JPS6152933B2 - - Google Patents

Info

Publication number
JPS6152933B2
JPS6152933B2 JP8617479A JP8617479A JPS6152933B2 JP S6152933 B2 JPS6152933 B2 JP S6152933B2 JP 8617479 A JP8617479 A JP 8617479A JP 8617479 A JP8617479 A JP 8617479A JP S6152933 B2 JPS6152933 B2 JP S6152933B2
Authority
JP
Japan
Prior art keywords
gas
sensitivity
temperature
methane
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8617479A
Other languages
Japanese (ja)
Other versions
JPS5610246A (en
Inventor
Yoshihiko Nakatani
Masayuki Sakai
Seiichi Nakatani
Michio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8617479A priority Critical patent/JPS5610246A/en
Priority to US06/165,008 priority patent/US4359709A/en
Priority to AU60017/80A priority patent/AU518932B2/en
Priority to CA000355289A priority patent/CA1152415A/en
Priority to EP80302298A priority patent/EP0022369B1/en
Priority to DE8080302298T priority patent/DE3068021D1/en
Publication of JPS5610246A publication Critical patent/JPS5610246A/en
Publication of JPS6152933B2 publication Critical patent/JPS6152933B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粒径が小さく、また多孔質な微細構
造、すなわち非常に比表面積の大きいガス感応体
を用いることによつて、可燃性ガス、特に従来高
感度検出がむずかしいとされてきたメタンガスに
対しても、実用上十分な感度を有する可燃性ガス
検知素子に関するものである。 近年、可燃性ガス検知素子材料について種々の
研究開発が活発化してきている。これは一般家庭
を中心に、各種工場などで可燃性ガスによる爆発
事故やあるいは有毒ガスによる中毒事故が多発
し、大きな社会問題となつていることにも強く起
因している。 ところで、日本でもメタンガスを主成分とする
液化天然ガス(LNG)が一般家庭用として用い
られるようになり、徐々に普及して来ている。し
たがつてこのLNGの主成分であるメタンガスを
選択性よく検出するガス検知素子の要請も非常に
大きくなつてきている。 勿論、すでにメタンガスに感応するガス検知素
子は開発されてはいるが、感応体材料に増感剤と
して貴金属触媒を用いているため、種々のガスに
よる触媒被毒の問題、メタンガスに対する選択度
が小さい点、あるいは周囲湿度に対する依存性が
大きい点などの課題をこれら素子はかかえてい
る。したがつて、実用に際しては未だ不十分な特
性であるのが現状である。 本発明はこれらの諸問題を解決し得る特性を有
しているとともに、メタンガスに対しても実用上
十分大きな感度を持つたガス検知素子を提供する
ものである。メタンガスはそれ自身非常に安定な
ガスであるだけに、これに十分な感度を有する検
知素子は非常に高活性である必要がある。したが
つて、メタンガスに対して大きな感度を実現する
ために、従来は貴金属触媒を感応体材料に添加し
て用いるか、あるいは感応体をかなり高い温度で
動作させるかなどの工夫がなされてきた。しか
し、本発明による素子は貴金属触媒を一切添加す
ることなく、また比較的低い動作温度でも対メタ
ン感度の大きい素子を実現するものである。 以下の実施例で具体的に述べる。 〔実施例 1〕 市販の硫酸第二鉄(FeSO4・7H2O)100gを50
℃の温度に保たれた2の純水に溶解させ、よく
撹拌した。この溶液に8規定の水酸化アンモニウ
ム(NH4OH)溶液を1分間に60c.c.の割合で、溶
液のPHが7になるまで滴下した。滴下終了後10分
間溶液の温度を50℃に保持し、それから室温に戻
した。この段階で茶色味がかつた黒色の共沈物が
得られた。この共沈物を吸引ろ過し、110℃の温
度で12時間乾燥した。 得られた乾燥粉を二つに分け、一方を400℃の
温度で水素を20%含む窒素気流中で1時間処理し
た(以後これをVグループと称す)。他方につい
ては、400℃の温度で空気中で1時間処理した
(以後これをAグループと称す)。すなわち、前者
は四三酸化鉄(Fe3O4)の粉体に、また後者はア
ルフア型酸化第二鉄(α―Fe2O3)を一部含むガ
ンマ型酸化第二鉄(γ―Fe2O3)の粉体になつ
た。これらの粉体をそれぞれらいかい機で2時間
粉砕した後、有機バインダーを用いて100〜200μ
mの大きさの粒子に整粒した。これらの粉体をそ
れぞれ2×1.5×3mmの直方体形状に400Kg/cm2
の圧力で加圧成形し、Vグループについては真空
中において750℃の温度で1時間焼成し、さらに
400℃の温度で空気中において20時間処理した。
また、Aグループについては空気中において750
℃の温度で1時間焼成した。この段階でVグルー
プはγ―Fe2O3の感応体、Aグループはα―
Fe2O3の感応体となつた。次に、これらの焼結体
の表面にAuを蒸着して一対の櫛形電極を形成
し、その裏面には白金発熱体を無機接着剤で貼り
つけてヒータとし、検知素子を作製した。ガス感
応特性は、この発熱体に電流を通じ、その電流値
を調節して素子の動作温度を400℃に保持して、
1対の金電極間の抵抗値を測定することによつて
調べた。 ところで、感応体の微細構造は、上述の工程の
中でAu電極を形成する前の段階での焼結体を用
いて調べた。その結果、焼結微粒子の平均粒径は
γ―Fe2O3,α−Fe2O3の場合のいずれも0.20μ
mであり、また気孔率はγ―Fe2O3のものは68
%、α―Fe2O3のものは63%であつた。 空気中における抵抗値(Ra)については、乾
燥した空気が乱流のできない程度にゆつくり撹拌
されている容積50の測定容器中で測定し、ガス
中での抵抗値(Rg)はこの容器の中に純度99%
以上の被検ガスを容積比率にして10ppm/秒の
割合で流入させ、ある一定のガス濃度に達したと
きの感応体の抵抗値を測定してガス感応特性を調
べた。 Vグループすなわちγ―Fe2O3の場合のRa
780kΩ,Aグループすなわちα―Fe2O3の場合の
aは665kΩであつた。 測定ガスとしてメタン(CH4),エタン
(C2H6),プロパン(C3H8),イソブタン(i―
C4H10),水素(H2)およびエチルアルコール
(C2H5OH)の各ガスを用いて、それぞれ0.05
%,0.2%,1.0%のガス濃度で測定した。Rg
各ガスの濃度依存性は第1表に示す通りであつ
た。この表からわかるように、いずれの素子もメ
タン,エタン,プロパン、イソブタン、水素の各
ガスに対して実用上十分な感度を持つている一
方、エチルアルコールに対しては、非常に感度が
小さいことがわかる。 元来α―Fe2O3はガス感応特性の非常に悪いも
のであるが、このように感応体の微細構造を制御
されたものは、従来から微量検知がむづかしいと
されてきたメタンガスに対しても、実用上十分な
感度を有している。 また、γ―Fe2O3はそれ自身プロパン,イソブ
タン,水素などのガスに対して大きな感度を有す
ることで有名であるが、特に化学的に安定なメタ
ンガスに対しては、その微量検知が困難とされて
きた。しかし、本発明のように微細構造を制御さ
れたものは、かなり大きな感度を示す。 さらに、いまひとつ本発明による素子の特筆す
べき点は周囲湿度依存性の小さい点である。ちな
みに本検知素子を40℃の周囲温度雰囲気中に置
き、周囲の相対湿度を35%から95%までの範囲で
変えて、各ガス0.2%の濃度におけるRg(0.2)
を測定した。その結果を第1表にあわせて示し
た。表中βHは、35%と95%におけるそれぞれの
g(0.2)の比を示したもので、周囲湿度依存性
の大きさを示している。表から明らかなように、
被検ガスの種類によつてある程度の差はあるもの
の、非常に周囲湿度依存性が小さいことがわか
る。これは貴金属触媒を用いた従来の半導体式の
もののβHが約1.25以上であることを考慮に入れ
ると、本発明の有効性が大であることがわかる。
The present invention uses a gas sensitive material with a small particle size and porous microstructure, that is, a very large specific surface area, to detect flammable gases, especially methane gas, which has traditionally been difficult to detect with high sensitivity. The present invention also relates to a combustible gas detection element having a sensitivity sufficient for practical use. In recent years, various research and developments regarding combustible gas sensing element materials have become active. This is strongly attributable to the fact that explosions caused by flammable gases and poisoning accidents caused by toxic gases occur frequently, mainly in households and in various factories, and these have become major social problems. Incidentally, in Japan, liquefied natural gas (LNG), whose main component is methane gas, has come to be used for general household use and is gradually becoming popular. Therefore, the demand for gas detection elements that can detect methane gas, which is the main component of LNG, with high selectivity is increasing. Of course, gas detection elements that are sensitive to methane gas have already been developed, but because they use noble metal catalysts as sensitizers in the sensitive material, there are problems with catalyst poisoning by various gases, and the selectivity for methane gas is low. These devices suffer from problems such as high dependence on humidity and ambient humidity. Therefore, the current situation is that the properties are still insufficient for practical use. The present invention provides a gas detection element that has characteristics that can solve these problems and has a sensitivity that is sufficiently high for methane gas for practical use. Since methane gas itself is a very stable gas, a detection element that has sufficient sensitivity for methane gas needs to be extremely active. Therefore, in order to achieve high sensitivity to methane gas, conventional techniques have been used such as adding a noble metal catalyst to the sensitive material or operating the sensitive material at a considerably high temperature. However, the device according to the present invention realizes a device with high sensitivity to methane even at a relatively low operating temperature without adding any noble metal catalyst. This will be specifically described in the following examples. [Example 1] 100 g of commercially available ferric sulfate (FeSO 4 7H 2 O) was
It was dissolved in pure water kept at a temperature of 2°C and stirred well. An 8N ammonium hydroxide (NH 4 OH) solution was added dropwise to this solution at a rate of 60 c.c. per minute until the pH of the solution reached 7. After the completion of the dropwise addition, the temperature of the solution was maintained at 50° C. for 10 minutes, and then returned to room temperature. At this stage, a brownish black coprecipitate was obtained. This coprecipitate was suction filtered and dried at a temperature of 110°C for 12 hours. The obtained dry powder was divided into two parts, and one part was treated at a temperature of 400°C for 1 hour in a nitrogen stream containing 20% hydrogen (hereinafter referred to as group V). The other one was treated in air at a temperature of 400° C. for 1 hour (hereinafter referred to as group A). That is, the former uses triiron tetroxide (Fe 3 O 4 ) powder, and the latter uses gamma-type ferric oxide (γ-Fe 2 O 3 ) containing a portion of alpha-type ferric oxide (α-Fe 2 O 3 ). 2 O 3 ) powder. After pulverizing each of these powders for 2 hours using a crusher, they are crushed to 100 to 200 μm using an organic binder.
The particles were sized into particles with a size of m. These powders were each shaped into a rectangular parallelepiped of 2 x 1.5 x 3 mm 3 at a weight of 400 kg/cm 2.
For group V, it was baked in a vacuum at a temperature of 750°C for 1 hour, and then
It was treated in air at a temperature of 400°C for 20 hours.
In addition, for Group A, 750
It was baked for 1 hour at a temperature of °C. At this stage, the V group is a γ-Fe 2 O 3 receptor, and the A group is an α-
It became a sensitizer for Fe 2 O 3 . Next, Au was deposited on the surface of these sintered bodies to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to serve as a heater, thereby creating a sensing element. The gas-sensitive characteristics are achieved by passing a current through this heating element and adjusting the current value to maintain the operating temperature of the element at 400℃.
This was investigated by measuring the resistance value between a pair of gold electrodes. By the way, the fine structure of the sensitive body was investigated using a sintered body at a stage before forming the Au electrode in the above-mentioned process. As a result, the average particle size of the sintered fine particles was 0.20 μ for both γ-Fe 2 O 3 and α-Fe 2 O 3 .
m, and the porosity of γ-Fe 2 O 3 is 68
%, and that of α-Fe 2 O 3 was 63%. The resistance value in air (R a ) was measured in a measuring container with a volume of 50 mm in which dry air was stirred slowly to the extent that no turbulence occurred, and the resistance value in gas (R g ) was measured using this 99% purity in the container
The gas sensitivity characteristics were investigated by flowing the above test gas at a volume ratio of 10 ppm/sec and measuring the resistance value of the sensitive body when a certain gas concentration was reached. In the case of V group, that is, γ-Fe 2 O 3 , R a is
780 kΩ, and R a in the case of A group, that is, α-Fe 2 O 3 was 665 kΩ. Methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), isobutane (i-
C 4 H 10 ), hydrogen (H 2 ), and ethyl alcohol (C 2 H 5 OH), each using 0.05
Measurements were made at gas concentrations of %, 0.2%, and 1.0%. The dependence of R g on the concentration of each gas was as shown in Table 1. As can be seen from this table, while each element has sufficient sensitivity for practical use against methane, ethane, propane, isobutane, and hydrogen gases, it has extremely low sensitivity against ethyl alcohol. I understand. α-Fe 2 O 3 originally has very poor gas-sensitivity characteristics, but the microstructure of the sensitive material controlled in this way is effective against methane gas, which has traditionally been difficult to detect in trace amounts. It also has sufficient sensitivity for practical use. In addition, γ-Fe 2 O 3 itself is famous for its high sensitivity to gases such as propane, isobutane, and hydrogen, but it is particularly difficult to detect trace amounts of methane gas, which is chemically stable. It has been said that However, those whose fine structure is controlled as in the present invention exhibit considerably high sensitivity. Furthermore, another noteworthy feature of the device according to the present invention is that it has little dependence on ambient humidity. By the way, when this sensing element is placed in an ambient temperature atmosphere of 40°C and the surrounding relative humidity is varied from 35% to 95%, R g (0.2) at a concentration of 0.2% for each gas is measured.
was measured. The results are also shown in Table 1. In the table, β H indicates the ratio of R g (0.2) at 35% and 95%, and indicates the degree of dependence on ambient humidity. As is clear from the table,
It can be seen that although there are some differences depending on the type of gas being tested, the dependence on ambient humidity is extremely small. This shows that the effectiveness of the present invention is great, considering that β H of the conventional semiconductor type using a noble metal catalyst is about 1.25 or more.

〔実施例 2〕[Example 2]

実施例1では、焼成条件は真空中、空気中いず
れの場合も750℃で1時間であつたが、ここでは
焼成温度を550〜1150℃の範囲で100℃きざみで変
化させ、以後実施例1と同様の方法で素子を作製
して、ガス感応特性と感応体の微細構造の焼成温
度依存性を調べた。なお、焼成時間はそれぞれ1
時間とした。 第1図は焼成温度と平均粒径、気孔率の関係を
示す。また第2図は焼成温度とガス感応特性(R
aとRg(0.2%メタンガス))との関係を示す。図
から明らかなように、焼成温度が950℃以上にな
ると粒成長が促進され、気孔率も減少しているこ
とがわかる。また、ガス感応特性もこれらに対応
して変化している。これらの結果から、ガス感応
特性は感応体の組成が変らなくても、その微細構
造に大きく関係していることがわかる。すなわ
ち、平均粒径が0.5μm以上になると、実効的な
比表面積が減少し、活性度が低下するため、ガス
感度も低下する。また、気孔率が35%以下の場合
もこれと同じことが言える。逆に、気孔率が85%
以上になると機械的強度が小さく、実用素子とし
て供し得ないものになる。 以上述べたように、本発明のガス検知素子は、
貴金属触媒を用いず、また400℃という比較的低
い動作温度でも、化学的に安定で高感度検知がむ
ずかしいといわれてきたメタンガスに対しても、
実用上十分な感度を有している。しかも実用上誤
報の原因となり得る、対アルコール感度が小さ
く、また周囲湿度依存性も小さいという特徴もあ
わせて持つている。 また他の成分を加えることによつて、さらに高
感度検知を実現することができる。以下実施例に
基づいて詳細に述べる。 〔実施例 3〕 市販の硫酸第二鉄(FeSO4―7H2O)160gを50
℃の温度に保たれた2の純水に溶解させ、よく
撹拌した。また市販の硫酸亜鉛(ZnSO4
7H2O)35gを1の純水に溶解させ、よく撹拌
した。そしてこの溶液を先程のFeイオンを含む
溶液に注ぎ、再び十分撹拌した。次にこの溶液に
8規定の水酸化アンモニウム(NH4OH)溶液を
1分間に60c.c.の割合で、溶液のPHが7になるまで
滴下した。滴下完了後10分間は溶液の温度を50℃
に保つたままにして、その後室温に戻した。この
段階で茶色味がかつた黒色の共沈物が得られた。
この共沈物を吸引過の方法で取り出し、110℃
の温度で12時間乾燥した。 得られた乾燥粉を二つに分け、実施例1と同じ
ように、一方と還元処理(Vグループ)し、他方
を酸化処理(Aグループ)した。以後は実施例1
と全く同様の方法で二つのグループの素子を作製
して、ガス感応特性を測定し、微細構造を調べ
た。その結果を第2表に示す。 表に見られるように、実施例1の場合と比較し
てZnを添加することにより、微細構造には大き
な変化はないものの、メタン,エタン,プロパ
ン,イソブタンの各ガスに対して感度が大きくな
り、かつガス濃度分離度(単位ガス濃度あたりの
抵抗値の変化量)が大きくなつている。一方、エ
チルアルコールに対しては、Znを加えていない
場合とあまり大きい差異が認められない。また、
周囲湿度依存性についてもZnを加えたことによ
る差異はほとんどない。 このようにZnのような成分と組合わせて構成
することによつて、他の特性を損うことなく、ガ
ス感度とガス濃度分離度だけを大きくすることが
できる。この効果はVグループ,Aグループ両者
に有効で、その程度はほぼ同じである。
In Example 1, the firing conditions were 750°C for 1 hour in both vacuum and air, but here the firing temperature was varied in the range of 550 to 1150°C in 100°C increments. A device was fabricated using the same method as above, and the dependence of the gas sensitivity characteristics and the microstructure of the sensor on the firing temperature was investigated. In addition, the firing time is 1
It was time. FIG. 1 shows the relationship between firing temperature, average grain size, and porosity. Figure 2 also shows the firing temperature and gas sensitivity characteristics (R
The relationship between a and R g (0.2% methane gas) is shown. As is clear from the figure, when the firing temperature is 950°C or higher, grain growth is promoted and the porosity is reduced. Additionally, the gas sensitivity characteristics have also changed accordingly. These results show that the gas-sensitive characteristics are largely related to the fine structure of the sensitive material, even if the composition of the sensitive material remains unchanged. That is, when the average particle size becomes 0.5 μm or more, the effective specific surface area decreases, the activity decreases, and the gas sensitivity also decreases. The same thing can also be said when the porosity is 35% or less. Conversely, the porosity is 85%
If it is more than that, the mechanical strength will be so low that it cannot be used as a practical device. As described above, the gas sensing element of the present invention is
Even for methane gas, which has been said to be chemically stable and difficult to detect with high sensitivity, it does not use a precious metal catalyst and even at a relatively low operating temperature of 400℃.
It has sufficient sensitivity for practical use. Furthermore, it also has the characteristics of low sensitivity to alcohol and low dependence on ambient humidity, which can cause false alarms in practice. Further, by adding other components, even higher sensitivity detection can be achieved. The following will be described in detail based on examples. [Example 3] 160 g of commercially available ferric sulfate (FeSO 4 -7H 2 O) was
It was dissolved in pure water kept at a temperature of 2°C and stirred well. In addition, commercially available zinc sulfate (ZnSO 4
7H 2 O) was dissolved in 1 pure water and stirred well. This solution was then poured into the Fe ion-containing solution from earlier and stirred thoroughly again. Next, an 8N ammonium hydroxide (NH 4 OH) solution was added dropwise to this solution at a rate of 60 c.c. per minute until the pH of the solution reached 7. The temperature of the solution was kept at 50℃ for 10 minutes after the completion of dropping.
and then allowed to return to room temperature. At this stage, a brownish black coprecipitate was obtained.
This coprecipitate was taken out by suction and heated to 110°C.
dried for 12 hours at a temperature of The obtained dry powder was divided into two parts, and in the same manner as in Example 1, one part was subjected to reduction treatment (V group) and the other part was subjected to oxidation treatment (A group). Hereafter, Example 1
Two groups of devices were fabricated using exactly the same method as above, their gas sensitivity characteristics were measured, and their microstructures were investigated. The results are shown in Table 2. As seen in the table, by adding Zn compared to Example 1, although there is no major change in the microstructure, the sensitivity to methane, ethane, propane, and isobutane gases increases. , and the degree of gas concentration separation (the amount of change in resistance value per unit gas concentration) is increasing. On the other hand, for ethyl alcohol, there is not much difference observed compared to when no Zn is added. Also,
There is also almost no difference in the dependence on ambient humidity due to the addition of Zn. By combining components such as Zn in this manner, only gas sensitivity and gas concentration separation can be increased without impairing other properties. This effect is effective for both the V group and the A group, and its degree is almost the same.

〔実施例 4〕[Example 4]

それぞれ市販の硫酸第二鉄(FeSO4・7H2O)、
塩化第二錫{SnCl4・5H2O)および硫酸亜鉛
(ZnSO4・7H2O)を用いて、実施例3と同じよう
な方法で、鉄イオン,錫イオンおよび亜鉛イオン
を含む水溶液を作り、これらの水溶液の混合比率
を変えてそれぞれ濃度の異る混合溶液を種々作製
し、NH4・OHを用いて共沈物を得た。そして、
これらを乾燥し、粉砕して感応体の原料粉末とし
た。 得られた微粉末原料を有機バインダーで100〜
200μmの大きさの粒子に整粒した。これら種々
の粉体をそれぞれ直方体形状(2×1.5×3mm
)に400Kg/cm2の圧力で加圧成型し、空気中で
800℃の温度で1時間焼成した。この焼結体の表
面にAuを蒸着して一対の櫛形電極を形成し、そ
の裏面に白金発熱体を無機接着剤で貼りつけてヒ
ータとし、検知素子を作製した。この発熱体に電
流を通じ、その電流値を調節して素子の動作温度
を400℃に保持して、そのガス感応特性と平均粒
径、気孔率を測定した。その結果を第3表に示
す。測定ガスは実施例1,3の場合と同様、メタ
ン,エタン,プロパン,イソブタン,水素および
エチルアルコールの各ガスを用いた。Rgについ
てはガス濃度が0.2%のときの値を示した。また
βHについてはこれらの測定ガスの中でβHが最も
大きく出るイソブタンガスの場合の値を示した。
Commercially available ferric sulfate (FeSO 4 7H 2 O),
An aqueous solution containing iron ions, tin ions, and zinc ions was prepared in the same manner as in Example 3 using stannic chloride (SnCl 4 .5H 2 O) and zinc sulfate (ZnSO 4 .7H 2 O). By changing the mixing ratio of these aqueous solutions, various mixed solutions with different concentrations were prepared, and coprecipitates were obtained using NH 4 OH. and,
These were dried and pulverized to obtain a raw material powder for the sensitive material. The obtained fine powder raw material is mixed with an organic binder to
The particles were sized to a size of 200 μm. These various powders were each shaped into a rectangular parallelepiped (2 x 1.5 x 3 mm
3 ) Pressure molded at a pressure of 400Kg/cm 2 and molded in air.
It was baked at a temperature of 800°C for 1 hour. Au was deposited on the surface of this sintered body to form a pair of comb-shaped electrodes, and a platinum heating element was attached to the back surface with an inorganic adhesive to form a heater, thereby producing a sensing element. A current was passed through this heating element, the current value was adjusted to maintain the operating temperature of the element at 400°C, and its gas sensitivity characteristics, average particle size, and porosity were measured. The results are shown in Table 3. As in Examples 1 and 3, the measurement gases used were methane, ethane, propane, isobutane, hydrogen, and ethyl alcohol. Regarding R g , the value when the gas concentration is 0.2% is shown. Regarding β H , the values are shown for isobutane gas, which produces the largest amount of β H among these measurement gases.

【表】 第3表から明らかなように、SnおよびZnがそ
れぞれSnO2,ZnOに換算して総量で0.5モル%未
満の場合には、これら成分を加えたことによる効
果が見られない。逆に70モル%を越える場合はあ
る程度のガス感応特性を示すものもあるものの抵
抗値が異常に低くなつたり、あるいは抵抗値のば
らつき、経時変化が大きくなつたりして実用に供
し得ないものになる。このような理由から、
Sn,Zn成分の総量を酸化物に換算して0.5〜70モ
ル%に限定した。 以上、本発明にかかる素子は、貴金属触媒を用
いることなく、また比較的低い温度で動作させる
ことによつて、現在社会的要請の強いメタンガス
に対しても高感度検知を実現したものである。し
かも、エチルアルコールに対する感度が小さく、
また周囲湿度依存性がきわめて小さいため、実用
上誤報の少ない可燃性ガス検知素子の実現をも可
能にしたものである。 実施例では、出発原料としてFeSO4・7H2O,
ZnSO4・7H2OおよびSnCl4・5H2Oを用いたが、
特にこれらに限定されるものではない。また、ガ
ス感応体として焼結体を用いたものについて述べ
たが、勿論これも特に焼結体に限るものではな
く、厚膜など他の形状のものであつてもなんらさ
しつかえないことはいうまでもない。さらに、特
性を向上させる目的で他の成分を加えることも可
能である。
[Table] As is clear from Table 3, when the total amount of Sn and Zn is less than 0.5 mol% in terms of SnO 2 and ZnO, respectively, no effect is seen by adding these components. On the other hand, if it exceeds 70 mol%, although some products may exhibit some degree of gas sensitivity, the resistance value may become abnormally low, or the resistance value may vary greatly or change over time, making it impossible to put it into practical use. Become. For this reason,
The total amount of Sn and Zn components was limited to 0.5 to 70 mol% in terms of oxides. As described above, the element according to the present invention achieves high sensitivity detection even for methane gas, which is currently in strong social demand, by operating it at a relatively low temperature without using a noble metal catalyst. Moreover, it has low sensitivity to ethyl alcohol,
Furthermore, since the dependence on ambient humidity is extremely small, it has also become possible to realize a combustible gas detection element that produces fewer false alarms in practical use. In the examples, FeSO 4 7H 2 O,
Although ZnSO 4 7H 2 O and SnCl 4 5H 2 O were used,
It is not particularly limited to these. In addition, we have described the use of sintered bodies as gas sensitive bodies, but of course this is not limited to sintered bodies, and it goes without saying that other shapes such as thick films are also acceptable. Nor. Furthermore, it is also possible to add other components for the purpose of improving properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における素子の焼成温度と感応
体の平均粒径、気孔率との関係を、第2図は焼成
温度とガス感応特性との関係をそれぞれ示したも
のである。
FIG. 1 shows the relationship between the firing temperature of the element and the average particle size and porosity of the sensitive material in the present invention, and FIG. 2 shows the relationship between the firing temperature and gas sensitivity characteristics.

Claims (1)

【特許請求の範囲】 1 微粒子の鉄化合物を熱処理して得られたガス
感応体であつて、その感応体がガンマ型酸化第二
鉄(γ―Fe2O3)あるいはアルフア型酸化第二鉄
(α―Fe2O3)の少なくともいずれか一方の酸化鉄
成分から成り、かつその感応体の微細構造におい
て、平均粒径が0.5μm以下であり、気孔率が35
〜85%であることを特徴とする可燃性ガス検知素
子。 2 感応体が酸化鉄成分とともに、錫(Sn)も
しくは亜鉛(Zn)のうち少なくとも1種をそれ
ぞれ酸化第二錫(SnO2)もしくは酸化亜鉛
(ZnO)に換算して総量で0.5〜70モル%を含むこ
とを特徴とする特許請求の範囲第1項記載の可燃
性ガス検知素子。
[Scope of Claims] 1. A gas sensitizer obtained by heat-treating fine particles of an iron compound, the sensitizer being gamma-type ferric oxide (γ-Fe 2 O 3 ) or alpha-type ferric oxide. (α-Fe 2 O 3 ), and the fine structure of the sensitive material has an average particle size of 0.5 μm or less and a porosity of 35
A combustible gas detection element characterized by ~85%. 2. The sensitizer contains at least one of tin (Sn) and zinc (Zn) together with the iron oxide component in a total amount of 0.5 to 70 mol% in terms of stannic oxide (SnO 2 ) or zinc oxide (ZnO), respectively. The combustible gas detection element according to claim 1, characterized in that it includes:
JP8617479A 1979-07-06 1979-07-06 Combustible gas detecting element Granted JPS5610246A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8617479A JPS5610246A (en) 1979-07-06 1979-07-06 Combustible gas detecting element
US06/165,008 US4359709A (en) 1979-07-06 1980-07-01 Combustible gas sensor
AU60017/80A AU518932B2 (en) 1979-07-06 1980-07-01 Combustible gas sensor
CA000355289A CA1152415A (en) 1979-07-06 1980-07-03 Combustible gas sensor
EP80302298A EP0022369B1 (en) 1979-07-06 1980-07-04 Combustible gas detecting elements
DE8080302298T DE3068021D1 (en) 1979-07-06 1980-07-04 COMBUSTIBLE GAS DETECTING ELEMENTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8617479A JPS5610246A (en) 1979-07-06 1979-07-06 Combustible gas detecting element

Publications (2)

Publication Number Publication Date
JPS5610246A JPS5610246A (en) 1981-02-02
JPS6152933B2 true JPS6152933B2 (en) 1986-11-15

Family

ID=13879386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8617479A Granted JPS5610246A (en) 1979-07-06 1979-07-06 Combustible gas detecting element

Country Status (1)

Country Link
JP (1) JPS5610246A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610245A (en) * 1979-07-06 1981-02-02 Matsushita Electric Ind Co Ltd Manufacture of inflammable gas detecting element
JPS60170759A (en) * 1984-02-16 1985-09-04 Matsushita Electric Ind Co Ltd Combustible gas detecting element

Also Published As

Publication number Publication date
JPS5610246A (en) 1981-02-02

Similar Documents

Publication Publication Date Title
US3865550A (en) Semi-conducting gas sensitive devices
EP0022369B1 (en) Combustible gas detecting elements
EP0095313B1 (en) Combustible gas-detecting element and its production
JPH05505465A (en) gas sensor
JPS6152933B2 (en)
JPH027025B2 (en)
JPS6052755A (en) Manufacture of gas-detecting element
JPS6160381B2 (en)
JPS6193945A (en) Nitrogen oxides detecting element
JPS6222420B2 (en)
JPS623375B2 (en)
JPS58118953A (en) Preparation of gas sensitive element
JPH0230662B2 (en) COSENSA
JPH06231770A (en) Electrode material
JPS6116932B2 (en)
JPS5853741B2 (en) Kanenseigaskenchisoshi
JPS6160386B2 (en)
JPS58201054A (en) Gas detecting element
JPH0684945B2 (en) Flammable gas sensor
JPS6222414B2 (en)
JPS58113849A (en) Semiconductor gas sensor
JPH0230460B2 (en) GASUKENCHISOSHI
JPS6160380B2 (en)
JPH0230661B2 (en) GASUKENCHISOSHI
JPS6222415B2 (en)