩化第二錫(SnCl4・5H2O)
80gを1の純水に溶解させ、よく撹拌した。そ
して、この溶液を硫酸第二鉄溶液に注ぎ、再び十
分撹拌した。このとき、溶液の色は濃黄色になつ
た。次に、この溶液に撹拌した状態で8規定の水
酸化アンモニウム(NH4OH)溶液を1分間に60
c.c.の割合で、溶液のPHが7になるまで滴下した。
滴下を完了してから10分間溶液温度を50℃に保つ
た後室温に戻した。この段階で茶色味がかつた黒
色の共沈物が得られた。この共沈物を吸引過の
方法で取り出し、110℃の温度で12時間乾燥させ
た。乾燥物は黒灰色の粉粒状であつた。これを、
らいかい機で2時間粉砕して、感応体原料粉とし
た。この粉体を50〜100μmに整粒した後、ポリエ
チレングリコールを加えてペースト化した。一
方、ガス検知素子の基板として、縦、横それぞれ
5mm、厚み0.5mmのアルミナ基板を用意し、この
表面に0.5mmの間隔に櫛形に金ペーストを印刷し、
焼付けて、一対の櫛形電極を形成した。そして、
アルミナ基板の裏面には金電極の間に市販の酸化
ルテニウムのグレーズヒータを印刷し、焼付け
て、ヒータとした。次に、上述のペーストを基板
の表面に約70μmの厚みに印刷し、室温で自然乾
燥させた後、650℃の温度で1時間通常空気中に
おいて焼付けた。この焼付工程でペーストが蒸発
し、実用上十分な機械的強度を有する焼結膜とな
つた。このガス感応体の厚みは約40μmであつた。 次に、ヒータに電流を流し、感応体の温度(動
作温度)を400℃に保持して、ガス感応特性を測
定した。 空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)についてはこの容器の中に
純度99%以上の被検ガスを容量比率にして
10ppm/秒の割合で流入させ、ある一定のガス濃
度に達したときに測定して、ガス感応特性を調べ
た。 測定ガスとしてメタン(CH4)、エタン
(C2H6)、プロパン(C3H8)、イソブタン(i−
C4H10)、水素(H2)およびエチルアルコール
(C2H5OH)の各ガスを用いて、それぞれ0.05%、
0.2%、1.0%のガス濃度で測定した。Raは860kΩ
であり、Rgの各ガスの濃度依存性は第1表に示
す通りであつた。 この表からわかるように、メタン、エタン、プ
ロパン、イソブタン、水素の各ガスに対して大き
な感度を持つている一方、エチルアルコールに対
しては、非常に感度が小さいことがわかる。 このように本発明の製造法による素子は、一般
の都市ガス(混合ガス)の成分として用いられて
いる、エタン、水素、イソブタンガスに対しては
勿論のこと、LPガスの主成分であるプロパン、
イソブタンガスに対しても大きな感度を有してい
る。そして、本発明の大きな特徴としては、従
来、貴金属触媒を用いない半導体式のガス検知素
子で高感度検知が困難とされていた天然ガスの主
成分であるメタンガスに対しても実用上十分な感
度を有していることである。 さらに、いまひとつ本発明の特筆すべき点は周
囲湿度依存性の小さいことである。ちなみにこの
検知素子を40℃の周囲温度雰囲気中に置き、周囲
の相対湿度を35%から95%までの範囲で変えて、
各ガス0.2%の濃度におけるRg(0.2)を測定した。
表中βHは、相対湿度35%と同じく95%におけるそ
れぞれのRg(0.2)の比を示したもので、周囲湿度
依存性の大きさを示している。表から明らかなよ
うに、被検ガスの種類によつてある程度の差はあ
るものの、非常に周囲湿度依存性が小さいことが
わかる。これは貴金属触媒を用いた従来の半導体
式のもののβHが約1.25以上であることを考慮に入
れると、本発明の有効性が大である。
The present invention relates to a method for manufacturing a combustible gas detection element. In recent years, various research and developments regarding combustible gas sensing element materials have become active. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households, but also in various factories, which have become major social problems. In particular, propane gas has a low explosive limit (LEL) and has a higher specific gravity than air, so accidents involving propane gas tend to stagnate in rooms, resulting in numerous casualties every year. In recent years, combustible gas detection elements using metal group oxides such as stannic oxide (SnO 2 ) and gamma-type ferric oxide (γ-Fe 2 O 3 ) have been put into practical use, and are used to detect gas leaks. It is applied to utensils, etc. Even in the event of a gas leak, the presence of propane gas can be quickly detected before reaching the LEL, making it possible to prevent an explosion. Incidentally, in Japan, liquefied natural gas (LNG) whose main component is mechan gas has come to be used for general household use and is gradually becoming popular. Therefore, the demand for gas detection elements that can detect methane gas, which is the main component of LNG, with high selectivity is increasing. Of course, gas detection elements that are sensitive to methane gas have already been developed, but because they use noble metal catalysts as sensitizers in the sensitive material, there are problems with catalyst poisoning by various gases, and the selectivity for methane gas is low. However, there are problems such as high dependence on the temperature and ambient humidity. Therefore,
At present, the characteristics are still insufficient for practical use. The present invention provides a gas detection element that has characteristics that can solve these problems and has a sensitivity that is sufficiently high for methane gas for practical use. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventional methods have been used such as adding a noble metal catalyst to the sensitive material or operating the sensitive material at a considerably high temperature. . However, the device according to the present invention realizes a device with high sensitivity to methane even at a relatively low operating temperature without adding any noble metal catalyst. Hereinafter, the present invention will be specifically described based on examples. Example 1 50 g of commercially available ferric sulfate (FeSO 4 7H 2 O)
It was dissolved in pure water kept at 2°C and stirred well. In addition, commercially available stannic chloride (SnCl 4.5H 2 O)
80g was dissolved in 1 pure water and stirred well. Then, this solution was poured into the ferric sulfate solution and stirred thoroughly again. At this time, the color of the solution became deep yellow. Next, 8N ammonium hydroxide (NH 4 OH) solution was added to this solution while stirring at a rate of 60% per minute.
It was added dropwise at a rate of cc until the pH of the solution reached 7.
After the dropwise addition was completed, the solution temperature was maintained at 50°C for 10 minutes and then returned to room temperature. At this stage, a brownish black coprecipitate was obtained. This coprecipitate was taken out by suction filtration and dried at a temperature of 110° C. for 12 hours. The dried material was in the form of black-gray powder. this,
The powder was pulverized for 2 hours using a grinder to obtain a reactor raw material powder. After sizing this powder to 50 to 100 μm, polyethylene glycol was added to form a paste. On the other hand, as a substrate for the gas detection element, an alumina substrate with a length and width of 5 mm and a thickness of 0.5 mm was prepared, and gold paste was printed on the surface in a comb shape at intervals of 0.5 mm.
A pair of comb-shaped electrodes were formed by baking. and,
A commercially available ruthenium oxide glaze heater was printed on the back side of the alumina substrate between the gold electrodes and baked to form a heater. Next, the above paste was printed on the surface of the substrate to a thickness of about 70 μm, air-dried at room temperature, and then baked in normal air at a temperature of 650° C. for 1 hour. The paste was evaporated during this baking process, resulting in a sintered film with sufficient mechanical strength for practical use. The thickness of this gas sensitive material was approximately 40 μm. Next, a current was applied to the heater to maintain the temperature of the sensitive body (operating temperature) at 400°C, and the gas sensitivity characteristics were measured. The resistance value in air (R a ) was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value in gas (R g ) The sample gas with a purity of 99% or more is placed in this container as a volume ratio.
The gas sensitivity characteristics were investigated by flowing in at a rate of 10 ppm/sec and measuring when a certain gas concentration was reached. Methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), isobutane (i-
C 4 H 10 ), hydrogen (H 2 ) and ethyl alcohol (C 2 H 5 OH) at 0.05% each.
Measurements were made at gas concentrations of 0.2% and 1.0%. R a is 860kΩ
The dependence of R g on the concentration of each gas was as shown in Table 1. As can be seen from this table, while it has high sensitivity to methane, ethane, propane, isobutane, and hydrogen gases, it has very low sensitivity to ethyl alcohol. In this way, the device manufactured by the manufacturing method of the present invention can be used not only for ethane, hydrogen, and isobutane gas, which are used as components of general city gas (mixed gas), but also for propane, which is the main component of LP gas. ,
It also has great sensitivity to isobutane gas. A major feature of the present invention is that it has practically sufficient sensitivity for methane gas, the main component of natural gas, which has conventionally been difficult to detect with high sensitivity using semiconductor gas detection elements that do not use precious metal catalysts. It is to have the following. Furthermore, another noteworthy point of the present invention is that it has little dependence on ambient humidity. By the way, this sensing element was placed in an ambient temperature atmosphere of 40℃, and the surrounding relative humidity was varied in the range of 35% to 95%.
R g (0.2) at a concentration of 0.2% for each gas was measured.
In the table, β H indicates the ratio of R g (0.2) at 35% and 95% relative humidity, and indicates the degree of dependence on ambient humidity. As is clear from the table, although there are some differences depending on the type of gas being tested, it can be seen that the dependence on ambient humidity is very small. This is because the effectiveness of the present invention is significant, considering that β H of conventional semiconductor type catalysts using noble metal catalysts is about 1.25 or more.

【表】 実施例 2 それぞれ市販の硫酸第二鉄(FeSO4・7H2O)、
塩化第2錫(SnCl4・5H2O)および硫酸亜鉛
(ZnSO4・7H2O)を用いて、実施例1と同じよう
な方法で、鉄イオン、錫イオンおよび亜鉛イオン
を含む水溶液を作り、これらの水溶液の混合比率
を変えてそれぞれ濃度の異る混合溶液を種々作つ
た。これらの溶液それぞれにNH4OHを用いて共
沈物を得た。そして、これらを乾燥し、粉砕して
感応体の原料粉末とした。 得られた微粉末原料を有機バインダーで100〜
200μmの大きさの粒子に整粒した。これら種々の
粉体をそれぞれ直方体形状(2×1.5×3mm3)に
400Kg/cm2の圧力で加圧成型し、空気中で800℃の
温度で1時間焼成した。この焼結体の表面にAu
を蒸着して一対の櫛形電極を形成し、その裏面に
白金発熱体を無機接着剤で貼りつけてヒータとし
て、検知素子を作製した。この発熱体に電流を通
じ、その電流値を調節して素子の動作温度を400
℃に保持して、そのガス感応特性を測定した。そ
の結果を第2表に示す。測定ガスは実施例1の場
合と同様、メタン、エタン、プロパン、イソブタ
ン、水素およびエチルアルコールの各ガスを用い
た。Rgはガス濃度が0.2%のときの値だけを示し
た。またβHについてはこれらの測定ガスの中でβH
が最も大きく出るイソブタンガスの場合の値を示
した。 第2表から明らかなように、SnおよびZnの含
有量がそれぞれSnO2、ZnOに換算して総量で0.5
モル%未満の場合には、その配合効果が見られな
い。逆に、70モル%を越える場合には、ある程度
のガス感応特性を示すものもあるものの抵抗値が
異常に低くなつたり、あるいはその値のばらつき
や、経時変化が大きくなつたりして実用に供し得
ないものになる。このような理由から、SnO2
ZnOに換算したときの配合総量は0.5〜70モル%
の範囲が望ましい。
[Table] Example 2 Commercially available ferric sulfate (FeSO 4 7H 2 O),
An aqueous solution containing iron ions, tin ions, and zinc ions was prepared in the same manner as in Example 1 using stannic chloride (SnCl 4 .5H 2 O) and zinc sulfate (ZnSO 4 .7H 2 O). By changing the mixing ratio of these aqueous solutions, various mixed solutions with different concentrations were prepared. A coprecipitate was obtained using NH 4 OH in each of these solutions. Then, these were dried and pulverized to obtain a raw material powder for the sensitive material. The obtained fine powder raw material is mixed with an organic binder to
The particles were sized to a size of 200 μm. These various powders were each shaped into a rectangular parallelepiped (2 x 1.5 x 3 mm 3 ).
It was pressure molded at a pressure of 400 kg/cm 2 and fired in air at a temperature of 800° C. for 1 hour. Au on the surface of this sintered body
was vapor-deposited to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back side of the comb-shaped electrodes with an inorganic adhesive to serve as a heater, thereby producing a sensing element. A current is passed through this heating element, and the current value is adjusted to adjust the operating temperature of the element to 400%.
The gas sensitivity characteristics were measured while maintaining the temperature at ℃. The results are shown in Table 2. As in the case of Example 1, the measurement gases used were methane, ethane, propane, isobutane, hydrogen, and ethyl alcohol. R g shows only the value when the gas concentration is 0.2%. Regarding β H , among these measurement gases, β H
The values are shown for isobutane gas, which produces the largest amount of gas. As is clear from Table 2, the content of Sn and Zn is 0.5 in total in terms of SnO 2 and ZnO, respectively.
If the amount is less than mol%, no effect of the addition will be observed. On the other hand, if it exceeds 70 mol%, some materials may exhibit gas sensitivity characteristics to some extent, but the resistance value may become abnormally low, or the value may vary greatly or change over time, making it difficult to put it to practical use. It becomes something you don't get. For this reason, SnO 2 ,
The total blend amount when converted to ZnO is 0.5 to 70 mol%
A range of is desirable.

【表】【table】

〔比較例〕[Comparative example]

市販の試薬特級の酸化第二鉄(Fe2O3)、酸化
第二錫(SnO2)および酸化亜鉛(ZnO)を用意
し、Fe2O3:SnO2:ZnO=80モル%:10モル%:
10モル%で総量が100gになるように配合し、ボ
ールミルを用いて5時間湿式混合した。そして、
これを200℃の温度で空気中にて20時間乾燥した。
この粉体を実施例2の場合と同様に、整粒、加圧
成形、焼成してガス検知素子を作製し、ガス感応
特性を調べた。400℃の動作温度でRaは785kΩで
あり、実施例2の場合の値、696kΩと大きな差
異はなかつた。しかし、メタン、エタン、プロパ
ン、イソブタンおよび水素各0.2%の濃度におけ
る抵抗値はそれぞれ656kΩ、640kΩ、630kΩ、
621kΩおよび683kΩであり、いずれのガスに対
しても非常に感度が小さかつた。 すなわち、同じ配合組成を用いて作製した素子
でも、感応体の原料粉末の差異によつて、顕著な
ガス感応特性の違いがある。この差が本発明の効
果を如実に表わしている。 以上述べたように、本発明の製造方法による可
燃性ガス検知素子は、従来、貴金属触媒を用いな
いと高感度化を実現することが困難とされていた
メタンガスをはじめ、他の可燃性ガスに対して、
大きな感度を有するものである。しかも、実用
上、誤動作の主原因と言われているアルコールに
対しては、上記の可燃性ガスに対する感度に比べ
てはるかに小さい感度しか持つていないものであ
る。すなわち、高い選択性を有しているとも言え
る。一方、誤動作のいま一つの原因でもある水蒸
気(湿度)に対する依存性も先に述べたようにき
わめて小さい。 このように本発明の製造方法によるガス検知素
子は、天然ガスの需要が拡大されつつある現在、
ガス漏れ警報器、各種厨房ユニツト、ガス防災シ
ステムなどの広い分野に大きな寄与をもたらすで
あろうと期待される。 なお、本発明の実施例においては、水溶液を作
る出発原料としてFeSO4・7H2O、ZnSO4・7H2O
およびSnCl4・5H2Oを用いたが、特にこれらに
限定されるものではなく、それぞれの金属イオン
を含む水溶液になるものであればよいことはいう
までもない。また、勿論特性をさらに改善するた
めに、錫イオンや亜鉛イオン以外の他の金属イオ
ンを付加することもなんらさしつかえない。
Prepare commercially available reagent grade ferric oxide (Fe 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide (ZnO), and prepare Fe 2 O 3 :SnO 2 :ZnO=80 mol%: 10 mol %:
They were mixed at 10 mol % in a total amount of 100 g, and wet-mixed for 5 hours using a ball mill. and,
This was dried in air at a temperature of 200°C for 20 hours.
This powder was sized, pressure-molded, and fired in the same manner as in Example 2 to prepare a gas sensing element, and its gas sensitivity characteristics were examined. At an operating temperature of 400° C., R a was 785 kΩ, which was not significantly different from the value of Example 2, which was 696 kΩ. However, the resistance values at concentrations of methane, ethane, propane, isobutane, and hydrogen at 0.2% each are 656 kΩ, 640 kΩ, 630 kΩ, respectively.
They were 621 kΩ and 683 kΩ, and had very low sensitivity to both gases. That is, even devices manufactured using the same composition have significant differences in gas sensitivity characteristics due to differences in the raw material powder of the sensor. This difference clearly represents the effect of the present invention. As described above, the combustible gas detection element produced by the manufacturing method of the present invention can be used for other combustible gases, including methane gas, for which it has been difficult to achieve high sensitivity without using a precious metal catalyst. for,
It has great sensitivity. Furthermore, the sensitivity to alcohol, which is said to be the main cause of malfunctions in practice, is much lower than the sensitivity to flammable gases mentioned above. In other words, it can be said that it has high selectivity. On the other hand, as mentioned earlier, the dependence on water vapor (humidity), which is another cause of malfunction, is extremely small. As described above, the gas detection element manufactured by the manufacturing method of the present invention can be used at present, as the demand for natural gas is increasing.
It is expected that this product will make a significant contribution to a wide range of fields such as gas leak alarms, various kitchen units, and gas disaster prevention systems. In the examples of the present invention, FeSO 4 .7H 2 O and ZnSO 4 .7H 2 O are used as starting materials for preparing aqueous solutions.
and SnCl 4 .5H 2 O were used, but the present invention is not particularly limited to these, and it goes without saying that any aqueous solution containing the respective metal ions may be used. Of course, in order to further improve the properties, metal ions other than tin ions and zinc ions may also be added.

Claims (1)

【特許請求の範囲】 1 鉄イオン、および錫イオンもしくは亜鉛イオ
ンの少なくともいずれか一方の金属イオンを含む
溶液を作り、これを共沈させて、得られた微粉末
を原料として用いて感応体を構成することを特徴
とする可燃性ガス検知素子の製造方法。 2 微粉末原料を、加圧成型し焼成して、または
ペースト化し印刷、焼付けすることにより、焼結
体または焼結膜からなる感応体とすることを特徴
とする特許請求の範囲第1項に記載の可燃性ガス
検知素子の製造方法。 3 錫もしくは亜鉛イオンの少なくともいずれか
一方の金属イオンが、感応体において酸化第二錫
(SnO2)または酸化亜鉛(ZnO)に換算して総量
で0.5〜70モル%含まれるよう、調製された溶液
を使用することを特徴とする特許請求の範囲第1
項に記載の可燃性ガス検知素子の製造方法。
[Claims] 1. A solution containing iron ions and at least one of tin ions and zinc ions is prepared, the solution is co-precipitated, and the resulting fine powder is used as a raw material to produce a sensitizer. 1. A method for manufacturing a combustible gas detection element, comprising: 2. A sensitive body consisting of a sintered body or a sintered film is obtained by press-molding and firing a fine powder raw material, or by printing and baking the paste, thereby forming a sensitive body comprising a sintered body or a sintered film. A method for manufacturing a combustible gas detection element. 3 The metal ion of at least one of tin or zinc ion was prepared so that the total amount contained in the sensitizer was 0.5 to 70 mol% in terms of stannic oxide (SnO 2 ) or zinc oxide (ZnO). Claim 1 characterized in that a solution is used.
A method for manufacturing a combustible gas detection element as described in 2.
JP8617379A 1979-07-06 1979-07-06 Manufacture of inflammable gas detecting element Granted JPS5610245A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8617379A JPS5610245A (en) 1979-07-06 1979-07-06 Manufacture of inflammable gas detecting element
AU60017/80A AU518932B2 (en) 1979-07-06 1980-07-01 Combustible gas sensor
US06/165,008 US4359709A (en) 1979-07-06 1980-07-01 Combustible gas sensor
CA000355289A CA1152415A (en) 1979-07-06 1980-07-03 Combustible gas sensor
DE8080302298T DE3068021D1 (en) 1979-07-06 1980-07-04 COMBUSTIBLE GAS DETECTING ELEMENTS
EP80302298A EP0022369B1 (en) 1979-07-06 1980-07-04 Combustible gas detecting elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8617379A JPS5610245A (en) 1979-07-06 1979-07-06 Manufacture of inflammable gas detecting element

Publications (2)

Publication Number Publication Date
JPS5610245A JPS5610245A (en) 1981-02-02
JPH027025B2 true JPH027025B2 (en) 1990-02-15

Family

ID=13879359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8617379A Granted JPS5610245A (en) 1979-07-06 1979-07-06 Manufacture of inflammable gas detecting element

Country Status (1)

Country Link
JP (1) JPS5610245A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723051A1 (en) * 1987-07-11 1989-01-19 Kernforschungsz Karlsruhe SEMICONDUCTOR FOR A RESISTIVE GAS SENSOR WITH HIGH RESPONSE SPEED
DE3723052A1 (en) * 1987-07-11 1989-01-19 Kernforschungsz Karlsruhe PRODUCTION OF INERT, CATALYTICALLY EFFECTIVE OR GAS-SENSITIVE CERAMIC LAYERS FOR GAS SENSORS
JP4608918B2 (en) * 2004-03-17 2011-01-12 Tdk株式会社 Hydrogen gas detection material and hydrogen gas sensor using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610246A (en) * 1979-07-06 1981-02-02 Matsushita Electric Ind Co Ltd Combustible gas detecting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610246A (en) * 1979-07-06 1981-02-02 Matsushita Electric Ind Co Ltd Combustible gas detecting element

Also Published As

Publication number Publication date
JPS5610245A (en) 1981-02-02

Similar Documents

Publication Publication Date Title
EP0022369B1 (en) Combustible gas detecting elements
JPH027025B2 (en)
JPS6152933B2 (en)
JPS6160381B2 (en)
JPS6160386B2 (en)
JPS6222414B2 (en)
JPS6222417B2 (en)
JPS6160380B2 (en)
JPS623375B2 (en)
JPS6222420B2 (en)
JPS6222415B2 (en)
JPS6222416B2 (en)
JPS6155068B2 (en)
JPS59107250A (en) Gas detecting element
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6160383B2 (en)
JPS6223252B2 (en)
JPS6160385B2 (en)
JPS6160382B2 (en)
JPS6160378B2 (en)
JPS6160384B2 (en)
JPS6160379B2 (en)
JPH0159542B2 (en)
JPS6222419B2 (en)
JPH0230459B2 (en) GASUKENCHISOSHI